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Abstract

Recently, many works have been attempting
to adapt Large Language Models (LLMs) for
sentence embedding, with most of them fine-
tuning LLMs towards the contrastive objective
and enabling bi-directional attention for bet-
ter performance, using LoRA to address the
large model scale. In this work, we suggest
that this adaptation can also be simply and ef-
fectively achieved using causal attention and
with even fewer trainable parameters through
soft prompt tuning, as an alternative to fine-
tuning with LoRA and other methods with ex-
tra post-training tasks. Our method only op-
timizes a few learnable tokens while keeping
the rest of the model frozen. Through experi-
ments on a diverse set of evaluation tasks, we
find that simply tuning only a few tokens can
achieve a competitive performance with that
of fine-tuning with LoRA. The percentage of
trainable parameters can be reduced to less than
0.001%. Moreover, we also demonstrate that
turning causal attention to bi-directional atten-
tion with or without extra post-training tasks
does not provide additional benefit when soft
prompt tuning is applied, suggesting that causal
attention can be naturally used in decoder-only
LLMs for sentence embedding adaptation.

1 Introduction

Sentence embedding compresses the semantic
meaning of sentences into fixed-size vectors in
a shared space (Conneau et al., 2017; Wu et al.,
2018; Reimers and Gurevych, 2019). Conven-
tional sentence embedding models are typically
built on an encoder-only architecture trained with
Contrastive Learning (CL) (van den Oord et al.,
2018), where the distance between semantically
similar sentences are pulled closer and dissimilar
ones are pushed farther (Gao et al., 2021; Wu et al.,
2022; Chuang et al., 2022; Jiang et al., 2022a). On
the other hand, scaled-up Large Language Mod-
els (LLMs) in the decoder-only architecture have
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Figure 1: Comparison of LoRA fine-tuning using bi-
directional attention or uni-directional attention. Extra
post-training task is solely applied to LoRA-bi. Simply
fine-tuning with LoRA-uni. shows strong performances.
Refer to Table 1 for detailed results.

dominated various downstream tasks with very
large-scale parameters and training data (OpenAI,
2022; Touvron et al., 2023a,b; OpenAI, 2023).
However, the use of LLMs on sentence embed-
ding still remains challenging, given the fact that
decoder-only LLMs are pre-trained to generate con-
tinuous texts instead of semantically meaningful
vectors (Jiang et al., 2023).

To this end, numerous recent methods attempt
to adapt LLMs for sentence embedding, e.g.,
CL-based fine-tuning (Jiang et al., 2023; Li and
Li, 2023), attention mechanism manipulation (Li
and Li, 2024), instruction tuning (Muennighoff
et al., 2024), with some approaches employing
the combinations thereof. Among these efforts,
LLM2Vec (BehnamGhader et al., 2024) stands
out as a promising method, employing a three-
step approach: (1) enabling bi-directional atten-
tion, (2) using Masked Next Token Prediction
(MNTP) (Lv et al., 2023) to effectively adapt LLMs
to bi-directional attention, and (3) fine-tuning with
CL, as shown in the upper part of Figure 2.
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Figure 2: Upper: Conventional three-step methods of turning LLMs into text encoders. We refer to tasks performed
before fine-tuning under the CL objective as post-training tasks. Lower: Our simple method which naturally
maintains causal attention by appending trainable soft prompts into the input.

However, given the large-scale parameters of
LLMs, performing these three steps, especially the
latter two, can be computationally inefficient. To
address this, Low-Rank Adaptation (LoRA) (Hu
et al., 2022) is commonly employed in the afore-
mentioned works to enable more efficient fine-
tuning by reducing the number of trainable param-
eters while maintaining performance.

Given the additional post-training efforts re-
quired by LLM2Vec, we begin questioning whether
it is possible to naturally maintain causal atten-
tion in LLMs for sentence embedding. To explore
this, we compare LoRA under bi-directional at-
tention with post-training to directly LoRA under
uni-directional attention without post-training on
the same dataset, and the results are shown in Fig-
ure 1. Interestingly, our results reveal that simply
fine-tuning LLMs with LoRA consistently yields
strong performances across the four evaluated tasks.
Based on these findings, we seek answers to the
following two questions: (1) Is bi-directional at-
tention with additional post-training necessary for
the adaptation? (2) Is there a simpler adaptation
method with minimum modification of the original
LLM?

We first investigate the adaptation of LLMs for
sentence embedding with even fewer trainable pa-
rameters by employing soft prompt tuning (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022).
We introduce SPT (Suffix Prompt Tuning based
Adaptation of LLMs for Sentence Embedding), a
straightforward yet effective alternative to adapt
LLMs for sentence embedding. The use of soft

prompt tuning in this scenario is non-trivial. Specif-
ically, we append trainable tokens to the inputs,
allowing them to attend to all the input tokens due
to the causal attention in the decoder-only LLMs,
as illustrated in the lower part of Figure 2. No-
tably, as our approach only optimizes the parame-
ters within the additional soft prompt tokens, it is
flexible enough to reduce the amount of trainable
parameters to just a few tokens1. The percentage
of trainable parameters with our approach is less
than 0.001%, which is a percentage unreachable
by LoRA, even when setting the rank r to 1. Ex-
perimental results on retrieval, Semantic Textual
Similarities (STS), clustering, and classification
tasks reveal that training with only a few tokens
can yield comparable or even superior performance
to LoRA-based fine-tuning.

Additionally, we thoroughly analyze the impact
of bi-directional attention and extra post-training
tasks, finding that regardless of the pooling method
or attention mechanism used, causal attention with-
out post-training consistently delivers better perfor-
mance when SPT is applied.

In summary, the contribution of this work in-
cludes:

• We propose a simple method that adapts
LLMs to text encoders without requiring extra
adjustment for bi-directional attention, which
is applied in previous methods.

• We investigate the utilization of suffix prompt
1The amount of one trainable token varies according to

different models, e.g., 768 for OPT and 4096 for LLaMA.
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tuning other than LoRA fine-tuning for the
adaptation, providing the flexibility to further
reduce the trainable parameters.

2 Related Works

2.1 Turning LLMs into Text Encoders

Current methods for adapting LLMs into text en-
coders can be mainly categorized into two types
based on the attention mechanism they use.

w/ Causal Attention. Since most LLMs are pre-
trained with casual attention, it is natural to keep
this mechanism for sentence representation, using
the output of the last input token as sentence em-
bedding. Jiang et al. (2023) make the first attempt
to adapt LLMs for sentence embedding. They pro-
pose PromptEOL, which utilizes the prompt This
sentence: “[text]” means in one word:“ to generate
sentence embedding. Li and Li (2023) later extend
this prompt-based method on LLaMA2 using an-
gle optimization to address the gradient vanishing
problem in CL. In our work, we also prioritize the
natural use of causal attention, while aiming for a
simple but effective approach.

w/ Bidirectional Attention On the other hand,
some methods transform the causal attention into
bi-directional attention for better representation
ability. Li and Li (2024) observe that an LLM’s
sentence representation ability with causal atten-
tion initially improves across layers but begins to
degrade after reaching a critical turning point (a
particular layer). By modifying the layers after
the turning point to use bi-directional attention,
the LLM improves its sentence encoding ability.
BehnamGhader et al. (2024) introduce a three-step
pipeline for converting LLMs into text encoders,
including enabling bi-directional attention, masked
next token prediction (MNTP) and CL-based fine-
tuning. MNTP, which requires the model to predict
the masked token based solely on the tokens before
it, is applied to help LLMs adapt to bi-directional
attention. GRITLM (Muennighoff et al., 2024),
which utilizes instruction tuning, applies bidirec-
tional attention for embedding tasks and causal
attention for generation tasks. However, these
methods often require more complex design, po-
tential post-training tasks and rely on much bigger
datasets, which is far from simple. To this end, we
propose a more efficient and effective method to
easily adapt LLMs for high-quality sentence em-
bedding based on causal attention.

2.2 Soft Prompt Tuning in LLMs

Prompts normally refer to the physical tokens
additionally provided to the model towards spe-
cific tasks (Brown et al., 2020; Zhou et al., 2022;
Ouyang et al., 2024). Soft prompt tuning (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022),
which provides virtual tokens (continuous vectors)
prepended to the input texts, offers an efficient al-
ternative for fine-tuning LMs. Soft prompt tuning
can mitigate overfitting by freezing the model’s pa-
rameters and updating only the parameters within
the soft prompts. Recent works continue to seek for
more efficient prompt tuning methods with even
fewer parameters (Shi and Lipani, 2024). In the
field of sentence embedding, Jiang et al. (2022b)
incorporate soft prompts into each layer of the
transformer encoder. In contrast, we focus on
decoder-only causal attention LLMs and append
soft prompts exclusively into the input embedding
layer for better efficiency.

3 Methods

CL has become the common practice for learning
sentence embeddings with pre-trained LMs (Gao
et al., 2021; Wu et al., 2022; Zhao et al., 2024;
Miao et al., 2024). It is performed with one an-
chor sentence, one positive instance and multiple
negative instances. Given a sentence Xi, it can be
tokenized into x1, x2, ..., x|Xi|, where | · | denotes
the number of tokens in Xi. Our method, SPT,
is simple and straightforward. It additionally ap-
pends a soft prompt, namely, a few trainable tokens
p = {p1, p2, ..., pk}, to the sentence Xi. This con-
structs the input as x1, x2, ..., x|Xi|, p1, p2, ..., pk.
Here, k is the length of the soft prompt and the
trainable parameters in the soft prompt equal to [k,
hidden_size].

Similar to existing methods, the text encoder
then transforms Xi into a fixed size dense vector hi.
We use the output of the appended soft prompt for
sentence embedding when k = 1, and the output
of the last soft prompt token pk as the sentence
embedding when k > 1.

Our training objective is consistent with previ-
ous works. The main idea of CL is to pull the
distance between the representation of anchor sen-
tence hi and its positive example’s representation
h+
i close while keeping hi and other negative ex-

amples’ representations far away. Moreover, hard
negatives (Kalantidis et al., 2020), which are in-
stances that are particularly challenging for models
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to distinguish from the anchor sentence, are usually
adopted to improve CL. We also use the training ob-
jective with the aforementioned ideas, as follows:

li = − log e
sim(hi,h

+
i

)/τ

∑N

j=1
(e

sim(hi,h
+
j

)/τ
+e

sim(hi,h
−
j

)/τ
)

, (1)

where sim(·, ·) is a similarity metric, N is the size
of a mini-batch, and τ is the temperature parameter.
h−
i is the representation of hard negative X−

i for
anchor sentence Xi. The training objective remains
the same for LLMs with or without post-training
tasks.

4 Experiments

4.1 Experimental Setup
In order to demonstrate the effectiveness of SPT,
we conduct experiments across models of three dif-
ferent sizes: base, 7B and 8B. Specifically, for base
size models, we choose OPT-125M2 (Zhang et al.,
2022) while for 7B models, LLaMA2-7B3 (Tou-
vron et al., 2023b) serves as our backbone model.
Finally, for 8B models, we select LLaMA3-8B4.
All of them are decoder-only auto-regressive mod-
els whose hidden_size is 768 for OPT-125M and
4096 for LLaMA2-7B and LLaMA3-8B. Follow-
ing (BehnamGhader et al., 2024), we set MNTP as
the post-training task.

4.2 Implementation Details
The training dataset we use is the NLI dataset5 from
Gao et al. (2021), which is a supervised dataset con-
taining one positive example and one hard negative
example for each anchor sentence with about 275k
data examples in total. We use cosine similarity as
the similarity metric and τ is set to 0.05 in Equa-
tion 1. For SPT, all of our models are trained for
one epoch, with evaluation on the development set
of STS-B (Cer et al., 2017) and SICK-R (Marelli
et al., 2014) conducted every 125 steps to find the
best checkpoint. Batch size is set to 32 for all mod-
els. Learning rate is grid-searched from {0.02, 0.01,
0.005, 0.001}. Weight decay is set to 0.01 with
AdamW optimizer (Loshchilov and Hutter, 2017)

2https://huggingface.co/facebook/opt-125m
3https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf
4https://huggingface.co/meta-llama/

Meta-Llama-3-8B
5https://huggingface.co/datasets/

princeton-nlp/datasets-for-simcse/resolve/main/
nli_for_simcse.csv

implemented for all models. The input sequence
length is set to 32 following Gao et al. (2021). All
of our experiments for SPT are conducted on one
A100 80GB GPU.

4.3 Evaluation Tasks
We evaluate our models across a diverse set of
tasks, including retrieval, Semantic Textual Simi-
larity (STS), clustering and classification. Consid-
ering the input length of the NLI training dataset,
we prioritize relatively shorter datasets for evalua-
tion.

Retrieval tasks require the model to identify the
most relevant sentence among a large set of docu-
ments for a specific given query sentence. The
tested model will first transform the query sen-
tences and documents into embeddings and then
find the most relevant ones based on metrics such
as cosine similarity. We choose the QuoraRetrieval
dataset (DataCanary et al., 2017) from the MTEB
benchmark (Muennighoff et al., 2023) to evaluate
the retrieval performance of our models and report
the nDCG@10 metric.

STS tasks evaluate the model’s sentence repre-
sentation ability by calculating the cosine similarity
for the two given sentences after transforming them
into embeddings. We utilize the SentEval (Conneau
and Kiela, 2018) toolkit which includes STS12-
16 (Agirre et al., 2012, 2013, 2014, 2015, 2016),
STS-B (Cer et al., 2017) and SICK-R (Marelli et al.,
2014). Spearman’s correlation scores are reported
for STS tasks.

Clustering tasks evaluate the models’ ability to
group sentences based on their semantic similar-
ity, typically across different domains. The model
assigns sentences to clusters such that similar sen-
tences are grouped together, without relying on
pre-defined labels. To assess our models’ cluster-
ing performance, we specifically select the Twenty
Newsgroup Clustering dataset (Mitchell, 1997)
from MTEB and report the Validity Measure (V-
measure) metric.

Classification tasks involve training an addi-
tional classifier layer on top of the tested model to
evaluate its ability to correctly categorize input sen-
tences into predefined classes. In our experiments,
we specifically choose the Tweet Sentiment Ex-
traction Classification dataset (Maggie et al., 2020)
from MTEB. This task requires the model to iden-
tify and classify the sentiment (e.g., positive, nega-
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tive, neutral) of tweets. Accuracy is reported as the
evaluation metric.

4.4 Baselines
We choose several strong baselines and compare
them with our models based on the four kinds of
evaluation tasks. For base size models, we first
choose SimCSE (Gao et al., 2021) as a commonly
used encoder-only sentence embedder. Besides, we
fully fine-tune OPT-125M under CL objective as
a baseline. For larger size models, we first choose
LLM2Vec (BehnamGhader et al., 2024) as the
SOTA model. Notice that LLM2Vec is post-trained
with MNTP and further fine-tuned on a larger
dataset, E5 (Wang et al., 2024), using LoRA with
an input sequence length of 128. The E5 dataset
contains about 1.5m training examples (much big-
ger than 275k NLI) from different data sources
such as retrieval, QA, and ranking. Due to limited
computational resources and to ensure a fairer com-
parison between LLM2Vec and our models, we
reproduce LLM2Vec with MNTP post-training us-
ing our NLI dataset by initiating from the released
checkpoint6. Finally, we also fine-tune LLaMA
models under CL with LoRA as a general baseline.
We specifically set γ=16 and α=32, following set-
tings introduced in BehnamGhader et al. (2024).
Implementation details of baselines can be found
in Appendix A.1.

4.5 Experimental Results
The performance of various models on four dif-
ferent evaluation tasks is shown in Table 1. We
report results using a fixed seed=42 in our main
experiments. Details of trainable parameters for
each model can be found in Appendix A.2, while
full results of seven STS tasks are shown in Ap-
pendix A.3.

In Table 1, models-bi. refers to models trained
with bi-directional attention after post-training
tasks while models-uni indicates those trained on
causal attention without additional post-training
tasks. The LoRA-bi. equals to LLM2Vec fine-
tuned on the same NLI dataset as other models.
Except for LoRA-bi., where mean pooling is used
as suggested in BehnamGhader et al. (2024), all
the other models use the output of the last token
as sentence embedding. We will discuss the effect
of different pooling methods in Section 5.1. For
our SPT, we report two variants for each model:

6https://huggingface.co/McGill-NLP/
LLM2Vec-Llama-2-7b-chat-hf-mntp

one with a soft prompt length of 1, representing the
fewest trainable parameters, and the other with the
optimal soft prompt length that achieves the best
performance. The process for determining the best
length will be discussed in Section 5.2.

Upon observing the results of base size mod-
els, we find that the best average score for the four
evaluated tasks is given by the fully fine-tuned OPT-
125M under CL. While encoder-only models like
SimCSE outperform decoder-only models in the
traditional STS task, decoder-only models excel
SimCSE especially in retrieval and clustering tasks.
As for our SPT, it demonstrates competitive per-
formance with SimCSE even with a soft prompt
length of just 1, with only a 0.33 point difference
in the average scores. Extending the soft prompt
length to 16 further narrows the gap (0.2 average
performance differences) between our model and
the fully fine-tuned OPT-125M under CL, despite
our model updating just 0.0098% of the total pa-
rameters, compared to 100% in the fully fine-tuned
model. Note that the best scores for both retrieval
and classification tasks are from our SPT, with a
soft prompt length of 16. From the first part of Ta-
ble 1, we can see that uni-directional models show
strong performance at the base size.

As for larger 7B and 8B models, we first fo-
cus on the first six rows and observe that the best
average performance is achieved by our SPT in
uni-directional attention without extra post-training
tasks for both LLaMA2-7B and LLaMA3-8B with
optimal soft prompt lengths. Their performances
consistently outperform the reproduced LLM2Vec
models fine-tuned on the NLI dataset (referred
as LoRA-bi. in Table 1). Notably, our SPT on
LLaMA2-7B with k=16 achieves the highest clas-
sification accuracy while SPT on LLaMA3-8B with
k=5 delivers the best scores in retrieval, STS and
classification across all four tasks. Importantly,
SPT with the optimal soft prompt length requires
significantly fewer trainable parameters than other
baselines, underscoring the effectiveness and effi-
ciency of our approach. Moreover, as observed in
the base-sized models, even with just one trainable
token (4096 parameters), SPT greatly improves
LLMs’ sentence embedding capabilities, trailing
LoRA-based fine-tuned models by only about 1
point in average score. To this end, simply fine-
tuning LLMs using SPT results in comparable or
even better performances compared to fine-tuning
with more trainable parameters and models with
MNTP post-training.
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Model Params% Retrieval STS Clustering Classification avg.
Base models (≤ 125M)

SimCSE 100% 79.62 81.57 34.86 59.73 63.95
OPT w/o fine-tuning 0% 18.65 14.23 9.63 43.57 21.52
OPT w/ fine-tuning 100% 81.33 79.69 39.46 59.53 65.00
OPT w/ SPT (ours)

-k=1 0.000613% 80.32 78.06 36.61 59.50 63.62
-k=16 0.009812% 81.39 78.71 39.21 59.84 64.79

LLaMA2-7B
w/o fine-tuning 0% 52.93 35.48 11.69 48.39 37.12
LoRA-uni. 0.59% 85.64 85.24 45.97 61.79 69.66
LoRA-bi. 0.59% 85.24 84.43 44.07 61.30 68.76
SPT-uni. (ours)

k=1 0.000061% 85.10 83.60 43.25 62.31 68.57
k=16 0.000973% 85.34 84.93 45.74 62.77 69.70

SPT-bi. (ours)
-k=1 0.000061% 85.07 83.87 44.07 62.12 68.78
-k=16 0.000973% 86.01 84.34 45.48 62.20 69.51

LLaMA3-8B
w/o fine-tuning 0% 48.04 28.33 21.91 44.87 35.79
LoRA-uni. 0.56% 86.65 85.87 49.63 62.81 71.24
LoRA-bi. 0.56% 85.78 85.65 47.54 63.46 70.61
SPT-uni. (ours)

-k=1 0.000051% 85.20 84.32 48.25 62.55 70.08
-k=5 0.000255% 87.18 86.00 49.98 63.75 71.73

SPT-bi. (ours)
-k=1 0.000051% 85.47 84.55 48.08 62.34 70.11
-k=5 0.000255% 87.06 85.59 49.37 63.07 71.27

Table 1: Different models’ performance on four different evaluation tasks. Params% stands for the percentage of
trainable parameters in each model. Models-bi. refers to models trained with bi-directional attention after post-
training tasks, while models-uni. indicates uni-directional attention models without post-training tasks. LoRA-bi.
here equals to LLM2Vec trained on the NLI dataset. We highlight the best result for each task in bold and the
second-best result with an underline in each section of the table. Except for results of SimCSE, which are quoted
from its paper, other results are from our own implementation.

Next, we focus on the last three rows for
LLaMA2-7B and LLaMA3-8B in Table 1. To
better demonstrate the advantages of naturally
using causal attention, we implement SPT on
bi-directional models post-trained with MNTP,
referred to as SPT-bi.. In these variants, bi-
directional attention is employed during post-
training and fine-tuning. Comparing SPT-uni. and
SPT-bi., we observe that post-training with MNTP
and enabling bi-directional attention does not pro-
vide additional benefits over the natural use of
causal attention without MNTP training. SPT
with only a few trainable tokens on models with
MNTP still achieves strong performance, partic-
ularly when the soft prompt length k is set to 1.
In this case, bi-directional attention with MNTP
post-training shows a slightly higher average score
than the uni-directional model without MNTP, but
the increase is minimal (0.2 for LLaMA2-7B and
0.03 for LLaMA3-8B). However, the better aver-

age scores are consistently achieved by SPT w/o
MNTP for both LLaMA2-7B and LLaMA3-8B
when setting k to the optimal length. Consider-
ing the significant extra training efforts required of
post-training tasks for LLMs, we move on to dis-
cuss the necessity of applying post-training tasks
for turning LLMs into text encoders in Section 5.1.

5 Discussion

5.1 Do We Really Need Bi-directional with
MNTP Post-training?

In this section, we explore the usage of MNTP
post-training, which is designed to help LLMs ef-
fectively get adapted to the bi-directional attention
mechanism. Notably, enabling bi-directional at-
tention allows us to prepend soft prompts to the
input layer. We specifically select LLaMA2-7B
and report different variants’ performances on the
STS task. We compare them based on the atten-
tion mechanism, the soft prompt position and the
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Methods Attention Soft Prompt Length Soft Prompt Position Pooling Method avg STS Scores
LLaMA2-7B

SPT w/o MNTP
bi 1 append EOSP 82.74
bi 16 append EOSP 83.77
bi 10 append Mean 83.59

SPT w/o MNTP
bi 1 prepend SOSP 82.09
bi 20 prepend SOSP 83.56
bi 16 prepend Mean 83.41

SPT w/ MNTP
bi 1 append EOSP 83.87
bi 16 append EOSP 84.34
bi 16 append Mean 84.22

SPT w/ MNTP
bi 1 prepend SOSP 83.03
bi 10 prepend SOSP 84.56
bi 16 prepend Mean 84.32

SPT w/o MNTP
uni 1 append EOSP 83.60
uni 16 append EOSP 84.93
uni 20 append Mean 84.60

Table 2: Comparison of models with different attention mechanisms, soft prompt positions and pooling methods.
EOSP refers to the end token of soft prompt while SOSP indicates the start token of soft prompt. Mean stands for
the average pooling for all soft prompts. Best and second-best scores are highlighted in bold and with underline.

pooling method.

We present the average results of seven STS
tasks in Table 2, reporting outcomes for both k=1
and the optimal searched k. For the optimal length
k, we also include results from different pooling
methods: the output of the last soft prompt token
for appending (referred to as EOSP), the output of
the first token for prepending (SOSP), and the aver-
age pooling of all soft prompts for both appending
and prepending (Mean). Notice that the optimal k
may vary across different pooling methods.

We first examine the bi-directional models in Ta-
ble 2 and observe that models with MNTP consis-
tently outperform those without MNTP across dif-
ferent soft prompt positions and pooling methods,
a trend that demonstrates the benefits brought by
post-training tasks for bi-directional models. How-
ever, when compared to our SPT with causal atten-
tion and without MNTP post-training, the highest
STS score across various soft prompt lengths, po-
sitions, and pooling methods is still achieved by
our simpler approach. Despite the gains brought
by post-training, our results show that SPT with
causal attention, without the need for MNTP post-
training, can still achieve superior performance on
key tasks like STS. This highlights the simplicity of
leveraging causal attention naturally, offering com-
petitive results without the added complexity and
computational cost of MNTP post-training. Thus,
while MNTP enhances bi-directional models, the
simplicity and effectiveness of our approach make
it a strong alternative for sentence embedding tasks.

5.2 Search for the Optimal Length k

In this section, we explore the effect of the length k
for the soft prompts. We range k from {1, 2, 5, 10,
16, 20} and test them with OPT-125m, LLaMA2-
7B and LLaMA3-8B on the seven STS tasks. We
particularly evaluate the best settings, where causal
attention is preserved and soft prompts are ap-
pended with no MNTP post-training. As shown
in Figure 3 and discussed in former sections, aver-
age pooling on soft prompt tokens yields a slightly
worse performance compared to using the output of
the last token. For both OPT-125m and LLaMA2-
7B, the best performance on STS is achieved at
k=16, while for LLaMA3-8B, the optimal length is
found at k=5. However, when k exceeds a certain
threshold, the performance deteriorates, which is
a consistent observation as noted by Li and Liang
(2021). We will introduce a possible solution on
how to involve more trainable parameters in Sec-
tion 5.3.

5.3 More Trainable Parameters

As discussed in the aforementioned section, the
performance of SPT hits its limit when the prompt
length k exceeds a particular threshold. However,
it is possible to implement more trainable tokens
through a variant of soft prompt tuning, which is
p-tuning v2 (Liu et al., 2022). Instead of only in-
serting trainable tokens into the input embedding
layer, p-tuning v2 introduces more trainable param-
eters by inserting trainable tokens into each layer
of the model. We specifically choose LLaMA2-7B
for p-tuning v2 implementation and evaluate its
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Model Params% Retrieval STS Clustering Classification avg.
LLaMA2-7B

LoRA-bi. 0.59% 85.24 84.43 44.07 61.30 68.76
LoRA-uni.

r=1 † 0.04% 85.19 84.86 46.02 60.88 69.24
r=16 0.59% 85.64 85.24 45.97 61.79 69.66

SPT-uni. (ours)
k=1 0.000061% 85.10 83.60 43.25 62.31 68.57
k=16 0.000973% 85.34 84.93 45.74 62.77 69.70

SPT v2-uni. (ours)
k=1 0.004% 85.39 84.95 45.74 62.50 69.65
k=10 0.039% 85.58 85.29 47.66 63.15 70.42

Table 3: Evaluation results of SPT v2. All the models are trained on the same NLI dataset. Models-bi. refers to
models trained with bi-directional attention after post-training tasks, while models-uni indicates uni-directional
attention models without post-training tasks. The best and second-best results are highlighted in bold and with
underline, respectively. To ensure a fair comparison with a similar number of trainable parameters, we reproduced
LoRA with r=1†.
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Figure 3: Performance on the STS tasks of models with
different pooling methods and k values.

performance on four evaluation tasks. The results
are shown in Table 3.

Notice that the official implementation of p-
tuning v27 achieves this by prepending tokens to
the past_key_values (one token for key and one
token for value in each layer), so the actual number
of trainable parameters would be [2, num_layers,
k, hidden_size]. This method does not alter the
number of input tokens. Since we maintain causal
attention, we follow Liu et al. (2022) and prepend
soft prompts to each layer, while still using the
output of the last token as sentence embedding.

As shown in Table 3, by increasing the number
of trainable parameters, our SPT v2 models outper-
form all other baselines fine-tuned on the same NLI
dataset. Notably, our SPT v2 with k=10 achieves

7https://github.com/THUDM/P-tuning-v2

the best performance in three out of the four evalu-
ated tasks, even surpassing the strong LoRA-based
fine-tuned models. We reproduced LoRA with r=1,
as it has nearly the same number of trainable pa-
rameters as our SPT v2 with k=10. These results
demonstrate that implementing p-tuning v2 with
SPT can achieve higher performance than LoRA-
based fine-tuning, while requiring fewer trainable
parameters. This highlights the simplicity and ef-
fectiveness of our approach in optimizing model
performance with minimal parameter overhead.

6 Conclusion

In this work, we first investigate a simple method
to adapt LLMs for sentence embedding by tuning
a few learnable tokens. We append trainable to-
kens to the inputs and utilize the output of the last
one as the sentence embedding. Our approach can
achieve the adaptation with less than 0.001% train-
able parameters, which is unattainable with LoRA.
Experimental results on various tasks demonstrate
that only a few tokens with our approach can
achieve competitive performance with fine-tuning
with LoRA. Moreover, we also find that directly
using causal attention in decoder-only LLMs is ca-
pable of adapting them for sentence embedding.
Specifically, our simple method with causal atten-
tion outperforms bi-directional attention baselines
with extra post-training tasks, offering insights on
the adaptation of LLMs for sentence embedding.
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Limitations

In this work, we demonstrate the effectiveness of
using soft prompts for sentence representation in
LLMs. However, whether this kind of adaptation
works in other tasks remains unclear. The optimal
soft prompt length relies on various factors, in-
cluding the training dataset and model size, which
require extra searches. Also, the multilingual sce-
nario could be taken into consideration.
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A Appendix

A.1 Baseline Implementation Details

We introduce the implementation details for base-
line reproduction in this section. For base-
lines directly fine-tuned with Low-Rank Adapta-
tion (LoRA), we follow the implementation intro-
duced in Jiang et al. (2023), with the modification
of changing the batch size to 32 and evaluating
the model every 125 steps on the development
set (compared to 50 steps in the original paper).
α is consistently set to 16. We do not include the
proposed PromptEOL method in Jiang et al. (2023)
for a fairer comparison and utilize the output of the
last input token as the sentence embedding. The
baseline reproduction is carried out on two A100
80GB GPUs.

For other baselines with Masked Next Token
Prediction (MNTP) post-training, we initiate the
models from the released checkpoint, while train-
ing with SPT follows the settings introduced in
Section 4.2.

A.2 Details of Trainable Parameters

We count the trainable parameters based on PEFT
library 8. The number of trainable parameters, total
parameters and the percentage of trainable param-
eters for each model are shown in Table 4. The
hidden state size for OPT-125M and LLaMA is
768 and 4096, respectively.

Model Trainable Param Total Param Percentage
OPT-125M + CL 125239296 125239296 100%
OPT-125M + SPT, k=1 768 125240064 0.00061%
OPT-125M + SPT, k=16 12288 125251584 0.0098%
LLaMA2 + LoRA r=1 2498560 6740914176 0.04%
LLaMA2 + LoRA r=16 39976960 6778392576 0.59%
LLaMA2 + LLM2Vec r=16 39976960 6778392576 0.59%
LLaMA2 + SPT, k=1 4096 6738419712 0.000061%
LLaMA2 + SPT, k=2 8192 6738423808 0.00012%
LLaMA2 + SPT, k=5 20480 6738436096 0.0003%
LLaMA2 + SPT, k=10 40960 6738456576 0.00061%
LLaMA2 + SPT, k=16 65536 6738481152 0.00097%
LLaMA2 + SPT, k=20 81920 6738497536 0.0012%
LLaMA2 + SPT v2, k=1 262144 6738677760 0.004%
LLaMA2 + SPT v2, k=10 2621440 6741037056 0.04%
LLaMA3 + LoRA, r=16 45088768 8075350016 0.56%
LLaMA3 + LLM2Vec, r=16 45088768 8075350016 0.56%
LLaMA3 + SPT, k=1 4096 8030265344 0.000051%
LLaMA3 + SPT, k=2 8192 8030269440 0.00001%
LLaMA3 + SPT, k=5 20480 8030281728 0.00026%
LLaMA3 + SPT, k=10 40960 8030302208 0.00051%
LLaMA3 + SPT, k=16 65536 8030326784 0.0008%
LLaMA3 + SPT, k=20 81920 8030343168 0.001%

Table 4: Comparison of trainable parameters.

8https://huggingface.co/docs/peft/main/en/
index

A.3 Full STS Results
We show full results on seven STS tasks in Table 5.
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R avg.
Base models (≤ 125M)

SimCSE 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
OPT w/o fine-tuning † 7.47 9.48 8.30 19.63 22.45 7.40 24.91 14.23
OPT w/ fine-tuning 73.80 81.97 77.58 83.42 79.50 83.05 78.51 79.69
OPT w/ SPT, k=1 (ours) 71.72 80.92 74.66 82.77 79.87 81.41 75.09 78.06
OPT w/ SPT, k=16 (ours) 73.43 81.03 75.57 82.73 79.26 82.33 76.60 78.71

LLaMA2-7B
w/o fine-tuning † 22.30 30.92 27.10 38.92 52.95 33.66 42.54 35.48
LoRA w/o MNTP, r=16 78.29 89.11 84.26 88.97 85.36 87.83 82.34 85.24
LoRA w/ MNTP (LLM2Vec, NLI) 78.01 87.96 83.06 88.45 85.51 87.57 80.44 85.24
SPT w/o MNTP, k=1 (ours) 75.46 87.91 82.84 87.00 84.66 87.15 80.16 83.60
SPT w/o MNTP, k=16 (ours) 76.53 89.12 83.26 89.21 85.21 88.34 82.86 84.93
SPT w/ MNTP, k=1 (ours) 76.60 87.70 81.97 88.38 84.07 87.35 81.00 83.87
SPT w/ MNTP, k=16 (ours) 76.13 88.54 82.69 88.82 85.12 87.80 81.29 84.34

LLaMA3-8B
w/o fine-tuning † 10.35 38.69 24.72 34.55 37.46 23.07 29.49 28.33
LoRA w/o MNTP, r=16 79.04 89.66 85.95 89.41 85.96 88.54 82.57 85.87
LoRA w/ MNTP (LLM2Vec, NLI) 78.59 89.67 85.40 89.83 85.16 88.41 82.46 85.65
SPT w/o MNTP, k=1 (ours) 75.20 88.79 83.60 88.60 84.15 87.82 82.05 84.32
SPT w/o MNTP, k=5 (ours) 78.61 90.23 85.10 89.53 86.87 89.33 82.38 86.00
SPT w/ MNTP, k=1 (ours) 76.59 88.11 84.16 88.97 85.16 87.03 81.87 84.55
SPT w/ MNTP, k=5 (ours) 78.74 89.63 84.72 89.30 86.04 87.92 82.81 85.59

Table 5: Full results of seven STS tasks. † marks models without further training, for which we take the output of
last input token as sentence embedding. Results with ∗ are quoted from the MTEB leaderboard (Muennighoff et al.,
2023). Results of SimCSE is quoted from its paper.
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