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Abstract
Event Relation Extraction (ERE) predicts tem-
poral and causal relationships between events,
playing a crucial role in constructing compre-
hensive event knowledge graphs. However, ex-
isting approaches based on pairwise compar-
isons often suffer from computational ineffi-
ciency, particularly at the document level, due
to the quadratic operations required. Addition-
ally, the predominance of unrelated events also
leads to largely skewed data distributions. In
this paper, we propose an innovative two-stage
framework to tackle the challenges, consisting
of a retriever to identify the related event pairs
and a cross-encoder to classify the relationships
between the retrieved pairs. Evaluations across
representative benchmarks demonstrate our ap-
proach achieves better efficiency and signifi-
cantly better performance. We also investigate
leveraging event coreference chains for ERE
and demonstrate their effectiveness.

1 Introduction

Event Relation Extraction (ERE) aims at identify-
ing relationships between events, especially tem-
poral and causal connections. As illustrated in
Figure 1, given the original text and three event
mentions of interest, an ERE model should detect
and classify the temporal (e.g., overlaps and be-
fore) and causal (e.g., cause) relationships between
them. ERE plays a pivotal role in the construc-
tion of event knowledge graphs (EKGs, Ma et al.,
2022) and supports a variety of tasks, such as future
event prediction (Lin et al., 2022), machine reading
comprehension (Zhu et al., 2023), and multi-hop
reasoning (Li et al., 2024).

ERE is challenging due to the event relation va-
riety and the required comprehension (Liu et al.,
2020b). For document-level ERE (DERE), the chal-
lenge intensifies, needing event disambiguation and
connection across expansive narrative structures.
Previous research has mainly focused on enrich-
ing event semantics (Wen and Ji, 2021; Tran Phu

A major earthquake struck southern Haiti on Tuesday, knocking
down buildings and power lines and inflicting what its
ambassador to the United States called a catastrophe for the
Western Hemisphere's poorest nation.
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Figure 1: An example of ERE task with temporal and
causal relations. The dashed lines indicate there are no
event relations between the event mentions.

and Nguyen, 2021), or exploiting large language
models (LLMs) (Peng et al., 2023a). Neverthe-
less, current research faces a unique challenge in
inefficient learning and inference because the de-
termination of relationships requires pairwise clas-
sification after iterating through all event pairs (Hu
et al., 2023; Wang et al., 2024), which inherently ex-
hibits quadratic time complexity. Additional train-
ing challenges arise due to the largely skewed data
distribution, where most event pairs have no rela-
tion, becoming particularly critical for DERE with
a broader scope of events and lengthy sources (Gao
et al., 2023). However, this aspect has been over-
looked in existing studies, and we are the first to
investigate the efficiency issue in DERE with cru-
cial yet unexplored temporal and causal relations.

In this paper, we introduce a novel pruning-based
two-stage paradigm for DERE (Figure 2). In the
first stage of the framework, we employ a retriever
model to efficiently sift through event mentions
in latent embedding spaces and identify the re-
lated event pairs. Afterwards, a cross-encoder is
fine-tuned for event relation prediction on the nar-
rowed set of candidate pairs. This approach effec-
tively prunes the candidate event pairs to tackle
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Figure 2: Overall architecture of the proposed pruning-based two-stage ERE framework. Stage 1 retrieves candidate
event pairs, and then Stage 2 conducts the costly fine-grained event relation predictions on the retrieved pairs.

inefficiency and deals with the skewed distribution
to enhance performance. Experimental results on
Event StoryLine Corpus (ESC, Caselli and Vossen,
2017), Richer Event Description (RED, O’Gorman
et al., 2016), and MAVEN-ERE (Wang et al., 2022)
demonstrate significantly better performance and
efficiency compared to representative baselines.

In summary, the key contributions of this paper
are as follows: (1) We design a novel two-stage
framework for DERE by pruning candidate event
pairs to reduce computational complexity and miti-
gate the skewed distribution issue. (2) We conduct
rigorous evaluations and ablation studies on DERE
datasets with various retrievers and cross-encoders.
(3) We conduct a comprehensive analysis, includ-
ing time complexity, the effectiveness of encoding
strategies and coreference chains, and the effect of
retrieved candidate-pair count on performances.

2 Related Work

Recent progress of ERE has been made based on
pre-trained language models (PLMs), utilizing se-
mantic structures (Tran Phu and Nguyen, 2021; Hu
et al., 2023), temporal clues (Wen and Ji, 2021),
and external knowledge (Liu et al., 2020a; Cao
et al., 2021) to enrich the event representations.
Some other works leverage the high-order tran-
sitivity (Chen et al., 2022, 2023) and multi-task
learning (Ning et al., 2018; Wang et al., 2022) to
model the dependencies between different relation
types. Some researchers further investigate the use
of LLMs in ERE (Gao et al., 2023; Peng et al.,
2023a,b; Wang et al., 2024). However, they often
achieve this at the expense of computational effi-
ciency when performing pairwise classifications,
especially in document-level datasets (O’Gorman

et al., 2016; Wang et al., 2022). While some recent
work focus on improving the efficiency of entity
coreference resolution (Lee et al., 2018; Held et al.,
2021), they cannot be generalized to DERE be-
cause of the requirement for deeper semantic analy-
sis and the existence of more specific relation types.
In this paper, we inherit the ideas of pruning but
design a more effective framework with a retriever
model and a cross-encoder model.

3 Methodology

We formulate our DERE task as a multi-class clas-
sification problem. Formally, given a document D
that contains multiple sentences and two event men-
tions eh and et of interest, our goal is to predict the
potential temporal (e.g., before) and causal (e.g.,
cause) relationships between them. Following the
framework shown in Figure 2, we introduce the
implementation of the retriever and cross-encoder
models for training and inference in detail.

3.1 Candidate Event Pair Retrieval
The initial stage utilizes a retriever model (i.e., bi-
encoder1) to efficiently represents event mentions
in a latent embedding space to identify the event
pairs likely to have a relation to improve efficiency
and alleviate the skewed distribution problem. For-
mally, for two events eh and et, the wrapped men-
tions are defined as the sentences containing them
(sh, st) with events wrapped by markers <m> and
</m> for enhanced emphasis. With bi-encoder de-
noted as Enc(·), the representation of the events,
rh and rt, are encoded as:

rh = Enc(sh) = Enc(<s> . . . <m>eh</m> . . . </s>), (1)

1Bi-encoders are a broad class of models that map the input
and candidate responses separately into a common feature
space where their similarity is measured (Huang et al., 2021).
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rt = Enc(st) = Enc(<s> . . . <m>et</m> . . . </s>). (2)

Afterwards, we select the top 5 event mentions
most likely to form a relationship with each event.
For fine-tuning, the task is regarded as binary clas-
sification over rh · rt with cross-entropy loss. This
process is intended to direct the model’s attention to
the most significant elements of the event, thereby
improving its ability to discern relevant event pairs.

3.2 Pairwise Classification
In the second stage, we conduct pairwise classi-
fication on the pruned candidate set with a cross-
encoder, for which we employ both discriminative
and generative models.

Discriminative Models. Given an input docu-
ment D, we first obtain the hidden vectors in the
last transformer layer. Then, for event mentions eh
and et, we compute the representations rh and rt
by averaging the representation vectors of respect
tokens. Finally, we form an overall representation
vector rh→t by concatenating the two representa-
tions: rh→t = [rh; rt], and then feed it to a feed-
forward neural network for relation classification.

Generative Models. The generative models uti-
lize a Seq2Seq approach. An example is as follows:

Classify: Mention 1: The murder <m>
trial </m> of a suspended female [...]
<sep> Mention 2: The murder trial [...]
<m> shooting </m> three co-workers [...]

The design of the instruction starts from the word
“Classify:”. Then, we add the two sentences con-
taining the events, separated by a special symbol
<sep>, and we wrap the mentions with the markers
<m> and </m>. <s> and </s> denote the sentence
boundary. The output of the model is the specific
event relationship between them.

All positive event pairs and hard negatives, i.e.,
the negatives retrieved in Stage 1, are used for train-
ing. We adopt this strategy because (1) the cross-
encoder makes predictions on the outputs of the
retriever, which are essential for its learning pro-
cess; and (2) the retrieved event pairs are identified
as related ones, making them ideal candidates for
more expensive cross-comparison.

3.3 Inference
The inference process is distinct from training with
additional strategies. Utilizing the trained retriever
model, we retrieve a set of k events most likely to

form a relationship with the given mention, regard-
less of whether it is fine-tuned, and then we use the
cross-encoder to determine the specific relationship
between them. Our approach prunes aggressively
to improve efficiency. Stage 1 scales linearly, and
retrieved event pairs are sent to the cross-encoder
(Stage 2). In this case, the time of quadratic oper-
ation can be decreased significantly, and both the
prediction and efficiency can be improved.

4 Experiments

4.1 Datasets and Experimental Setup

We conduct experiments on three well-established
datasets: Event StoryLine Corpus (ESC, Caselli
and Vossen, 2017), Richer Event Description (RED,
O’Gorman et al., 2016), and MAVEN-ERE (Wang
et al., 2022). For MAVEN-ERE, we follow previ-
ous work (Gao et al., 2023; Chen et al., 2024) to
sample a subset. We report the precision (P), recall
(R), and micro F1-score (F1) under (1) event pairs
with relations following previous work, and (2) all
event pairs, as it is closer to EKG construction.

We employ diverse retrievers (RoBERTa-Large,
Liu et al., 2019) and S-BERT (Reimers and
Gurevych, 2019)) and classifiers (RoBERTa-Large
and T5-Large (Raffel et al., 2020)). The baseline
models we compared are in Appendix A.

4.2 Experimental Results

Experimental results are depicted in Tables 1 and
2, from which we have the following observations:

Firstly, the introduce of retriever significantly en-
hances cross-encoder performance, with BERT and
RoBERTa outperforming more complex models
like LIP and RichGCN. GPT-3.5 does not outper-
form PLM-based approaches due to its zero-shot
generative nature. Additionally, our retriever also
outperforms random sampling as it is more closely
aligned with the inference process. The hard nega-
tives identified by the retriever are also more similar
to positive ones, which are hard to differentiate.

Secondly, while all metrics increase simultane-
ously, the recall values increase more, particularly
on ESC (increases two times) containing large neg-
ative samples. Simultaneously, the performance
on non-negatives has significant increase; thus, the
skewed distribution problem can be alleviated. The
T5 model with the S-BERT retriever achieves the
best performance on all datasets, demonstrating
their superior capability in event relation classifica-
tion and candidate event pair identification.
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Retriever Classifier ESC RED
P R F1 P R F1

Random RoBERTa 78.4 85.2 81.7 81.2 86.2 83.6
T5 86.1 85.7 85.9 86.8 89.9 88.3

RoBERTa RoBERTa 77.2 86.9 81.8 82.7 87.5 85.0
RoBERTa (Fine-tuned) RoBERTa 77.3 88.1 82.3 82.5 88.4 85.3
RoBERTa T5 87.1 89.0 87.9 82.8 90.2 86.3
RoBERTa (Fine-tuned) T5 85.8 90.3 88.0 87.5 90.1 88.8

S-BERT RoBERTa 79.3 87.8 83.3 83.1 88.7 85.8
S-BERT (Fine-tuned) RoBERTa 82.1 88.4 85.1 84.3 89.1 86.6
S-BERT T5 88.9 90.6 89.7 90.6 91.2 90.9
S-BERT (Fine-tuned) T5 89.2 92.5 90.8* 93.5 91.9 92.7*

Table 1: Performance comparison on the whole evaluation set. For the “Random” retriever, the negatives are
randomly sampled to match our number of hard negatives. * designates statistical significance (p < 0.05).

Method ESC RED MAVEN-ERE
P R F1 P R F1 P R F1

BiLSTM 29.8 12.9 18.1 51.2 48.5 49.8 24.9 11.7 15.9
BERT 30.3 11.5 16.7 59.0 45.3 51.3 28.4 13.3 18.2
RoBERTa 31.9 14.4 21.5 61.3 48.7 54.3 28.6 12.7 17.6
LIP 36.2 23.5 28.2 64.8 57.6 61.0 − − −
T5 34.8 26.7 30.2 64.2 54.6 59.0 27.4 23.5 25.3
RichGCN 36.4 32.1 34.1 68.9 60.2 64.3 34.4 20.5 25.7
GPT-3.5 13.9 54.7 22.2 41.4 45.8 43.5 − − −
*Ours (Retriever + Classifier)
RoBERTa + RoBERTa 40.3 31.2 35.2 66.7 58.5 62.3 36.0 26.4 30.5
S-BERT + RoBERTa 40.6 34.2 37.1 76.9 59.5 67.1 36.2 26.9 32.0
RoBERTa + T5 41.4 33.6 37.0 70.9 75.5 73.1 40.4 33.5 31.9
S-BERT + T5 45.7 38.5 41.8* 87.4 62.1 72.6∗ 36.8 29.5 32.8*

Table 2: Performance comparison on all non-negative event pairs with different retrievers and classifiers.

 Time Complexity

Figure 3: Inference time complexity comparison over
events per document on ESC (k = 5).

Finally, after fine-tuning the retriever model, par-
ticularly S-BERT, the DERE performance can be
further improved. Indeed, the fine-tuned retrievers
significantly contribute to the overall performance
and efficiency of DERE models. Our findings em-
phatically advocate for the integration of advanced
retriever models as indispensable components of
the DERE frameworks.

4.3 Additional Analysis
Time Complexity Analysis. For m documents
with n events per document, conventional pairwise

Retriever Encoding ESC RED
P R F1 P R F1

RoBERTa
Trigger-only 73.2 77.0 75.1 81.3 79.8 80.5
Wrapped* 85.8 90.3 88.0 87.5 90.1 88.8
Graph-based 72.1 86.1 78.8 82.5 81.4 81.9

S-BERT
Trigger-only 79.1 80.2 79.6 82.8 85.4 84.1
Wrapped* 89.2 92.5 90.8 93.5 91.9 92.7
Graph-based 79.1 81.4 80.2 83.2 91.5 87.2

Table 3: Performance comparison using different encod-
ing strategies for both stages on the ESC dataset.

approaches exhibit a time complexity of O(m∗n2).
Our retriever narrows candidate pairs down to k ∗n
(k candidate per event), and it scales linearly with
matrix multiplication in inference. To quantify the
efficiency gains of our method, we compare the
time complexity at inference time. Figure 3 illus-
trates the quadratic growth versus our method’s lin-
ear growth. Average (n=18) and maximal (n=51)
event count is highlighted, in which our approach
reduces approximately 70% at inference time.

Effectiveness of Encoding Strategies. Table 3
shows a comparative analysis of various encoding
strategies. Our wrapped encoding, as formulated in
Equation 2, effectively aids models in recognizing
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k P R F1

3 91.4 67.2 77.5
5 89.2 92.5 90.8
7 85.0 93.2 88.9

10 79.9 91.8 85.4

# EVENT 86.1 85.7 85.9

Table 4: Relationship between the number of top event
pairs retrieved in Stage 1 (k) and Stage 2 performance.

and processing the relevant information within a
rich textual landscape, whereas trigger-only encod-
ing, formulated as: rh = Enc(<m>eh</m>), misses
some contextual nuances. Surprisingly, graph-
based encoding (Nguyen and Grishman, 2018) with
syntactic dependency trees does not improve the
performance, which might be attributed to the noise
introduced due to its high complexity.

Effect of Retrieved Candidate Count. We fur-
ther investigate the impact of the number of can-
didates retrieved per event (k), where S-BERT re-
triever and T5 classifier are used on the ESC dataset.
The results are shown in Table 4, where # EVENT
denotes without retrievers. When k = 3, high preci-
sion is offset by low recall, suggesting that too few
event pairs limit relation detection. k = 5 offers the
best performance, striking a balance between cap-
turing relevant relations and avoiding classification
overload. As k increases beyond this point, while
slowing the process by nature, more non-relevant
pairs are also considered, making the classifier’s
training data more skewed as well, which detracts
from the overall performance.

Effectiveness of Coreference Chains. Table 5
shows the experimental results after adding coref-
erence chains information, which is defined as the
event mentions referring to same events (Wang
et al., 2022). The coreference chains are obtained
from golden annotations and are incorporated as
supplementary inputs. Experimental results show
that the addition of coreference chains further en-
hance performance, regardless of which retriever
is employed. Furthermore, the performance with
the RoBERTa retriever gains more improvements,
even outperforming S-BERT, possibly because
RoBERTa are more proficient to leverage deep con-
textual insights from coreference chains.

4.4 Case Study

We further conduct a case study by sampling 50
event pairs that are mispredicted without the re-
triever but predicted correctly with the retriever

Model P R F1

Random (Retriever) 86.1 85.7 85.9

RoBERTa (Retriever) 85.8 90.3 88.0
+ Coref Chain 91.6 90.8 91.2

S-BERT (Retriever) 89.2 92.5 90.8
+ Coref Chain 96.1 86.5 91.0

Table 5: Impact of coreference chains on ESC.

model. We observe that the retriever model is par-
ticularly beneficial for document-level and implicit
event relations because of the notable decrease in
negative samples. As the following example:

A SAF spokesman denied the attack oc-
curred. [...] did not explode, fell directly
within the camp, [...]

the events “attack” and “fell” span in separate sen-
tences, and there are no causal clues (e.g., “cause”
and “lead to”) between them. Without the retrieval
stage, the cross-encoders are unable to identify the
relationship between them (i.e., attack is a pre-
condition of fell) because of the large proportion
of negatives in the training set; however, with the
cross-encoder trained on the samples retrieved by
the retriever, the relationships between these sam-
ples are more likely to be recognized, alleviating
the skewed distribution issue in DERE datasets.

5 Conclusion and Future Work

We for the first time introduce a novel two-stage
framework for DERE, which improves both effi-
ciency and model training. It first uses a retriever to
identify event pairs, then a cross-encoder for event
relation prediction. Experimental results on three
representative datasets underscore the effectiveness
of our method, which significantly improves both
accuracy and efficiency compared to the baseline
models. We further investigate the efficacy of dif-
ferent encoding strategies, and demonstrate the ef-
fectiveness of leveraging coreference chains in can-
didate event pair identification. In the future, we
will adapt our method to more IE tasks (e.g., entity
relation extraction), and verify its generalizability.

Limitations

Although our proposed two-stage framework per-
forms well on DERE in terms of both overall per-
formance and efficiency, it still has the following
two limitations: (1) Due to the limitation of DERE
datasets, we test the performance on the three most
representative and wildly adopted datasets in other
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papers in this field. Future research demands the
annotation of DERE datasets in other high-resource
and low-resource languages to test the generaliz-
ability of our method. (2) For the second stage
we employ the representative RoBERTa and T5
cross-encoders. More deliberated models or better
prompting may yield better results, though they do
not impact the conclusion of our experiments.
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A Baseline Models

We compare our method against various baselines:
BiLSTM (Cheng and Miyao, 2017) captures the
dependency paths between events. BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) are
transformer-based discriminative models, and T5
(Raffel et al., 2020) is a transformer-based genera-
tive model. LIP (Gao et al., 2019) combines doc-
ument structure with textual content, identifying
nuanced event relations using structural patterns.
RichGCN (Tran Phu and Nguyen, 2021) employs
Graph Convolutional Networks to create interac-
tion graphs. Zhang et al. (2024) employs GPT-3.5
(turbo-1106) to enhance zero-shot prediction. All
baselines (GPT excluded) conduct pairwise com-
parisons.
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