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Abstract

There is limited work aimed at solving the
core task of noun classification for Nguni
languages. The task focuses on identi-
fying the semantic categorisation of each
noun and plays a crucial role in the abil-
ity to form semantically and morphologi-
cally valid sentences. The work by Bya-
mugisha (2022) was the first to tackle the
problem for a related, but non-Nguni, lan-
guage. While there have been efforts to
replicate it for a Nguni language, there
has been no effort focused on comparing
the technique used in the original work vs.
contemporary neural methods or a number
of traditional machine learning classifica-
tion techniques that do not rely on human-
guided knowledge to the same extent.
We reproduce Byamugisha (2022)’s work
with different configurations to account
for differences in access to datasets and re-
sources, compare the approach with a pre-
trained transformer-based model, and tra-
ditional machine learning models that rely
on less human-guided knowledge. The
newly created data-driven models outper-
form the knowledge-infused models, with
the best performing models achieving an
F1 score of 0.97.

1 Introduction

Solid performance when using modern Natural
Language Processing (NLP) approaches, espe-
cially ones that are popular with languages like
English, is dependent on the availability of large
text corpora. Unlike English, all Niger-Congo
B1 (NCB) languages do not have large training
datasets; hence, contemporary techniques have

1Some authors use the term Bantu languages

not been used for tasks such as noun classifica-
tion. Since the languages are characterized by
agglutinative morphology, have an intricate noun
class system, and possess little datasets and tools
that can be repurposed for various tasks (Moors
et al., 2018), most problems have been tackled
with knowledge-infused approaches. The discrep-
ancy of resource availability also means that there
are limited efforts to contrast contemporary data-
driven and knowledge-infused techniques to de-
termine whether there is any difference in perfor-
mance.

In this paper, we address this lack of compari-
son for the task of noun class disambiguation for
NCB languages. Using isiZulu, the focus of this
paper and the largest language in South Africa by
L1 speakers, as a case study the task consists of
predicting the noun class (e.g., NC2) when one is
given a noun (e.g., abantu ‘people’). We limit our
investigation to this task since it is a crucial but
unsolved problem for all NCB languages, isiZulu
especially. Due to NCB languages’ low-resourced
state, the only work that tackles the task for a NCB
language was done by Byamugisha (2022) focus-
ing on Runyankore and related languages from
Guthrie’s Zone J (Maho, 1999).

Byamugisha (2022)’s work deals with the lack
of a large dataset of noun and class pairs by intro-
ducing a number of modules, each solving some
crucial function. Some modules use unlabelled
or automatically labelled datasets that, when com-
bined are able to predict the noun class of the
noun. Byamugisha’s work is a promising start,
since it obtained accuracies in the range 80%-87%
for Runyankore. The work does not resolve the
question of technique comparison; hence, the util-
ity of relying on a multi-modular and knowledge-
infused approach that combines morphology, syn-
tax, and morphology vs. machine learning tech-
niques and a neural model, especially a large
language model (LLM) adapted via the pretrain-

96



finetune paradigm for classification, is still un-
clear. All of the aforementioned models have the
potential to classify nouns using morphology, syn-
tax, and morphology but differ in the following
way:

System complexity and resource requirements:
Knowledge-infused approaches tend to in-
crease the number of sub-modules, each with
a clear and dedicated responsibility, hence
the complexity of the system increases.
While the dedicated functionality of the
subcomponents makes the entire system
more auditable, such techniques tend to rely
on stopgap resources (e.g., models that are
trained using automatically labelled datasets
(e.g., (Mahlaza et al., 2025)) due to a lack
of a context-free grammar that can be used
to generate a gold standard dataset unlike
Byamugisha (2022)) and they are sometimes
inferior with respect to advanced pattern
recognition vs. modern blackbox models
(e.g., LLMs).

Reliance on morphosyntax: Knowledge-
infused approaches have not been used to
investigate noun classification while relying
only on morphosyntax, in the context of NCB
languages, due to the difficulty associated
with the lack of clarity regarding effective
representations, especially ones that separate
semantics from syntax, morphology and
other features (see (Huang et al., 2021) for
similar challenges with English sentences).

Our approach is two-fold. First, we reproduce
Byamugisha’s knowledge-infused noun classifier
for isiZulu, while noting the differences in re-
source requirements and their availability. The
primary goal is to determine how best to build a
syntactic-semantic model for isiZulu since there is
no Context Free Grammar (CFG) that can be used
to generate labelled and unlabelled datasets. This
requires that we identify how changes in training
corpora characteristics for the data-driven compo-
nents affect accuracy. In that regard, we consider
various options for labels in the labelled data (con-
cord, noun class, or both), training corpus size, an-
notation quality (manually annotated by an expert
or automatically labelled), and data-level (senten-
tial, phrasal, or word-based).

Second, we create various supervised machine
learning classifiers (k-Nearest Neighbours (kNN)
algorithm, decision trees, Support Vector Ma-

chines (SVM)), and deep learning based mod-
els (a fully connected feed-forward neural net-
work and a fine-tuned version of the Serengeti lan-
guage model (Adebara et al., 2023)). We com-
pare all the models using a larger dataset (cf.
Byamugisha (2022)) made up of nouns and their
classes to ascertain whether one can obtain sim-
ilar or superior performance by relying on a tra-
ditional ML model that makes use of morphosyn-
tax only. We also investigate whether similar, or
superior, performance can be achieved via a neu-
ral model that relies on morphological, syntax,
and semantic knowledge trained from scratch or
adapted from a pre-trained multilingual LLM (in
this case, Serengeti (Adebara et al., 2023)).

Our results showed that the neural-based and
traditional ML models perform the best. The best
multi-modular model that relies on human-guided
knowledge achieves an F1 score of 0.71 while the
best neural model and traditional ML models have
scores of 0.97.

The rest of the paper is structured such that
Sections 2-3 introduce noun classification and
the existing models, Section 4 details the created
dataset, Sections 5-7 introduce our models, Sec-
tion 8 presents the results, Section 9 discusses, and
Section 10 concludes.

2 NCB noun classification

NCB languages are found in more than 54 coun-
tries, with an estimated 240 million speakers,
and they have a lot of diversity (Gowlett, 2014).
Nonetheless, they all have a noun class system that
categorises each noun to one of 23 classes, as in-
formally summarized in Table 1 for isiZulu. To
demonstrate the impact of the noun classes on the
formation of sentences, consider the following ex-
ample English sentence and its translation:

English: The dog is unhealthy
Thearticle dogsubj. noun issingl.identifier
unnegation-healthyadjective

IsiZulu: Inja ayiphilile
INC9-njastem aneg.preprefix-yiNC9 SC-
philileadjective root

The formation of the word ayiphilile ‘is un-
healthy’ relies on identifying the noun class (here:
NC9) of the subject inja ‘dog’. However, there are
no models for automatically classifying nouns into
their respective classes for isiZulu.
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Table 1: List of NCB, including isiZulu, noun
classes and the semantics that govern inclusion for
each class (Source: (Byamugisha, 2022))

Noun class Example semantic categoriza-
tion

1, 2 People and kinship
3, 4 Plants, nature, and some parts of

the body
5, 6 Fruits, liquids, some parts of the

body and paired things
7, 8 Inanimate objects
9, 10 Tools and animals

11 Long thin stringy objects, lan-
guages,and inanimate objects

12, 13 Diminutives
14 Abstract concepts
15 Infinitives and parts of the body

16, 17, 18 Locative classes
19 Diminutives

20, 21, 22 Augmentatives
23 Locative

3 Existing models for noun classification

The only work that has tackled the task at hand, for
NCB languages at least, was conducted by Bya-
mugisha and it took inspiration from the existing
linguistic theory on the NCB noun class system
by modelling the possible avenues for classifying
a noun namely the morphological prefix, seman-
tic categorization and syntactical context (Bya-
mugisha, 2022). They pursue the task via a mul-
timodular knowledge-infused model, whose func-
tion will now be described.

The simplest avenue relies on the prefix. Bya-
mugisha’s model uses the morphological prefix in-
formation to classify a noun if it is unique. For
instance, the noun abantu ‘people’ has as prefix
aba- and stem -ntu and the prefix aba- is unique
to NC2, the noun will be correctly classified. The
noun umuntu ‘person’ has as prefix umu-, but it
is ambiguous, because the prefix associated with
both NC1 and NC3 is either um- or umu- depend-
ing on the number of syllables of the stem. This
simple model will only output a prediction if a
unique prefix is found otherwise it is considered
ambiguous and continues to the next step.

When the prefix is insufficient, it draws on
the semantic generalizations to determine the
noun class. This is done by training a new

model to determine similar words, using Fast-
Text2 with a corpus of 1 million sentences, to de-
termine a noun’s semantic neighbours. For in-
stance, for the Runyankore noun omuntu ‘per-
son’ from NC1, the model determines that the
nearest neighbours are omugyesi ‘reaper’ (NC1),
omutaahi ‘companion’ (NC1), omukoreesa ‘over-
seer’ (NC1), omushomesa ‘teacher’ (NC1), and
omukuru ‘elder’ (NC1). The semantic informa-
tion derived from the nearest neighbours allows
discerning between ambiguous classes, since in-
formation associated with, e.g., omuntu ‘person’
(NC1) can be used to distinguish it from the noun
omukono ‘arm’, based on the noun class frequen-
cies associated with its neighbours. The noun
omukono shares the same prefix omu-, but one
retrieves different neighbours, such as omunwa
‘mouth’ (NC3), omutwe ‘head’ (NC3), eriino
‘tooth’ (NC5), and enkokora ‘elbow’ (NC9), i.e.,
body parts, vs. omuntu ‘person’ and certain roles
they play. Fundamentally, the differentiation be-
tween the two is done by analysing the noun
classes associated with the neighbouring words
and ascertaining that NC1 is the most common
class among the neighbours for omuntu ‘person’,
hence, the input noun is inferred to belong to the
same class.

The determination of the most common class
among the neighbours requires filtering out some
elements. Specifically, when given neighbouring
nouns, without any labels, a corpus made up of 1
million sentences is used to train a FastText clas-
sifier, where the corpus’ is annotated with parts-
of-speech, the noun class, and the concord (where
possible). The resulting model is used to anno-
tate the input neighbouring words and if these pre-
dictions are found to be inconsistent then they are
dropped from consideration. The concord annota-
tion is then used for the syntax-based filtering step
because it is unique among the classes (Gowlett,
2014; Maho, 1999).

Alternative work involving processing NCB
nouns exists, but it does not tackle the problem
of noun classification; specifically, the efforts on
building morphological analysers (Bosch et al.,
2008), morphological generators (Bosch and Pre-
torius, 2003), part-of-speech taggers (De Pauw
et al., 2012), and noun pluralization tools (Bya-
mugisha et al., 2018, 2017) show attempts to

2https://radimrehurek.com/gensim/
models/fasttext.html
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deal with the ambiguity of nouns. Other re-
searchers have created a massively multilingual
transformer-based encoder-only language model,
named Serengeti, whose training data includes
isiZulu (Adebara et al., 2023). However, none of
these models have been investigated, despite their
potential capability, to classify nouns or to com-
pare them with Byamugisha (2022)’s approach.

4 New dataset for the experiments

The aim of the experiments is to ascertain and
compare the performance of multiple methods, de-
tailed in Sections 5-7. In this section, we describe
the dataset that is used to compare the techniques.

We created a new isiZulu dataset by extract-
ing nouns and their classes from the Oxford Zulu-
English dictionary (de Schryver, Gilles-Maurice,
2015) via optical character recognition and man-
ual cleaning. We created two versions of the
dataset where one version is labelled with a sin-
gle noun class, either singular or plural depend-
ing on the modality of the noun, and the second
is labelled with the singular and plural classes.
For instance, the word umuntu ‘person’ is labelled
with the singular noun class 1 in one dataset and
labelled with the singular and plural combined
classes 1/2 in another. The dataset version that
combines noun classes is only used to train some
of the traditional machine learning models and the
details are provided in Section 6.

The number of nouns per class in the dataset is
listed in Table 2. We used an 80-20 train-test split.

5 Knowledge-infused models

We created multiple variations of Byamugisha
(2022)’s multi-modular classifier to support
isiZulu. This is done by creating multiple versions
of each module in the architecture, labelled A-G
in Figure 1. We now turn to describe the design
decisions and resources used.

Component A This module identifies the noun
class via the noun’s prefix. We use Table 7 to
determine if a noun has a unique prefix hence it
is possible to uniquely determine its noun class.
When the prefix is unique then we resolve the
noun class while ensuring that we prioritise values
that have the longest length. For instance, when
a noun begins with the prefix aba- then it can be
uniquely identified as belonging to NC2, however,
a noun such as umthandazo ‘prayer’ can be classi-

Table 2: Distribution of nouns per class in the
dataset used for training and testing models.

Class % of nouns |nouns|
1 4.80 110
1a 6.37 144
2 4.13 94
2a 2.11 48
3 7.02 160
4 3.82 87
5 12.99 296
6 10.14 231
7 10.05 229
8 7.33 167
9 13.08 299
10 6.80 155
11 4.30 98
14 2.63 60
15 4.43 101

Total 2279

fied to NC1 or NC3. When a noun’s class is am-
biguous then the noun is passed to the following
modules.

Component B and C These modules take first
responsibility in the pipeline to determine the class
when a noun’s prefix is not unique. They first em-
bed words in a vector space as a means of iden-
tifying similar words. Words are embedded using
two possible models; both versions are FastText
skipgram models, motivated by our interpretation
of the work done for Runyankore. One version is
a pre-trained isiZulu model created using 1 mil-
lion sentences sourced from Dlamini et al. (2021).
It was trained with 300 dimensions, and subwords
are formed using n-grams in the range of 3-6. The
alternative model is trained on 180 000 unlabelled
web-crawled sentences, whose sources are listed
in Table 3. For each word representation, we iden-
tify K similar words using the traditional kNN al-
gorithm, where K was selected from the range 10
to 200.

Component D This module takes each of the
predicted neighbouring nouns, produced by mod-
ules B and C, and labels them with a noun class
and/or a class-specific concord using a classi-
fier. This annotation classifier is trained from
scratch. Since we do not have access to a context-
free grammar to generate training data à la Bya-
mugisha (2022) for the classifier, we investigated
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the use of different datasets to determine the im-
pact of certain characteristics (e.g., annotation
quality); all features are listed in Table 4. Seven
classifier versions were developed, each with Fast-
Text’s supervised training capability and its hyper-
parameter autotuning feature (Joulin et al., 2017).
Training data was split in the ratio 80/20 for
training and validation respectively. As an inter-
nal evaluation approach, the performance of each
classifier is tested on the Keet dataset listed in Ta-
ble 3.

Component E and F These modules are re-
sponsible for automatically filtering nearest-
neighbouring nouns using either a part-of-speech
classifier or regular expressions. Since module D
did not annotate the words with a part-of-speech,
these modules rely on a newly trained POS classi-
fier for the annotations. The classifier was trained
on web-crawled data with simplified POS tags and
sourced from (du Toit and Puttkammer, 2021).
The new classifier is able to identify verbs with
96% accuracy when tested against the combined
gold standard datasets listed in Table 4. When the
current modules use the trained classifier, they re-
move all neighbouring words that are identified as
verbs. These modules also rely on an alternative
filter that removes verbs by matching their sub-
ject concord using regular expressions based on
the work by Keet and Khumalo (2017), along with
additional rules from the Oxford isiZulu Bilingual
Dictionary (de Schryver, Gilles-Maurice, 2015).

The second phase of filtering removes words
that do not contain a morpheme associated with
their predicted noun class. There are two alterna-
tive models considered to achieve this. The first
version (i.e., subword-level) removes a neighbour
if the morpheme associated with predicted label is
not contained in the word, by matching all possi-
ble versions of it (including phonological condi-
tioned variations) (Keet and Khumalo, 2017). The
second model (i.e., word-level) filters neighbours
based on their subwords. It fetches the character
n-gram range for the word model, computes all
substrings for the word that matches that length,
labels each subword with a noun class and con-
cord using the previously mentioned classifier and
returns True if the neighbour’s predicted label is in
the set of predictions for its subwords.

Component G This module is responsible for
identifying the noun class from the set of anno-

Table 3: List of datasets used to build the annota-
tion classifiers required for the isiZulu knowledge-
infused model.

Dataset Size Type Label
Web-crawled
data (Leipzig CC
- isiZulu 2016
Mixed Corpus)
(Leipzig Univer-
sity, 2024)

180 000 Sent. ✗

NCHLT Morph.
Corpus (Gaustad
and Puttkammer,
2022)

45 000 Word ✓

Ukwabelana
(Spiegler et al.,
2010)

21 416 Word ✓

Gaustad & McKel-
lar (Gaustad and
McKellar, 2024)

50 000 Word ✓

Keet (sourced
from author and
(Gilbert and Keet,
2018))

795 Word ✓

tated words produced by the previous steps in the
pipeline. It does so by computing the frequencies
for each noun class found in the dataset and identi-
fies the class with the highest count in the final list
of nearest neighbours. The most common class is
then used as the final prediction.

We compared the various versions of the
knowledge-infused model by determining their ac-
curacies on the Keet dataset, listed in Table 3. The
evaluation results will be discussed in Section 8.
For the final evaluation, we compute the precision,
recall, and F1 scores using the test set detailed in
Section 4 for the best performing models.

6 Traditional machine learning models

To create novel supervised ML models that rely
on morphosyntax, and possibly syntax and seman-
tics, for noun classification we considered four su-
pervised machine learning algorithms and mod-
els. In addition, we also experimented with var-
ious ways of preprocessing and representing the
nouns. We describe the choices made regarding
these elements in the following subsections.

Noun forms We investigate the use of com-
pressed and uncompressed versions of each noun
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Figure 1: Architecture of the approximated knowledge-infused model for noun classification.

Table 4: Datasets used to train a word embedding
model for the replicated classifier. Abbreviations:
SN = Sentence, Part = Partial, B = Bronze, G =
Gold, W = Word, SC = Subject concord, NC =
Noun class, and PC = Possessive concord.

,

Dataset
name

Label(s) Size Level

Automatically labelled datasets (Bronze)
SN-B SC, NC 103 895 SN
SN-B-
PartSN

SC, NC 103 895 Phrase

SN-BW SC, NC 336 029 Word
N-BW NC 246 362 Word

Expert labelled datasets (Gold)
Full-GW SC, NC,

OC, PC,
Verb

61 954 Word

SN-GW SC, NC 50 954 Word
N-GW NC 36 713 Word

and this is done to address the hypothesis that the
compressed form of the morphosyntactic model
will outperform the surface-form variant, drawing
from the existing literature surrounding the accu-
racy gains observed when compressing text in the
context of topic classification (i.e., (Jiang et al.,
2023)). Specifically, nouns are compressed using
gzip with all the default parameters found in Jiang
et al. (2023) but we use a single time parameter
(i.e., 0) instead of relying on the current time.

Noun representations We convert each noun
into a vector by relying on term frequencies, ob-
tained via scikit-learn’s TfidfVectorizer and TfVec-
torizer with the same ‘character’ and ‘lower-
case=false’ parameters to ensure that we only con-
sider character level n-grams within the nouns and
account for capitalization. When creating vector
representations, we made use of term frequency

(TF) and term frequency inverse document fre-
quency (TF-IDF) to determine the impact of tak-
ing into account the rarity of an n-gram in the noun
set (Shahmirzadi et al., 2019).

Models We investigated the use of a nearest
neighbours classifier, decision tree, and a support
vector machine, all created using scikit-learn3.
The main hyper-parameter adjusted and tested for
in the case of kNN was the number of neighbours
considered, otherwise all defaults for the scikit-
learn’s KNNClassifier class were used. For the de-
cision tree, we adjusted the tree depth, in addition
to assigning an integer to the random state param-
eter to achieve deterministic behaviour. We also
combatted overfitting via cost complexity pruning;
otherwise, all defaults for the scikit-learn’s Deci-
sionTreeClassifier class were used. For the SVM,
we used a linear kernel since it leads to faster train-
ing speed and tends to be less prone to overfitting
(Rochim et al., 2021).

We also created an ensemble variation of the
kNN, SVM, and DT models. Specifically, we cre-
ated models that first predict dual noun classes
hence they predict the plural and singular noun
classes first. For instance, when given the noun
abantu ‘people’ each model would predict the
noun class pair ‘1/2’. The final noun class predic-
tion is then determined based on the two predicted
classes (i.e., 1 and 2) based on the probability as-
sociated with each of the two classes via the pre-
dictProb function from the scikit-learn library.

We computed the precision, recall, and F1
scores for all models using the test set.

7 Deep learning-based models

We created two types of deep learning models.
One is a simple neural network that is trained from

3https://scikit-learn.org/
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scratch while the second is a pre-trained large lan-
guage model that supports isiZulu and fine-tuned
for the task at hand. We describe each of the mod-
els in the following subsections.

Simple feed-forward neural network We cre-
ated a fully connected feed-forward neural (FNN)
network that consists of an input layer, two hidden
layers, and an output layer. The FNN was trained
using isiZulu embeddings sourced from Adelani
(2022), therefore, it may capture not only mor-
phosyntax but other linguistic features. We relied
on FastTextKeyedVectors for loading the embed-
dings so that out-of-vocabulary words can be in-
ferred. The hidden layers make use of a ReLU ac-
tivation function and they are followed by dropout
layers to prevent over-fitting. The neural net-
work’s hyper-parameters are listed in Table 6. This
was created to act a simple baseline for the pre-
trained model.

Pre-trained LLM We also fine-tuned Serengeti
(Adebara et al., 2023), a model based on the XLM-
R (Conneau et al., 2020) architecture, by updat-
ing all parameters through the transformers li-
brary4 and the trainer application programming
interface5 using a training batch size of 16, with
100 training warm-up steps, and a weight decay
of 0.01. Serengeti was originally pre-trained and
tested on a variety of tasks which include named
entity recognition, part of speech tagging, and
phrase chunking but not noun classification hence
there is no additional baseline to compare against,
other than the newly created FNN.

We computed the precision, recall, and F1
scores for both models using the test set.

8 Results

The results of the internal evaluation of the repro-
duced knowledge-infused technique are presented
in Figure 2. The best performing model relies on
a expert labelled dataset, with syntax and verb in-
formation, for component D (N-GW in Table 4),
which achieves an accuracy of 85%. The best per-
forming model that was created from the largest
automatically labelled dataset, at the word-level,
has an accuracy that is lower by 16.99%. The
prefix-only models that only rely on the prefix to

4https://huggingface.co/docs/
transformers/index

5https://huggingface.co/docs/
transformers/main_classes/trainer

classify nouns perform the worst with an accuracy
of 36.6%.

The results from comparing all the developed
models are provided in Table 5. The traditional
machine learning-based approaches that rely only
on morphosyntax, make use of compressed data,
and used in an ensemble approach, perform the
best. Specifically, the best support vector machine
model has an F1 score of 0.9736. The model per-
forms comparably to the best model that relies on
morphology, syntax, and semantics with 0.965 and
performs slightly better than the best performing
morphosyntax-based model that makes use of un-
compressed data (3% difference).

9 Discussion

We now revisit the problem of inferring a noun’s
noun class by the various techniques and deter-
mining whether the use of semantics, syntax, and
morphology, in a human-guided setting, yields the
best results. The results obtained show that the
neural-based models that make use of semantics,
syntax, and morphology without human-guidance
(the FNN and pre-trained LLM) and the traditional
machine learning models that rely only on mor-
phology, with less human-guided knowledge, per-
form better.

For NC detection, is better to rely on data-driven
models that use human-guided knowledge in a less
labour intensive approach where there are fewer
modules so that errors are not propagated and have
less negative impact on performance. This is evi-
denced by the observation that all the models that
achieve an F1 score above 0.9, as listed in Table 5,
do not rely on significant human guidance that en-
sures that the task is solved via only the prefix or
a semantic approach that mandates the identifica-
tion of semantically similar words and infers the
noun class based on related words. Even if the
‘good performance’ threshold is lowered to an F1
score of 0.8, we see that none of the knowledge-
infused models obtained by replicating the work
by (Byamugisha, 2022) can be considered as hav-
ing good performance. In fact, all 14 models that
meet that standard are either neural-based or make
use of traditional machine learning models.

The performance difference between the FNN
and LLM is small (4%), in particular considering
the simplicity of the FNN. This suggests that pre-
training offers limited benefit for the current task.
When comparing the traditional machine learning

102

https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer


Figure 2: Accuracies in replicated models, across the models that differ based on the datatset used for
the NC-Concord classifier module. The abbreviates used correspond to those detailed in Table 4.

Table 5: Precision, recall, and F1 scores of the best
performing models. Abbreviations: FT = Fine-
tuned, Ens = Ensemble, Prec = Precision, Rec =
Recall, TF = Term frequency, and IDF = Inverse
document frequency

Model Prec. Rec. F1
Morphology, syntax, and semantics

SN-B 0.714 0.591 0.604
SN-BP-PartSN 0.768 0.736 0.714
SN-BW 0.795 0.675 0.686
N-BW 0.743 0.641 0.655
Full-GW 0.625 0.565 0.576
SN-GW 0.789 0.771 0.762
N-GW 0.725 0.729 0.713
FNN 0.9213 0.9273 0.9209
Serengeti-FT 0.9642 0.9666 0.9650

Morphosyntax-based (uncompressed)
kNN-TFIDF 0.7094 0.7149 0.6979
kNN-TF 0.6968 0.7281 0.6928
kNN-Ens. 0.7269 0.7302 0.7060
SVM-TFIDF 0.8222 0.8421 0.8273
SVM-TF 0.8424 0.8509 0.8439
SVM-Ens. 0.9367 0.9429 0.9385
DT-TFIDF 0.7300 0.7478 0.7133
DT-TF 0.7961 0.7917 0.7902
DT-Ens. 0.7916 0.8052 0.7691

Morphosyntax-based (compressed)
kNN-TFIDF 0.8640 0.8770 0.8585
kNN-TF 0.8349 0.8070 0.7970
kNN-Ens. 0.8693 0.8662 0.8632
SVM-TFIDF 0.8608 0.8487 0.8419
SVM-TF+ 0.8947 0.8904 0.8883
SVM-Ens. 0.9742 0.9736 0.9736
DT-TFIDF 0.8824 0.8706 0.8642
DT-TF 0.9038 0.8904 0.8859
DT-Ens. 0.9094 0.8991 0.8918

models, we see that most of the models that use
compressed data perform better than their counter-
parts that use uncompressed data. In fact, the en-
semble SVM model also outperforms deep learn-
ing models. This suggests Jiang et al. (2023)’s
findings on the utility of compression also apply in
the context of a Nguni language. Since not all the
compression-based models outperform the neural
models, this might demonstrate that there is util-
ity in using minimal knowledge in traditional ma-
chine learning models. This is because the best
performing model is an ensemble that exploits the
fact that it is easier to identify the plural and sin-
gular noun classes of a noun vs. predicting the sin-
gular or plural in isolation. Then it disambiguates
between just the plural vs. singular classes instead
of 15, unlike the single class prediction problem.
As such, this may indicate that there is value in
using insights about a language in less labour in-
tensive ways.

10 Conclusions

In reproducing the work by (Byamugisha, 2022)
with different configurations and techniques, the
results showed that the neural and ML models per-
form best, with an F1 score of 0.97, while the
replicated models achieve a score of 0.71 despite
their reliance on human-guided knowledge.

In future work, we plan to consider also other
NCB languages and determine whether the num-
ber of ‘ambiguous’ prefixes among the number
of prefixes might influence a technique’s perfor-
mance. We also plan to investigate the use of
transformer-based and decoder-focused models.
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Appendix A. Hyper-parameters and
linguistic information

In this appendix, we provide the hyperparameters
used to train the FNN detailed in Section 7 and the
noun classes with unique prefixes of which mod-
ule A of the knowledge-infused model uses, as de-
tailed in Section 5.

Table 6: Hyper-parameters used to train the neural
networks

Hyper-parameter Value
Activation function ReLU

Optimizer Adam
Learning rate 0.001

Epochs 11 - 20
Hidden Layer Sizes 256, 128

Table 7: List of classes whose prefixes uniquely
identify a class in isiZulu.

Prefix Class Prefix Class
aba 2 isi 7
abe 2 si 7
ba 2 zi 8
be 2 n 9
o 2a m 9
bo 2a zin 10
imi 4 zim 10
mi 4 lu 11
ili 5 ulu 11
il 5 bu 14
li 5 uku 15
ama 6 ku 15
am 6 pha 16
ma 6 ph 16
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