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Abstract

The performance of Large Language Models
(LLMs) on natural language tasks can be im-
proved through both supervised fine-tuning
(SFT) and in-context learning (ICL), which op-
erate via distinct mechanisms. SFT updates the
model’s weights by minimizing loss on training
data, whereas ICL leverages task demonstra-
tions embedded in the prompt, without chang-
ing the model’s parameters. This study investi-
gates the effects of these learning paradigms on
the hidden representations of LLMs using In-
trinsic Dimension (ID). We use ID to estimate
the number of degrees of freedom between rep-
resentations extracted from LLMs as they per-
form specific natural language tasks. We first
explore how the ID of LLM representations
evolves during SFT and how it varies due to
the number of demonstrations in ICL. We then
compare the IDs induced by SFT and ICL and
find that ICL consistently induces a higher ID
compared to SFT, suggesting that representa-
tions generated during ICL reside in higher di-
mensional manifolds in the embedding space.
1

1 Introduction

Large Language Models (LLMs) have transformed
the field of Natural Language Processing through
their general natural language understanding ca-
pabilities, which can be applied to a broad range
of tasks. The performance of an LLM on a spe-
cific task can be improved through two primary
learning paradigms: supervised fine-tuning (SFT)
and in-context learning (ICL). SFT adapts pre-
trained models to specific tasks by updating their
parameters, while ICL requires no parameter up-
dates, relying instead on task-specific demonstra-
tions within the model’s context window. Despite
their widespread success, how these methods influ-
ence a model’s internal representation space is still
not fully understood.

1Code is available at the following GitHub repo.

Intrinsic dimension (ID) is a useful metric for
assessing the geometric complexity of a model’s
representations. It quantifies the number of degrees
of freedom in the representation space, serving
as a measure of the complexity of the underlying
manifolds where the embeddings reside.

In this work, we analyze the intrinsic dimension
(ID) of hidden representations across model lay-
ers during task execution under both supervised
fine-tuning (SFT) and in-context learning (ICL).
Specifically, we explore:

• How fine-tuning duration influences ID of rep-
resentations on both training and validation
data.

• How the number of demonstrations used in
ICL affects ID of representations.

Our findings reveal that (1) the ID sometimes
decreases during the early stages of fine-tuning but
generally increases in the later stages, and (2) the
ID increases initially with more demonstrations
in ICL, then either plateaus or decreases as the
number of demonstrations continues to rise.

We then conduct experiments directly compar-
ing the intrinsic dimensions of ICL and fine-tuning
across several models and datasets. We find that
the intrinsic dimensions of representations from
fine-tuned models are generally lower than those
from models using ICL, even though the fine-tuned
models achieve higher accuracy than the ICL mod-
els. Additionally, our results suggest that ID may
serve as a practical heuristic for selecting the opti-
mal number of demonstrations in ICL to maximize
performance while minimizing input length. These
findings shed light on the differing impacts that the
two learning paradigms have on the representation
space of LLMs.

59

https://github.com/saahithjanapati/intrinsic-dimension-of-learning-paradigms


icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y
Accuracy by Experiment Type

Model: Meta-Llama-3-8B, Dataset: MMLU

0 5 10 15 20 25 30
Layer Index

15.0

17.5

20.0

22.5

25.0

27.5

30.0

In
tri

ns
ic

 D
im

en
si

on

Intrinsic Dimension by Layer
Model: Meta-Llama-3-8B, Dataset: MMLU

Experiment Type
icl-0
icl-1
icl-2
icl-5
icl-10
fine-tune

icl
-0

icl
-1

icl
-2

icl
-5

icl
-10

fin
e-t

un
e

Experiment Type

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 A
U

C

Normalized AUC by Experiment Type
Model: Meta-Llama-3-8B, Dataset: MMLU

Figure 1: Accuracy, intrinsic dimension, and normalized AUC for the Llama-3-8B model on the MMLU dataset.
(a) Fine-tuning achieves the highest accuracy. (b) ICL produces intermediate representations with higher intrinsic
dimensions across model layers compared to zero-shot (ICL-0) and fine-tuned models. (c) Normalized AUC
increases with the number of demonstrations in ICL, while fine-tuned models exhibit lower AUC.

2 Background

2.1 Decoder Transformer Architecture

LLMs are built on the Transformer decoder archi-
tecture, which processes token sequences through
a series of Transformer layers. In each layer, token
representations are updated via self-attention that
considers only the preceding tokens from the previ-
ous layer, progressively encoding information for
the next-token prediction task. The final layer then
uses the representation of the last token to predict
the next token in the sequence. In this work, we an-
alyze the intrinsic dimension of the representations
corresponding to the last token of sequences where
LLMs are prompted to perform specific natural
language tasks.

2.2 Intrinsic Dimension Estimation

Intrinsic dimension (ID) refers to the minimal num-
ber of variables required to capture the essential
structure of high-dimensional data. Although mod-
ern neural networks operate in high-dimensional
spaces (e.g., the hidden representations of Llama-
3-8B span 4096 dimensions), the representations
corresponding to a specific dataset or task often
lie on a manifold of much lower dimension. This
occurs because the network disentangles and ex-
tracts the most relevant lower-dimensional features
needed to complete the task.

According to the manifold hypothesis, real-
world data typically resides on a low-dimensional
manifold (Goodfellow, 2016). Therefore, to ef-
fectively solve tasks—such as next-token predic-
tion—neural networks must learn representations
that align with this low-dimensional structure. Con-
sequently, the intrinsic dimension of data represen-

tations provides unique insight into the complexity
of the representation spaces constructed across the
layers of a neural network.

In this work, we estimate the intrinsic dimen-
sion (ID) of our representations using the TwoNN
estimator, as introduced by Facco et al. (2017).
We chose this method because of its simplicity,
computational efficiency, and robustness when
handling datasets with non-uniform densities and
high-dimensional curvature—common challenges
in neural network representations.

The TwoNN estimator operates on a set of points
by computing the distances to each point’s first (r1)
and second (r2) nearest neighbors. For a given
point x, the ratio

µ =
r2
r1

is calculated. The intrinsic dimension d is then
derived from the empirical cumulative distribution
function (CDF) of µ. Specifically, the log-linear
relationship between log(µ) and log

(
1−Femp(µ)

)
,

where Femp(µ) is the empirical CDF, is used to
estimate d:

d = − log
(
1− Femp(µ)

)

log(µ)

The TwoNN estimator has been successfully ap-
plied in several prior works analyzing the intrinsic
dimension of neural network representations, in-
cluding Sharma and Kaplan (2022), Ansuini et al.
(2019), Valeriani et al. (2024), and specifically in
large language models (LLMs) by Cheng et al.
(2023) and Lee et al. (2024). We also validate
the correlation between the TwoNN estimator and
another widely used intrinsic dimension estimator—
the Maximum Likelihood Estimator introduced by
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Levina and Bickel (2004)—in Appendix F as a
sanity check.

3 Related Works

3.1 Supervised Fine-Tuning in LLMs

Pre-trained LLMs can be quickly adapted to
improve performance on natural language tasks
through supervised fine-tuning, which updates the
model’s parameters via gradient descent on task-
specific training examples.

Aghajanyan et al. (2020) show that fine-tuning
large language models often requires updating
only a low-dimensional subspace of parameters
to achieve near-optimal performance. (Note that
their work focuses on the intrinsic dimension of the
parameter space, whereas our work examines the
intrinsic dimension of the representation space.)
Building on this, Hu et al. (2021) introduce Low-
Rank Adaptation (LoRA), a method that injects
low-rank matrices into the weight matrices for fine-
tuning instead of updating all parameters. We em-
ploy LoRA for all our fine-tuning experiments.

3.2 In-Context Learning

Introduced in GPT-3 by Brown (2020), ICL (or
few-shot learning) refers to the ability of LLMs to
learn to perform a task in a single forward pass,
using (input, output) pairs embedded in a prompt.

Dai et al. (2022) provides evidence that ICL op-
erates as implicit meta-optimization, where GPT
models perform a gradient-like update via atten-
tion mechanisms during the forward pass. This
suggests that ICL replicates fine-tuning behavior;
specifically, they demonstrate that attention outputs
and weights are updated in a direction similar to
that of fine-tuning.

Xie et al. (2021) explain in-context learning as
implicit Bayesian inference, where large language
models infer latent document-level concepts dur-
ing pretraining. These inferred concepts are then
leveraged at test time to solve tasks based on the
input-output examples provided in prompts.

Expanding the ICL paradigm to long-context
models, Agarwal et al. (2024) studied many-shot
ICL, in which hundreds or thousands of task ex-
amples are used to improve the performance of
frontier models. Their work finds that an increas-
ing number of demonstrations generally improves
model performance on a variety of complex tasks,
such as mathematical problem-solving.

3.3 Intrinsic Dimension in Deep Learning

Ansuini et al. (2019) investigated the intrinsic di-
mensionality (ID) of data representations across
various convolutional neural networks (CNNs) for
image classification. They observed a consistent
“hunchback” pattern in ID evolution—an initial in-
crease in the early layers followed by a progressive
decrease in later layers.

Valeriani et al. (2024) extended this analysis to
protein language models and image transformers,
finding that the evolution of representations across
layers of these models is also marked by distinct
phases of ID growth and compression.

Yin et al. (2024) explore the use of Local In-
trinsic Dimension (LID) to detect untruthful out-
puts from LLMs. Their study reveals that truthful
outputs typically exhibit lower LIDs compared to
hallucinated ones, suggesting that LID can serve as
a signal for truthfulness in LLM generations. They
also identify a positive relationship between the ID
of data representations and validation performance
during fine-tuning.

Cheng et al. (2023) demonstrate that intrinsic
dimension correlates with fine-tuning ease and per-
plexity, with low-dimensional representations en-
abling faster task adaptation. Moreover, they find
that ID values are consistent across model sizes,
supporting the manifold hypothesis and suggesting
that LLMs trained on similar data recover compa-
rable intrinsic dimensions.

Of particular relevance to our study is the concur-
rent work of Doimo et al. (2024), which examines
the internal representations of LLMs solving tasks
from the MMLU dataset using both ICL and SFT.
Their analysis reveals that ICL forms semantic clus-
ters in the early layers, while SFT sharpens these
clusters in later layers for task-specific answers.
Moreover, they observe that intrinsic dimension
(ID) increases with a higher number of demon-
strations in ICL, and that SFT generally induces a
higher ID compared to ICL. In contrast, our find-
ings indicate that beyond a certain range of ICL
demonstrations, ID may plateau or even decrease,
and that SFT consistently induces a lower ID than
ICL.

To our knowledge, our work is the first to system-
atically analyze and compare intrinsic dimension
across the two learning paradigms for numerous
datasets and models. We further provide in-depth
analyses of how ID is affected by various factors
within each paradigm, such as the number of gradi-
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ent steps in SFT and the number of demonstrations
in ICL.

3.4 Intrinsic Dimension and Neural Network
Scaling Laws

Sharma and Kaplan (2022) propose that the power-
law scaling of neural network performance is
rooted in the intrinsic dimensionality (ID) of the
data manifold. They empirically demonstrate that
the ID of learned representations, particularly in
the final hidden layer, directly relates to the scal-
ing exponent. Their theory, predicting a scaling
exponent of approximately α ≈ 4/d (where d
is ID), suggests that neural networks achieve ef-
ficient scaling by effectively performing regression
on a lower-dimensional data manifold, thus linking
model capacity to the data’s inherent complexity.

4 Methods

We perform experiments using subsets from the
following datasets: AG News (Zhang et al., 2015),
CoLA (Warstadt et al., 2018), CommonsenseQA
(Talmor et al., 2018), MMLU (Hendrycks et al.,
2020), MultiNLI (Williams et al., 2017), QNLI
(Wang, 2018), QQP (Wang et al., 2017), and SST2
(Socher et al., 2013).

For these experiments, we utilize the follow-
ing open-source LLMs: Llama-3-8B (Dubey et al.,
2024), Llama-2-13b, Llama-2-7b (Touvron et al.,
2023), and Mistral-7B-v0.3 (Jiang et al., 2023),
running them on 6 NVIDIA A6000s.

For each dataset, we created a training set of
1000 examples and a validation set of 5000 ex-
amples. We use the 5000 validation examples to
ensure stability of the TwoNN estimator. Details re-
garding dataset creation can be found in Appendix
G. Details of split generations and prompt tem-
plates are provided in Appendix G.

We calculate the accuracy of model responses
using the logit probabilities assigned to the tokens
corresponding to the possible answers for each
question. We mark a response as correct if the
probability corresponding to the first token of the
correct answer label is the highest.

4.1 Computing Intrinsic Dimension

In both Supervised Fine-Tuning (SFT) and In-
Context Learning (ICL) paradigms, a language
model receives an input sequence of tokens and
is tasked with generating an output sequence that
answers the given prompt. To quantify the intrinsic

dimensionality (ID) of a model’s representations
for a given dataset, we extract the hidden state ac-
tivations at each layer of the LLM. Specifically,
we focus on the activations corresponding to the
last token of each input sequence in the dataset.
For a model with L layers and a dataset containing
N input sequences, this process yields L sets of
hidden state representations. Each set corresponds
to a specific layer and comprises N representation
vectors (one for each input sequence in the dataset).
Subsequently, we compute the intrinsic dimension
(ID) for each of these L sets of N vectors. This
provides us with an ID estimate for the represen-
tation space at each layer. By plotting the Layer
Index against the corresponding ID estimates, we
construct what we term the Intrinsic Dimension
Curve.

To derive a single, aggregated metric that encapsu-
lates the intrinsic dimensionality across all layers
of a model, we calculate the Normalized Area Un-
der the Curve (AUC) of the Intrinsic Dimension
Curve, defined as follows:

Normalized AUC =
1

L

L−1∑

i=1

1

2
(IDi + IDi+1)

In this equation, IDi denotes the intrinsic dimen-
sion estimate at layer i. The formula employs the
trapezoidal rule for numerical integration to ap-
proximate the area beneath the Intrinsic Dimension
Curve. The normalization by L (the number of
layers) enables fair comparisons of intrinsic dimen-
sionality across models with varying depths.

5 Dynamics of ID during Supervised
Fine-Tuning

5.1 Supervised Fine-Tuning Experimental
Setup

To investigate the impact of supervised fine-tuning
at a granular level, we conduct experiments using
the 8 datasets discussed in Section 4 and the Llama-
3-8B and Llama-2-13B models.

Using the training split for each of the datasets,
we perform LoRA fine-tuning on the query, key,
value, and output projection matrices of attention
heads across all layers of the model. For all mod-
els, we fine-tune with a batch size of 16 for 15
epochs. For all fine-tuning runs, we use LoRA
hyperparameters of r = 64, lora_alpha = 16,
lora_dropout = 0.1, no LoRA bias, and a learn-
ing rate of 1e−4.
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Figure 2: Fine-tuning results for Meta-Llama-3-8B on
the MMLU dataset. (a) Intrinsic Dimension curves on
the validation split increase across training steps. (b)
Training accuracy improves steadily, while validation
accuracy plateaus. (c) Normalized AUC for training and
validation sets increases throughout fine-tuning.

During the fine-tuning process for a specific
model and dataset, we save a checkpoint of the
model after every epoch (~62 gradient update
steps). For each checkpoint, we evaluate the
model’s accuracy and measure the intrinsic di-
mension (ID) of the hidden representations on
prompts from the training and validation splits for
the dataset.

5.2 Intrinsic Dimension Generally Increases
Through Fine-Tuning

As depicted in Figure 2c, we find that ID of rep-
resentations corresponding to both training data
and validation data sometimes decreases during
the initial stages of fine-tuning, but then generally

increases as fine-tuning progresses.
We also observe larger changes in ID values for

later layers of the models, despite LoRA adapta-
tion being applied on all the layers with the same
configuration (Figure 2a).

Additionally, we find that the AUC values of
the model on the training set and validation set
are often highly correlated with each other during
the training process (Figure 2c). Experimental re-
sults for all models and datasets can be found in
Appendix B.

Prior work by Yin et al. (2024) found that on
Question-Answering datasets, intrinsic dimension
of representations is correlated with validation per-
formance and can therefore be used as a heuristic
to select final checkpoints. In general, we do not
find this trend to hold on the datasets and models
we tested. In fact, as shown in Figure 13, large in-
creases in validation accuracy sometimes coincide
with drops in ID on both the training and validation
datasets.

6 Relationship of ID in ICL with
Different Numbers of Shots

6.1 In-Context Learning Experimental Setup

To investigate the impact of ICL on the ID of
model representations, we conduct experiments us-
ing the Llama-3-8B and Llama-2-13B models. The
datasets included in our evaluation are Common-
senseQA, MMLU, and QNLI.

We evaluate ICL performance using various val-
ues of k, where k denotes the number of demon-
strations in the ICL prompt. The values considered
are k ∈ {0, 1, 2, 5, 10, 12, 14, 16, 18, 20}. Note
that k = 0 serves as a baseline, representing the
model’s performance in the absence of both ICL
and SFT.

For each k and dataset, we generate 5000 ICL
prompts (one for each element of the validation
split of the dataset). Each ICL prompt includes
k unique demonstrations, or (input, output) pairs,
randomly sampled from the training set. While we
ensure that demonstrations within a single prompt
are unique, they may be reused across different
prompts.

6.2 ID Has a Non-Linear Relationship with
Number of Demonstrations

We observe that ID values across layers can fluctu-
ate until a threshold value of k (typically around 5
to 10 for most model configurations), after which
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Figure 3: (ICL) results for Meta-Llama-3-8B model on MMLU dataset. (a) Accuracy increases, then plateaus as
number of demonstrations increases (b) Intrinsic Dimension (ID) curves for different values of k. (c) Normalized
AUC of the ID curves peaks at k=5, which also aligns with saturation of accuracy.

they either plateau or steadily decrease for larger
values of k (see Figure 3c). Results for all model
and dataset configurations are provided in Ap-
pendix A. This observation extends the findings of
Doimo et al. (2024), who found that ID increased as
k was varied from 0, 1, 2, and 5, by demonstrating
that beyond a certain number of demonstrations,
the trend can reverse.

We observe that across most (model, dataset)
combinations, the shapes of the intrinsic dimension
(ID) curves correlate strongly with each other for
k ≥ 2.

Due to our procedure of selecting demonstra-
tions with replacement, we suspected that the
plateau in ID for larger values of k might be
caused by a greater number of demonstrations
shared across prompts. We hypothesized that
shared demonstrations could make representations
corresponding to these prompts artificially simi-
lar, thereby skewing ID results. To test this, we
performed additional experiments using a larger
number of dataset elements from the Common-
senseQA, QNLI, and AG News datasets, which
contain enough training elements to ensure that
demonstrations are not reused in prompts for more
than one element of the validation set. We observed
the same trend—an increase followed by a general
plateau in the ID—suggesting that the plateau is
likely not due to the reuse of demonstrations among
the prompts. Full results for this experiment can be
found in Appendix D.

Furthermore, we find that peaks in the k versus
AUC relationship align with peak (or near-peak)
accuracy in 5 out of the 6 ICL experiments we
conducted. Thus, the k value corresponding to the

peak ID may serve as a practical indicator of the
optimal number of demonstrations to use for ICL,
maximizing performance while minimizing input
length.

One hypothesis for why ID plateaus or slightly
decreases as k increases is that more demonstra-
tions allow the model to more effectively capture
the underlying task conveyed by the demonstra-
tions, causing representations corresponding to dif-
ferent inputs to become more similar. This idea is
supported by previous theoretical analysis of ICL
by Xie et al. (2021), which posits that a greater
number of demonstrations helps the model more
effectively infer the latent concept across demon-
strations.

Finally, we find that across most experiments,
accuracy either steadily increases or plateaus with
higher numbers of demonstrations (Figure 3a).

7 Comparing Intrinsic Dimension of
In-Context Learning and Supervised
Fine-Tuning

7.1 Experiment Setup for Comparative
Analysis

We conduct a series of experiments to directly com-
pare the ID curves obtained from both SFT and
ICL, following similar setups as discussed in Sec-
tions 5 and 6. For the fine-tuning experiments in
this section, we train for only 4 epochs and measure
the accuracy and ID solely at the final checkpoint.
This choice is motivated by the observation in Sec-
tion 5 that models tend to overfit beyond 4 epochs
across the tested datasets.

For the ICL experiments, we consider values of
k ∈ {0, 1, 2, 5, 10} for the number of demonstra-
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Dataset ICL-0 ICL-1 ICL-2 ICL-5 ICL-10 Finetune 1K
SST-2 0.685 0.633 0.731 0.807 0.832 0.944
CoLA 0.720 0.723 0.735 0.746 0.742 0.750
QNLI 0.517 0.513 0.555 0.590 0.585 0.761
QQP 0.417 0.462 0.485 0.508 0.519 0.707
MNLI 0.374 0.367 0.387 0.414 0.431 0.676
AGNews 0.638 0.573 0.712 0.772 0.809 0.881
CommonsenseQA 0.199 0.375 0.417 0.470 0.492 0.500
MMLU 0.449 0.488 0.511 0.524 0.531 0.542

Table 1: Average accuracy results for Datasets across ICL and SFT settings. SFT obtains the highest average
accuracy for all datasets. Accuracy increases and then plateaus for higher number of demonstrations.
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Figure 4: Heatmap showing the average differences in
normalized AUC of ID curves between pairs of learning
paradigms. Each value represents the average difference
(Experiment Type 1 - Experiment Type 2), computed
across all (model, dataset) pairs.

tions. These values are popular in practice, and our
previous experiments in Section 6 indicate that ID
curves tend to plateau when k ≥ 10. We perform
these experiments on all 8 datasets and 4 models
discussed in Section 4.

7.2 In-context Learning Induces Higher IDs
Compared to Fine-Tuning

We find that across all datasets and models, ICL
prompts with k ≥ 5 consistently induces higher in-
trinsic dimensions (IDs) across all layers compared
to both SFT and 0-shot prompts (see Figures 1b and
1c). This contrasts with the findings of Doimo et al.
(2024), who find that SFT models often induces
higher ID than models performing ICL.

We also find that the ID values of models fine-
tuned with 1000 samples tend to remain similar to
the original ID of the baseline model on a zero-shot
prompt (designated by icl-0). We present a heatmap
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Figure 5: Boxplot displaying the distribution of normal-
ized AUC values for different learning paradigms. Each
point corresponds to the normalized AUC value for a
(model, dataset) pair. The median normalized AUC
peaks with 5-shot ICL, while values for SFT are closer
to the 0-shot baseline (icl-0).

displaying the average differences in normalized
AUC between learning paradigms in Figure 4, and
a boxplot depicting the distribution of normalized
AUC values for the different paradigms in Figure
5.

7.3 Analysis of Intrinsic Dimension Curves

7.3.1 Differing Shapes of Intrinsic Dimension
Curves

We observe that the exact shape of the Intrinsic Di-
mension curves is highly dependent on the dataset.
For some datasets, such as AG News, we observe
a consistent "hunchback" shape, where the ID ini-
tially increases and then is progressively lower in
the later layers of the model across all models and
learning paradigms (Figure 36). This shape has
been reported by previous work (Yin et al., 2024) in
QA datasets. However, this pattern does not consis-
tently hold across all models, datasets, and learning
paradigms. For example, on the QQP dataset, we
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do not observe a consistent hunchback shape for icl-
0, icl-1, or fine-tuning learning paradigms (Figure
33). In contrast, prior work has shown that Convo-
lutional Neural Networks (Ansuini et al., 2019), as
well as Image Generation Transformers such as Im-
ageGPT and Protein Language Models (Valeriani
et al., 2024), exhibit consistent Intrinsic Dimension
patterns across their layers for inputs of their re-
spective data modalities. This difference suggests
that LLMs encode data into more diverse manifolds
in their representation space, potentially reflecting
their generality and the complexity of their learning
tasks compared to other neural networks.

We also find that, within a specific learning
paradigm, the range of normalized AUC values
across datasets is similar for the four different mod-
els we tested, despite the fact that these models
come from different families and have different
embedding dimensions (e.g., Llama-2-13b has a
hidden dimension of 5120, while the other three
models have hidden dimensions of 4096). Figure
6 depicts the range of normalized AUC values for
the ICL-5 learning paradigm and shows that all
values fall within a range of 20. We view this as
evidence that different models may be generating
representations with similar geometric complexity
for a specific dataset, despite differences in model
size or pre-training schemes. Similar boxplots for
normalized AUC values from other experiments
are included in Appendix B.2. These findings are
in agreement with results from Cheng et al. (2023),
which show that LLMs of different sizes and fam-
ilies create representations with similar ID values

for a variety of text corpora.

7.4 Comparing Performance of Different
Learning Paradigms

We found that models fine-tuned with 1k samples
obtained the highest accuracy, while models per-
forming ICL with 10 samples followed closely.
This observation suggests that intrinsic dimension
(ID) may not be directly related to accuracy: al-
though fine-tuning with 1k samples yields ID val-
ues that remain closer to the baseline model, ICL
models exhibit higher IDs yet achieve substantially
lower accuracies. See Table 1 for the average per-
formance of each learning paradigm across the
models and datasets tested.

8 Summary

We present a detailed analysis of the intrinsic di-
mension (ID) induced by the SFT and ICL learning
paradigms. Our experiments reveal that the nor-
malized AUC of ID curves sometimes decreases
during the initial stages of SFT but generally in-
creases during the later stages.

Additionally, we observe that the normalized
AUC of ID curves in ICL initially increases for
small values of k (the number of demonstrations)
but plateaus or slightly decreases as k increases
further. Notably, the k value corresponding to the
highest normalized AUC also achieves peak (or
near-peak) accuracy, suggesting that ID may serve
as a useful indicator for selecting the optimal num-
ber of demonstrations during ICL.

Finally, our direct comparison of ID curves from
ICL and SFT reveals that representations gener-
ated during ICL consistently yield higher ID curves
compared to those from SFT on 1k samples, even
though SFT with 1k samples achieves the high-
est overall performance. This analysis provides
evidence that the two learning paradigms induce
distinct representational structures in the embed-
ding space, with ICL representations occupying
higher-dimensional manifolds.

9 Limitations

In this study, we limit our analysis to models with
sizes between 7B and 13B parameters. Future work
may extend this investigation to models of different
sizes. We also focus on datasets defined by nar-
rowly focused tasks and do not consider datasets
with long-form answers. Due to computational con-
straints, we perform fine-tuning only using LoRA
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adapters and do not explore the impacts of full
fine-tuning on intrinsic dimension.
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A In-Context Learning Experiments

A.1 Llama-3-8B In-Context Learning
Experiments
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Figure 7: ICL Experiment Results for Meta-Llama-3-8B on MMLU
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Figure 8: ICL Experiment Results for Meta-Llama-3-8B on CommonsenseQA
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Figure 9: ICL Experiment Results for Meta-Llama-3-8B on QNLI
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A.2 Llama-2-13b In-Context Learning
Experiments
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Figure 10: ICL Experiment Results for Llama-2-13b on MMLU
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Figure 11: ICL Experiment Results for Llama-2-13b on CommonsenseQA
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Figure 12: ICL Experiment Results for Llama-2-13b on QNLI
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B Supervised Fine-Tuning Experiments

B.1 Supervised Fine-Tuning Results for
Llama-3-8B
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Figure 13: Supervised Fine-Tuning Results for Llama-3-8B on Commonsense QA
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Figure 14: Supervised Fine-Tuning Results for Llama-3-8B on MMLU
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Figure 15: Supervised Fine-Tuning Results for Llama-3-8B on MNLI
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Figure 16: Supervised Fine-Tuning Results for Llama-3-8B on QNLI
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Figure 17: Supervised Fine-Tuning Results for Llama-3-8B on QQP
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Figure 18: Supervised Fine-Tuning Results for Llama-3-8B on SST-2
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Figure 19: Supervised Fine-Tuning Results for Llama-3-8B on CoLA
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Figure 20: Supervised Fine-Tuning Results for Llama-3-8B on AG News

B.2 Supervised Fine-Tuning Results for
Llama-2-13B
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Figure 21: Supervised Fine-Tuning Results for Llama-2-13B on Commonsense QA
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Figure 22: Supervised Fine-Tuning Results for Llama-2-13B on MMLU
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Figure 23: Supervised Fine-Tuning Results for Llama-2-13B on MNLI
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Model: llama-2-13b, Dataset: QNLI

Figure 24: Supervised Fine-Tuning Results for Llama-2-13B on QNLI
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Model: llama-2-13b, Dataset: QQP

Figure 25: Supervised Fine-Tuning Results for Llama-2-13B on QQP
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Model: llama-2-13b, Dataset: SST-2

Figure 26: Supervised Fine-Tuning Results for Llama-2-13B on SST-2
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Figure 27: Supervised Fine-Tuning Results for Llama-2-13B on CoLA
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Figure 28: Supervised Fine-Tuning Results for Llama-2-13B on AG News
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C Comparisons of Supervised Fine-Tuning and In-Context Learning
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Figure 29: Comparison of Experimental Results for Commonsense QA
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Dataset: MMLU

Figure 30: Comparison of Experimental Results for MMLU
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Dataset: MNLI

Figure 31: Comparison of Experimental Results for MNLI
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Dataset: QNLI

Figure 32: Comparison of Experimental Results for QNLI
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Figure 33: Comparison of Experimental Results for QQP
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Figure 34: Comparison of Experimental Results for SST-2
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Dataset: CoLA

Figure 35: Comparison of Experimental Results for CoLA
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Figure 36: Comparison of Experimental Results for AG News
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D ICL Experiment Results with Unique Demonstrations
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Figure 37: ICL Experiment Results with Unique Demonstrations on AGNews Dataset
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Figure 38: ICL Experiment Results with Unique Demonstrations on QNLI Dataset
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Figure 39: ICL Experiment Results with Unique Demonstrations on QQP Dataset
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E Normalized AUC Boxplot by Model for All Learning Paradigms
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Figure 40: Normalized AUC by Model boxplot for ICL-
0 experiments.
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Figure 41: Normalized AUC by Model boxplot for ICL-
1 experiments.
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Figure 42: Normalized AUC by Model boxplot for ICL-
2 experiments.
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Figure 43: Normalized AUC by Model boxplot for ICL-
5 experiments.
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Figure 44: Normalized AUC by Model boxplot for ICL-
10 experiments.
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Figure 45: Normalized AUC by Model boxplot for SFT
experiments.
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F Validating the TwoNN Estimator with
the MLE Estimator
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Figure 46: Scatterplot plotting ID estimation results for
all experiments using the MLE and TwoNN Estimators.

To assess the validity of our intrinsic dimension es-
timator, we calculate the intrinsic dimension for dif-
ferent combinations of (learning paradigm, dataset,
model, layer) using the TwoNN estimator and Max-
imum Likelihood Estimator (MLE) introduced by
Levina and Bickel (2004). We use a neighborhood
of size k = 50 when applying MLE. We find that
the estimates from the two estimators are corre-
lated with r = 0.7. While it is not possible to
know the ’true’ intrinsic dimensionality of the rep-
resentations, high correlation between two separate
estimators provides a sanity check for our choice
of the TwoNN estimator.

G Dataset Generation Details

H Dataset Details

We include details about dataset generation below.
We get prompts for all datasets except MMLU from
the PromptSource library (Bach et al., 2022).

H.1 QNLI
Items for the training and validation splits in our
QNLI experiments were taken from the official
QNLI ’train’ and ’validation’ splits respectively.

Prompt Template:
Does that sentence have all you need to

↪→ answer the question
↪→ "{{ question }}"?

|||
{{ answer_choices[label ]}}

Labels: [’yes’, ’no’]

H.2 CommonsenseQA
Items for both the training and validation splits
in our CommonsenseQA experiments were taken

from the official CommonsenseQA ’train’ split.
Prompt Template:

Given the following options , what do
↪→ you think is the correct answer
↪→ to the question below:

{{ question }}

Options:
{% for letter , t in zip(answer_choices ,

↪→ choices.text) %}
- {{ letter }}: {{t}}
{% endfor %} |||
{{ answerKey }}
{% endif %}

Labels: [’A’, ’B’, ’C’, ’D’]

H.3 MMLU
Items for both the training and validation splits
in our MMLU experiments were taken from the
official MMLU ’test’ split.

Prompt Template:
# generate input txt and output txt
letters = ['A', 'B', 'C', 'D']
choices = dataset_element['choices ']

input_txt =
↪→ f"{ dataset_element['question ']}\n\nA:
↪→ {choices [0]}\ nB:
↪→ {choices [1]}\ nC:
↪→ {choices [2]}\ nD:
↪→ {choices [3]}\ nAnswer :"

output_txt = letters[answer_idx]
combined = input_txt + output_txt

H.4 SST-2
Items for both the training and validation splits in
our SST-2 experiments were taken from the official
SST-2 ’train’ split.

Prompt Template:
{{ sentence }}
Question: Was that sentence

↪→ {{" positive "}} or
↪→ {{" negative "}}? Answer: ||| {{
↪→ answer_choices[label] }}

Labels: [’negative’, ’positive’]

H.5 CoLA
Items for both the training and validation splits in
our CoLA experiments were taken from the official
CoLA ’train’ split.

Prompt Template:
Does the following sentence make sense

↪→ and use correct English? Please
↪→ answer {{"yes"}} or {{"no"}}.

{{ sentence }}
|||
{{ answer_choices[label] }}
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Labels: [’no’, ’yes’]

H.6 AGNews
Items for the training and validation splits in our
AGNews experiments were taken from the official
AGNews ’train’ and ’validation’ splits respectively.

Prompt Template:
What label best describes this news

↪→ article?
{{text}} |||
{{ answer_choices[label] }}

Labels: [’World politics’, ’Sports’, ’Business’,
’Science and technology’]

H.7 MNLI
Items for the training and validation splits in our
MNLI experiments were taken from the official
MNLI ’train’ and ’validation_matched’ splits re-
spectively.

Prompt Template:
{{ premise }} Are we justified in saying

↪→ that "{{ hypothesis }}"? Yes , no,
↪→ or maybe? ||| {{
↪→ answer_choices[label] }}

Labels: [’Yes’, ’Maybe’, ’No’]

H.8 QQP
Items for the training and validation splits in our
QQP experiments were taken from the official QQP
’train’ and ’validation’ splits respectively.

Prompt Template:
I'm an administrator on the website

↪→ Quora. There are two posts , one
↪→ that asks "{{ question1 }}" and
↪→ another that asks
↪→ "{{ question2 }}". I can merge
↪→ questions if they are asking the
↪→ same thing. Can I merge these
↪→ two questions? ||| {{
↪→ answer_choices[label] }}

Labels: [’no’, ’yes’]

86


