
Proceedings of the 10th Workshop on Representation Learning for NLP (RepL4NLP-2025), pages 170–184
May 4, 2025 ©2025 Association for Computational Linguistics

Large Language Models Are Overparameterized Text Encoders

Thennal D K1, Tim Fischer2, Chris Biemann2,

1IIIT Kottayam, 2University of Hamburg
Correspondence: thennal10@gmail.com

Abstract
Large language models (LLMs) demonstrate
strong performance as text embedding mod-
els when finetuned with supervised contrastive
training. However, their large size balloons
inference time and memory requirements. In
this paper, we show that by pruning the last
p% layers of an LLM before supervised train-
ing for only 1000 steps, we can achieve a pro-
portional reduction in memory and inference
time. We evaluate four different state-of-the-
art LLMs on text embedding tasks and find
that our method can prune up to 30% of layers
with negligible impact on performance and up
to 80% with only a modest drop. With only
three lines of code, our method is easily imple-
mented in any pipeline for transforming LLMs
to text encoders. We also propose L3Prune,
a novel layer-pruning strategy based on the
model’s initial loss that provides two optimal
pruning configurations: a large variant with
negligible performance loss and a small variant
for resource-constrained settings. On average,
the large variant prunes 21% of the parameters
with a −0.3 performance drop, and the small
variant only suffers from a −5.1 decrease while
pruning 74% of the model. We consider these
results strong evidence that LLMs are overpa-
rameterized for text embedding tasks, and can
be easily pruned.

1 Introduction

In the past few years, the field of natural language
processing (NLP) has seen a significant shift to-
wards large-scale language models (LLMs). These
models, due to a combination of their large size,
extensive pre-training, and instruction-following
ability, have achieved state-of-the-art performance
on a wide range of NLP tasks, such as language
modeling, text generation, and text understanding
(Dubey et al., 2024; Brown et al., 2020; Jiang et al.,
2023a).

Despite their strong generative capabilities,
decoder-only LLMs have seen comparatively little

adoption for text embedding tasks until recently
(BehnamGhader et al., 2024). Text embedding,
which involves mapping a text sequence of varying
length to a fixed-dimensional vector representation,
is a fundamental task in NLP and is used as a build-
ing block for a wide range of downstream tasks,
such as semantic textual similarity, information re-
trieval, text classification, and retrieval-augmented
generation (Lewis et al., 2020).

Traditionally, text embedding models have been
based on masked language models (MLMs) and
bidirectional encoders, such as BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020), typically adapted
for text embedding tasks by following a multi-step
training pipeline consisting of weakly- and fully-
supervised contrastive training (Ni et al., 2022; Li
et al., 2023a; Xiao et al., 2024a).

Decoder-only LLMs, however, offer several
advantages over their encoder-only counterparts.
They are more sample-efficient during pre-training,
leverage instruction-following capabilities for task
generalization, and benefit from a rich and evolving
research ecosystem (Clark et al., 2020; Asai et al.,
2023; BehnamGhader et al., 2024). Further, the
availability of high-performing public pre-trained
LLMs and their continual development make it
appealing to explore their use for text embedding
tasks. To this end, several studies have experi-
mented with various pipelines, training methods,
and architectural modifications, effectively convert-
ing LLMs into state-of-the-art text embedding mod-
els with small amounts of supervised contrastive
training (BehnamGhader et al., 2024; Li and Li,
2024; Ma et al., 2024; Muennighoff, 2022; Springer
et al., 2024; Lee et al., 2024).

On the other hand, the increasingly large size of
LLMs, with parameters ranging up to 540B (Brown
et al., 2020; Chowdhery et al., 2023; Dubey et al.,
2024), stands in stark contrast to traditional small
bidirectional encoders of sizes almost universally
less than 1B parameters (Li et al., 2023a; Xiao et al.,

170

mailto:thennal10@gmail.com


2024a). Even the smallest LLMs in use typically
have 3-8B parameters (Abdin et al., 2024). Conse-
quently, inference with LLM-based text encoders
is far more demanding in terms of computing and
memory requirements.

Therefore, there are a variety of post-training
techniques for reducing the cost of LLMs, such as
pruning, quantization, and distillation (Zhu et al.,
2024). In particular, the recent work of Gromov
et al. (2024) showed that LLMs can be pruned
to up to half their size with minimal impact on
downstream performance (i.e. question answer-
ing) by dropping the last half of the model’s layers,
with the exception of the final layer, and applying
a small amount of parameter-efficient finetuning.
Layer-dropping as a pruning strategy has partic-
ular benefits: it is straightforward to implement,
with memory and inference time decreasing lin-
early with the number of layers dropped, and it can
be combined with other efficiency methods such as
quantization.

In this work, we build on these findings and
apply them in the context of text embedding, re-
sulting in an easy-to-use and efficient approach to
transform any pre-trained decoder-only LLM into
a much smaller text embedding model. By simply
pruning the last n% layers of a model before su-
pervised contrastive training, we reduce the final
model size with a proportional decrease in memory
and inference time. We experiment with four differ-
ent decoder-only LLMs ranging from 3.8B to 8B
parameters with a variety of pruning percentages
and show that up to 30% of a model’s layers may
be pruned with almost no impact in performance
and may even increase it. Even intensive pruning
of up to 80% still provides reasonably effective text
embedding models, with a drop in performance on
the downstream embedding task from 64.9 to 59.8
for our highest-performing model.

Further, we propose L3Prune, a simple and
novel heuristic that pinpoints particular layers to
prune to based on the initial loss without requiring
significant testing or experimentation. With no in-
put, our method produces both a) a lightly-pruned
model, 69-89% of the original size with minimal
performance loss of −0.2 on average and even a
performance improvement in one model, and b) a
heavily pruned model, 16-36% of their original size
with a modest performance drop of −4.4 to −6.9.

Our contributions can be summarized as follows:
• We are the first to apply pruning in a text em-

bedding setting, formulating a simple proce-

dure that can be easily applied to pipelines
converting an LLM to a text encoder.

• We demonstrate that LLMs can be pruned by
up to 30% with negligible impact on the qual-
ity of representations and up to 80% with a
modest performance drop.

• We propose and evaluate L3Prune, a novel
method that identifies layers to prune by lever-
aging the model’s initial loss, minimizing the
need for trial-and-error for effective pruning.

Overall, our work demonstrates that decoder-
only LLMs are generally overparameterized for
text embedding tasks and that significant reduc-
tions in model size can be achieved with minimal
impact on performance. We release the full code
for L3Prune 1.

2 Related Work

2.1 Encoder-only Text Embedding Models

BERT-based models have largely dominated the
field of text representation in the past, relying on
supervised training with natural language inference
or sentence similarity to produce high-quality sen-
tence embeddings (Conneau et al., 2017; Reimers
and Gurevych, 2019). Recent methods have fur-
ther improved these representations through large-
scale contrastive pretraining followed by multi-task
fine-tuning (Ni et al., 2022; Wang et al., 2022; Li
et al., 2023a; Xiao et al., 2024a). These methods
generally require a complex multi-stage training
pipeline that demands substantial engineering ef-
fort, along with large-scale compute-intensive pre-
training (Zhang et al., 2024).

2.2 Decoder-only Text Embedding Models

Various recent works have explored leveraging
LLMs and their capabilities to generate high-
quality text representations. Generally, a combi-
nation of (a) a pooling method, (b) architectural
modifications, and (c) supervised or unsupervised
fine-tuning are used to effectively convert LLMs to
text embedding models.

The majority of prior work considers two
straightforward pooling strategies to extract em-
beddings for a sequence of tokens: mean pool-
ing and last-token pooling (Springer et al., 2024;
Jiang et al., 2023b; BehnamGhader et al., 2024;
Muennighoff, 2022; Wang et al., 2024b). Mean

1https://github.com/thennal10/l3prune

171

https://github.com/thennal10/l3prune


pooling is more effective with bidirectional embed-
ding models (BehnamGhader et al., 2024; Wang
et al., 2022) while last-token pooling is generally
preferred when working with causal attention (Lee
et al., 2024; BehnamGhader et al., 2024). Muen-
nighoff (2022) introduces weighted mean pooling,
assigning a higher weight to later tokens to offset
the autoregressive nature of decoder-only LLMs,
with significant success. Lee et al. (2024) utilizes
a trainable latent attention layer as a pooling tech-
nique and obtains consistent improvement.

Several studies identify the causal attention
mechanism of decoder-only LLMs as an obstacle
in obtaining performant representations and sug-
gest modifications to the architecture to compen-
sate. Li and Li (2024) and BehnamGhader et al.
(2024) replace the causal attention mechanism with
bidirectional attention. Muennighoff et al. (2024)
utilizes a hybrid objective with both bidirectional
representation learning and causal generation train-
ing. Lee et al. (2024) finds that simply removing
the causal attention mask works compellingly well.

Finally, both supervised and unsupervised fine-
tuning have been extensively explored to signifi-
cantly improve the performance of decoder-only
LLMs in representational tasks, with supervised
training consistently producing the best results
(BehnamGhader et al., 2024; Muennighoff, 2022;
Jiang et al., 2023b). Several modifications to
the training pipeline have been proposed, such
as an additional masked token prediction training
step (BehnamGhader et al., 2024), or a two-stage
instruction-tuning setup (Lee et al., 2024). The
zero-shot setting has also been studied with limited
success by Springer et al. (2024) and Jiang et al.
(2023b).

2.3 LLM Pruning
Pruning as a method of size reduction has a long
history in the field of deep learning (Cheng et al.,
2024). Classic pruning techniques sparsify net-
works by removing individual parameters based
on various criteria (LeCun et al., 1990; Han et al.,
2015). While these models were smaller, these
techniques generally lead to irregular sparsifica-
tion patterns that require specialized hardware or
libraries to fully utilize. Structured pruning tech-
niques were developed to remove irrelevant groups
of parameters together, such as particular channels
or filters in convolutional neural networks (Wen
et al., 2016; Li et al., 2022).

Recent work has focused on applying structure

pruning methods to transformers. Almost every
possible component of the model architecture is
studied as candidates for removal, most promi-
nently methods that drop attention heads (Voita
et al., 2019; Michel et al., 2019; Kim and Hassan,
2020) and layers (Fan et al., 2020; Zhang et al.,
2022; Sajjad et al., 2023; Gromov et al., 2024; Men
et al., 2024; Fan et al., 2024). Prior literature on
layer pruning generally considers BERT-like mod-
els (Fan et al., 2020; Sajjad et al., 2023), with re-
cent studies shifting focus to decoder-only LLMs
(Gromov et al., 2024; Men et al., 2024; Fan et al.,
2024).

Sajjad et al. (2023) finds that for BERT-like mod-
els, dropping the last layers is the best layer pruning
strategy. Gromov et al. (2024) extends this research
to decoder-only LLMs and presents a layer pruning
strategy, pruning a block of layers based on angu-
lar distance between layer representations. Their
results indicate that the last layer, in particular, is
essential for maintaining performance. Informed
by this finding, they propose a simpler strategy:
dropping the last n layers except the final layer.
They conclude that simply dropping the last layers
works effectively to prune the model, with a caveat:
after dropping the layers, it is required to "heal" the
model via finetuning with QLoRA (Dettmers et al.,
2023) for 1000 steps.

While these results suggest that the last layer, in
particular, is essential when pruning LLMs for text
generation, this is not necessarily the case when
utilizing the LLM for other tasks. To this end, Fan
et al. (2024) finds that for "simpler" tasks such as
sentiment analysis, early stopping—stopping the
inference after a certain number of layers—is an
effective strategy to significantly reduce inference
time with minimal impact on performance. The
authors suggest that the later layers of LLMs, in-
cluding the final layer, may not be necessary when
using the LLM representations for other tasks.

3 Pruning

We borrow the intuition from Gromov et al. (2024),
that the representations in a transformer can be
thought of as a slowly changing function of the
layer index. Specifically, the representation can
be formulated as the following iterative residual
equation:

x(ℓ+1) = x(ℓ) + f(x(ℓ), θ(ℓ)), (1)

172



where x(ℓ), θ(ℓ), respectively, are the multi-
dimensional input and parameter vectors for layer
ℓ, and f(x, θ) describes the transformation of one
multi-head self-attention and MLP layer block.

The authors assert that these representations con-
verge to a slowly changing function:

x(ℓ) ≈ x(ℓ−1) + ϵ (2)

with ϵ ≪ xℓ as an approximation. They verify
this hypothesis experimentally by calculating the
distance between layer representations and using
them for a pruning algorithm. Their findings in-
dicate that the earlier layers have a significantly
larger impact on the representation compared to
the later layers, with a particular caveat: the final
layer also modifies the representation significantly.
Thus, they propose and verify a simpler pruning
strategy, where the last n layers of the model, ex-
cluding the final layer, are dropped. This method re-
quires a "healing" step, recovering the downstream
performance with a few QLoRA finetuning steps
(Dettmers et al., 2023).

Our hypothesis extends theirs and posits that for
the text embedding task, the final layer is also not
necessary. Our pruning experiments are conducted
with the percentage pruned p, between 0% (all lay-
ers intact) and 100% (all layers removed). Given a
pruning percentage and a total number of layers n,
the new number of layers n∗ is calculated as

n∗ = ⌊n× (1− p)⌋

Given a model and its configuration, this straight-
forward procedure can be integrated with modern
LLM implementations with just three lines of code:

1 n = int(config.num_hidden_layers * (1-p))
2 model.layers = model.layers [:n]
3 config.num_hidden_layers = n

We then conduct supervised contrastive training,
as with prior work on converting LLMs to text
encoders. Instead of an explicit healing step, we
hypothesize that the aforementioned training acts
as such. Thus, no additional or separate training is
necessary to execute our method.

4 Experiments

4.1 General Setup
For our experiments, we chose four instruct-tuned
decoder-only LLMs across different families
ranging from 3.7B to 7.5B: LLaMA-3-8B
(Meta-Llama-3-8B-Instruct, Dubey et al.,

2024), Mistral-7B (Mistral-7B-Instruct-v0.2,
Jiang et al., 2023a), Qwen2-7B
(Qwen2-7B-Instruct, Yang et al., 2024),
and Phi3-4B (Phi-3-mini-4k-instruct, Abdin
et al., 2024). These model families were chosen
due to their widespread use in open-source
communities and LLM literature. As we are
conducting pruning and are only concerned with
its effects, we pick the smallest model available
in each family, and we opt for no modification
to the LLM architecture itself. We use weighted
mean pooling (Muennighoff, 2022) to generate
embeddings from the outputs of the LLM as it
is straightforward to implement and outperforms
other pooling measures when paired with causal
attention (Muennighoff, 2022; BehnamGhader
et al., 2024).

We also conduct supervised contrastive finetun-
ing, known to outperform unsupervised finetun-
ing and the zero-shot setting, and considered to be
an integral part of effectively utilizing LLMs as
embedding models (BehnamGhader et al., 2024;
Muennighoff, 2022; Jiang et al., 2023b). We use
the replication of the public portion of the E5
dataset (Wang et al., 2024b), curated by Springer
et al. (2024), as the training dataset. Consisting
of approximately 1.5 million samples, it is a mul-
tilingual compilation of various retrieval datasets
meant for supervised contrastive training of embed-
ding models. In accordance, we use contrastive
loss with hard negatives and in-batch negatives
(Springer et al., 2024; BehnamGhader et al., 2024).
Further details on the dataset and training are pro-
vided in Appendix A.

All experiments were conducted on a single
A100 (80GB) GPU, reinforcing the accessible na-
ture of our proposed procedure.

4.2 Zero-shot Loss Evolution Over Layers
As a preliminary test of our hypothesis—that an
LLM can form performant text representations
even before reaching the final layer—we first cal-
culate how well the output of each layer of the
model performs as an embedding. We note that
this is equivalent to a zero-shot setting. As we are
interested in a comparative measure between layers
intra-model, the loss as a metric is sufficient. We
take a random sampling of 1280 tuples from the
training dataset and calculate the embeddings via
weighted mean pooling of the outputs of each layer.
Then, the loss is calculated and averaged per layer.
We find that the loss values converge fairly quickly,

173



1 325 8 10 15 20 22 25 30
Layer

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Loss Evolution
Model
LLaMA-3-8B
Mistral-7B
Qwen2-7B
Phi3-4B

Figure 1: For each layer of an unmodified model, we compute the loss on 1280 randomly sampled examples from
the training dataset. The marked points indicate the layer with minimal loss before and after the midpoint.

Layer

La
ye
rs

LargeSmall

Lo
ss

1 2 3 54 6 7 8 9 11 1210
 17 1816
14 1513
 20 2119 25
23 2422
 26 28 2927 31 3230


Figure 2: A simplified illustration of L3Prune. The ini-
tial loss of the representation of each layer is found, and
the two minima before and after 50% of the model corre-
spond to the layers to prune to in the two configurations,
small and large.

so 1280 samples are sufficient for our purposes.
The results are aggregated in Figure 1.

The loss for all four models follows a similar
curve: an initial drop to around layer 5-10, a sub-
sequent rise around layer 15, and a slower drop up
to layer 22-25, where it rises again by the end with
layer 28-32. While the specifics of how LLM rep-
resentations evolve are not well understood, these
results suggest that the early layers of the model are
generally focused on representation. In contrast,
the final layers transform the representation into the
specific probability distribution for the next token.
Regardless of the underlying dynamics, the drop-
rise-drop curve is consistent across model sizes and
families in our experiments.

We expect that training will considerably trans-
form the shape of this layerwise evolution. We
also have little reason to expect that the final down-
stream performance of layer-dropped models will
be accurately modeled by the effectiveness of these
initial representations. However, we posit that these
initial loss curves also reveal optimal starting points

for pruning. The minima of these curves indicate
layers where the text embeddings are best opti-
mized, making them good candidates for pruning
without significant performance loss.

Inspired by these findings, we consider the fol-
lowing heuristic for pruning: find the two minima
in the layer-loss curve before and after 50% of
the layers (the low point of the two drops). We
hypothesize that pruning up to these layers pro-
vides us with two models: a smaller model with
degraded but reasonable performance and a larger
model whose performance is close to the origi-
nal. This procedure would thus produce two text
embedding model variants from an LLM, each us-
able in different circumstances. The two aforemen-
tioned models are termed large and small in the
following sections. We term this method LLM
Layerwise Loss Pruning, or L3Prune for short.
Figure 2 shows a simple illustration of the process.

4.3 Supervised Training

To verify the general efficacy of our hypothe-
sis—that LLMs can form effective text representa-
tions even before reaching their deeper layers—we
conduct training on pruned LLMs to convert them
into effective text encoders. We keep the training
procedure fairly straightforward: supervised con-
trastive learning for 1000 steps with LoRA modules
(Hu et al., 2022). Other hyperparameters are de-
tailed in Appendix A.2. We first test a range of
pruning percentages from 10% to 90% at 10% in-
tervals. Figure 3 shows the training loss for all
models and pruning percentages. We note that the
training loss curves all generally follow the same
shape, indicating stability in training even with the
modified architecture.

174



200 400 600 800 1000
Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Tr

ai
ni

ng
 L

os
s

LLaMA-3-8B

200 400 600 800 1000
Step

Mistral-7B

200 400 600 800 1000
Step

Qwen2-7B

200 400 600 800 1000
Step

Phi3-4B

Prune %
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure 3: The training loss curves for each model at different pruning percentages.

01234567
Parameters

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 L
os

s

Model
LLaMA-3-8B
Mistral-7B
Qwen2-7B
Phi3-4B

Figure 4: The final loss values at the end of training
across different pruning percentages.

Figure 4 shows the final loss in relation to the
pruned model parameters, with each marked point
representing a model pruned by an additional 10%.
The final loss values for each model follow a
straightforward trajectory with increasing pruning
percentage: minimal increases up to 30-40%, with
larger increases as the pruning percentage hits 90%.
Notably, we find that the final loss of different mod-
els correlates more with the final parameter count
after pruning than with the percentage of layers re-
tained. This suggests that the parameter count is a
more significant factor in determining the effective-
ness of a pruned model than simply the proportion
of layers kept.

If we presume that training loss correlates well
with downstream accuracy for text embedding, we
can make a series of predictions from an analysis
of the plots:

• Performance always degrades sharply as the
parameter count approaches and goes below 1
billion.

• In contrast, performance degrades little even
with 30-50% pruning. LLaMA-3-8B degrades
minimally up to 40-50%, Mistral-7B up to 30-
40%, and Phi3-4B up to 20-30%. Qwen2-7B

degrades more at low pruning percentages, but
remains stable between 30-60%.

• Even at high pruning percentages, model per-
formance degrades at a reasonable rate. Mod-
els can likely be pruned up to 2 billion param-
eters while still producing viable embeddings.

4.4 Simple Pruning Evaluation

To validate the predictions made from the training
loss, we evaluate the models at various pruning
percentages on downstream text embedding tasks.
Specifically, to speed up evaluation, we opt for
the 15-task subset of the Massive Text Embedding
Benchmark (MTEB, Muennighoff et al., 2023) col-
lected and used by BehnamGhader et al. (2024).
The subset, which we term MTEB-15 for clarity,
covers representative tasks from the full 56 tasks
in MTEB, including tasks from each category with
almost the same proportion to prevent bias. Further
details are provided in Appendix B.1.

In accordance with previous work
(BehnamGhader et al., 2024; Springer et al.,
2024; Wang et al., 2024b), we evaluate with task-
specific instructions. We use the same instructions
as Wang et al. (2024b), which can be found in
Appendix Table 4. Following BehnamGhader et al.
(2024), for symmetric tasks, the same instruction
is used for the query and the document. Instruction
tokens are excluded from the final pooling.

Figure 5 shows the impact of pruning on MTEB-
15 results across a range of pruning percentages.
We plot with respect to the number of parameters
as opposed to relative pruning percentages because
parameter count correlates better with the score.
We can see that the training loss and MTEB-15
score also roughly correlate. This confirms that our
predictions in Section 4.3, based on the supervised
training loss, are fairly accurate.

LLama at 50% pruning (3.77B) is only degraded
by −1.89, still providing a strong performance of
63.10. Even at 80% pruning (1.41B), it performs

175



LLaMA-3-8B Mistral-7B Qwen2-7B Phi3-4B BGE GTE E5

Large Small Large Small Large Small Large Small - - -

Layers 25 (-7) 5 (-27) 22 (-10) 8 (-24) 25 (-3) 10 (-18) 25 (-7) 8 (-24) 24 24 24
Params 5.9 (78%) 1.18 (16%) 4.92 (69%) 1.79 (25%) 6.35 (89%) 2.54 (36%) 2.91 (78%) 0.93 (25%) 0.36 0.36 0.36
Score 63.5 (-1.5) 58.1 (-6.9) 63.1 (-0.1) 59.0 (-4.2) 64.5 (+0.3) 60.9 (-3.3) 61.7 (-0.1) 55.5 (-6.3) 61.6 57.1 61.3

Table 1: Comparison of large and small variants across various models, including number of layers, parameters,
and MTEB scores. Changes from the full model are provided in parentheses. The encoder-only models BGE, GTE,
and E5 are also provided as a baseline.

at a reasonable 59.69. Mistral’s performance de-
crease is an almost negligible −0.08 up to 30%
(4.91B). Qwen’s performance increases by +0.32
with a pruning of 10%. It drops distinctly at 30%
pruning. However, it stabilizes at a reasonable
61.51 up to 60% (2.79B). Phi degrades negligibly
up to 20% pruning (2.91B) with −0.03, and −0.53
at 30% (2.56B). Higher pruning percentages de-
grade it significantly as the model parameter count
decreases below the 2 billion mark.

Our results correspond roughly with those of
Gromov et al. (2024): sharp transitions in perfor-
mance around 45%-55% for models in the Llama
family, 35% for Mistral, 25% for Phi, and 20%
for Qwen. However, instead of a sharp transition
to near-random performance, we observe a steady
but reasonable decline even at higher pruning per-
centages. In general, we only observe a significant
decline in performance as model size goes below
roughly 2 billion parameters. These results also
correlate roughly with previous findings by Jiang
et al. (2023b), who investigated LLM-based sen-
tence embedding models between 125M to 66B
parameters and found diminishing returns at pa-
rameter counts over 2B.

We can derive some general insights from these
experiments. For one, the resilience of a model to
pruning is not entirely consistent across families
and sizes. Thus, model-specific experimentation
may be required. However, in general, models can
be pruned 10-30% with minimal drop in down-
stream performance. Further, higher pruning per-
centages up to 80% still yield reasonably effective
embedding models.

We note that LLaMa-3-8B at 50% pruning, with
3.77B parameters, outperforms an unpruned Phi3-
4B at 3.73B parameters. In conjunction with
our other results, we suggest that, given a com-
pute/memory budget, simply dropping layers of a
high-performing LLM may be a superior and sig-
nificantly simpler strategy than training a smaller
LM that fits the budget.

01234567
Parameters (in billions)

45

50

55

60

65

Sc
or

e

Model
LLaMA-3-8B
Mistral-7B
Qwen2-7B
Phi3-4B

Figure 5: The MTEB (15 task subset) scores with re-
spect to the number of model parameters.

4.5 L3Prune Evaluation

As mentioned in Section 4.2, we hypothesize that
the minima in the layer-loss curve before and af-
ter the midpoint are particularly effective points
for pruning. We prune to those particular layers
and conduct the same training and evaluation as
described in Sections 4.3 and 4.4. Table 1 aggre-
gates the results across base models for the two
resulting prune configurations, termed small and
large, along with three well-known encoder-only
models as a baseline (see Section 4.6. It also shows
the particular layer numbers and parameter counts.

The results are consistent with our previous find-
ings. The small models generally perform worse
than the full-sized models, with performance drops
ranging between −4.4 and −6.9. However, at 16%-
36% of their original size (84%-64% pruning), the
models are proportionally compute- and memory-
efficient in exchange for the dropped performance.
The large models, on the other hand, perform al-
most as well as the unpruned models, with only a
slight drop in performance, while pruned to 69%-
89% (31%-11% pruning). As we have seen before,
Qwen2-7B’s performance increases slightly with
pruning, and both Mistral-7B and Phi3-4B’s per-
formance drops are negligible. LLaMA-3-8B’s

176



performance drops by −1.4 points but still remains
a fairly strong 63.5.

Combined with the results from Section 4.4, we
can see that the layers picked by L3Prune are gen-
erally optimal. For instance, Mistral-7B, Qwen2-
7B, and Phi3-4B show strong performances up to
30%, 10%, and 20% pruning, respectively, and the
layers corresponding to those pruning percentages
are exactly the layers pinpointed by L3Prune for
the large variant. As LLaMa-3-8B’s performance
decrease remains fairly consistent when pruning
below 50%, we infer that there is no particularly
optimal point for pruning. Similarly, the small
variants are pruned up to the point before each
model’s performance drops drastically—roughly
85% for LLAMA-3-8B, 75% for Mistral-7B, 65%
for Qwen2-7B, and 75% for Phi3-4B.

Based on these results, we can conclude that the
layerwise loss evolution of a model can be used to
effectively pick optimal points for pruning. The
resulting variants can be used to provide a range of
models with different performance and efficiency
trade-offs. The large models are particularly ef-
fective, with a negligible drop (or even an increase)
in performance for a significant size reduction. The
small models can be used for resource-constrained
settings with reasonable performance.

We further note that the training of the small
variants required only 23.6 GB of VRAM at maxi-
mum, and the layerwise loss curves can be calcu-
lated with less than 17 GB of VRAM. The training
is only conducted for 1000 steps and takes less
than an hour on average using an A100 GPU. Thus,
small variant models can be trained on consumer-
grade GPUs, making it accessible to open-source
and practitioner communities. Further details on
training times are given in Appendix A.3.

4.6 Baseline Comparison to Existing
Encoder-Only Models

Table 1 also includes the MTEB-15 scores of three
high-performing encoder-only embedding models:
BGE (bge-large-en, Xiao et al., 2024b), GTE
(gte-large, Li et al., 2023b), and E5 (e5-large,
Wang et al., 2024a). These models are among the
top-performing models with less than 1B parame-
ters on the HuggingFace MTEB Leaderboard, and
we evaluated them on our reduced MTEB-15 sub-
set. All the pruned large models perform bet-
ter than the encoder-only models, but the small
models generally perform on par or worse. As
the encoder-only models are significantly smaller,

they would indeed be a better choice in a resource-
constrained setting. However, we note that these
models require long, complex, and computation-
ally intensive multi-stage training pipelines. The
E5 model, for instance, requires a contrastive pre-
training phase consisting of 20,000 steps with a
batch size of 32,768, requiring 64 V100 GPUs and
2 days of training time (Wang et al., 2024a). Li
et al., 2023a similarly apply a contrastive pretrain-
ing stage for training the GTE model, with 50,000
steps and a batch size of 16,384 on 8 A100 (80GB)
GPUs. The BGE model is trained with a three-
stage pipeline, with large-scale pre-training using a
batch size of 19,200, followed by general-purpose
finetuning and task-specific fine-tuning (Xiao et al.,
2024b).

In contrast, given an already available LLM, our
method can produce a small and reasonably effec-
tive pruned embedding model with just an hour
of training on a single A100 (80GB) GPU, and
will theoretically work with a single V100 (24GB)
GPU. Further, our methods scale well with advance-
ments in LLM technology, and the generality of our
method allows it to be quickly adapted to any new
decoder-only architecture or LLM-to-embedding
pipeline.

5 Conclusion

In this work, we presented a simple and effective
pruning approach to convert LLMs into lightweight,
performant text embedding models. By dropping
the last p% layers of the model, we achieved sig-
nificant reductions in model size and inference
time, with minimal impact on text embedding tasks.
Our procedure is straightforward to implement in
pipelines converting LLMs to text encoders and
requires no additional training, providing smaller
models at no cost. Based on the initial model
loss, we also proposed L3Prune, a heuristic to pin-
point optimal layers to prune to, providing an ef-
ficient strategy for pruning without extensive ex-
perimentation. We demonstrated that significant
pruning—up to 31%—can be conducted with a
negligible performance loss, and substantial prun-
ing—up to 84%—can still produce effective mod-
els. Overall, our results show that decoder-only
LLMs are overparameterized for text embedding
tasks and can be pruned with minimal performance
loss.

177



6 Limitations

Our work only considers the supervised finetun-
ing setting for utilizing LLMs as text encoders, as
this is the most common and generally effective.
Further, our results may not hold with extensive
modifications to the architecture or training pro-
cess or on models larger than 8 billion parameters.
Lastly, even with extensive pruning, our smallest
models are still generally larger than traditionally
trained encoder-only models. However, as we men-
tion in Section 4.6, these models require a complex
and computationally expensive training procedure,
in contrast to inexpensive parameter-efficient fine-
tuning required for LLM-based models.

7 Ethical Considerations

Our work provides an effective and efficient
method to produce optimized text embedding mod-
els from LLMs. As we mentioned in Section 4.5,
our method is memory and compute-efficient. It
can be conducted on consumer-grade GPUs, mak-
ing it accessible to a wider audience of practition-
ers and academics. However, this also enhances
potential misuse issues, lowering the bar for mali-
cious actors to train and host embedding models.
Regardless, embedding models, in general, have
significantly fewer avenues for malicious behavior
in comparison to, e.g., generative LLMs.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jian-
min Bao, et al. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
Preprint, arXiv:2404.14219.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen,
Gautier Izacard, Sebastian Riedel, Hannaneh Ha-
jishirzi, and Wen-tau Yih. 2023. Task-aware retrieval
with instructions. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 3650–
3675, Toronto, Canada. Association for Computa-
tional Linguistics.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. MS MARCO: A human
generated machine reading comprehension dataset.
Preprint, arXiv:1611.09268.

Parishad BehnamGhader, Vaibhav Adlakha, Marius
Mosbach, Dzmitry Bahdanau, Nicolas Chapados,

and Siva Reddy. 2024. LLM2vec: Large language
models are secretly powerful text encoders. In First
Conference on Language Modeling, Pennsylvania,
United States.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems, volume 33, pages 1877–1901. Curran
Associates, Inc.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
2024. A survey on deep neural network pruning: Tax-
onomy, comparison, analysis, and recommendations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, pages 1–20.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. PaLM: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions, Addis Ababa, Ethiopia.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc
Barrault, and Antoine Bordes. 2017. Supervised
learning of universal sentence representations from
natural language inference data. In Proceedings of
the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 670–680, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Tri Dao. 2024. FlashAttention-2: Faster attention with
better parallelism and work partitioning. In The
Twelfth International Conference on Learning Repre-
sentations, Vienna, Austria.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems, volume 36, pages 10088–10115,
Louisiana, United States. Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for

178

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://doi.org/10.18653/v1/2023.findings-acl.225
https://doi.org/10.18653/v1/2023.findings-acl.225
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://openreview.net/forum?id=IW1PR7vEBf
https://openreview.net/forum?id=IW1PR7vEBf
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1feb87871436031bdc0f2beaa62a049b-Paper-Conference.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 herd of models.
Preprint, arXiv:2407.21783.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In International Conference on Learn-
ing Representations, Addis Ababa, Ethiopia.

Angela Fan, Yacine Jernite, Ethan Perez, David Grang-
ier, Jason Weston, and Michael Auli. 2019. ELI5:
Long form question answering. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3558–3567, Florence,
Italy. Association for Computational Linguistics.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. 2024. Not all layers of
llms are necessary during inference. Preprint,
arXiv:2403.02181.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A. Roberts. 2024. The
unreasonable ineffectiveness of the deeper layers.
Preprint, arXiv:2403.17887.

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for
efficient neural network. In Advances in Neural In-
formation Processing Systems, volume 28, Montréal,
Canada. Curran Associates, Inc.

Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao,
Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu,
Qiaoqiao She, Xuan Liu, Tian Wu, and Haifeng
Wang. 2018. DuReader: a Chinese machine reading
comprehension dataset from real-world applications.
In Proceedings of the Workshop on Machine Reading
for Question Answering, pages 37–46, Melbourne,
Australia. Association for Computational Linguistics.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations, Online.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023a. Mistral 7b. Preprint,
arXiv:2310.06825.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2023b. Scaling sentence

embeddings with large language models. Preprint,
arXiv:2307.16645.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601–1611, Vancouver,
Canada. Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Young Jin Kim and Hany Hassan. 2020. FastFormers:
Highly efficient transformer models for natural lan-
guage understanding. In Proceedings of SustaiNLP:
Workshop on Simple and Efficient Natural Language
Processing, pages 149–158, Online. Association for
Computational Linguistics.

Yann LeCun, John S Denker, Sara A Solla, Richard E
Howard, and Lawrence D Jackel. 1990. Optimal
brain damage. In Advances in neural information
processing systems, pages 598–605.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. NV-Embed: Improved techniques
for training LLMs as generalist embedding models.
Preprint, arXiv:2405.17428.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive NLP tasks. Advances in
Neural Information Processing Systems, 33:9459–
9474.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2022. Pruning filters for ef-
ficient ConvNets. In International Conference on
Learning Representations, Toulon, France.

Xianming Li and Jing Li. 2024. BeLLM: Backward
dependency enhanced large language model for sen-
tence embeddings. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
792–804, Mexico City, Mexico. Association for Com-
putational Linguistics.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023a. Towards
general text embeddings with multi-stage contrastive
learning. Preprint, arXiv:2308.03281.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023b. Towards

179

https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/P19-1346
https://doi.org/10.18653/v1/P19-1346
https://arxiv.org/abs/2403.02181
https://arxiv.org/abs/2403.02181
https://arxiv.org/abs/2403.17887
https://arxiv.org/abs/2403.17887
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://doi.org/10.18653/v1/W18-2605
https://doi.org/10.18653/v1/W18-2605
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2307.16645
https://arxiv.org/abs/2307.16645
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.sustainlp-1.20
https://doi.org/10.18653/v1/2020.sustainlp-1.20
https://doi.org/10.18653/v1/2020.sustainlp-1.20
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2405.17428
https://doi.org/10.18653/v1/2024.naacl-long.45
https://doi.org/10.18653/v1/2024.naacl-long.45
https://doi.org/10.18653/v1/2024.naacl-long.45
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://doi.org/10.48550/arXiv.2308.03281


General Text Embeddings with Multi-stage Con-
trastive Learning. Preprint, arXiv:2308.03281.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and
Jimmy Lin. 2024. Fine-tuning llama for multi-stage
text retrieval. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2421–
2425.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. 2024. Shortgpt: Layers in large language mod-
els are more redundant than you expect. Preprint,
arXiv:2403.03853.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Advances
in Neural Information Processing Systems, pages
14014–14024.

Niklas Muennighoff. 2022. SGPT: GPT sen-
tence embeddings for semantic search. Preprint,
arXiv:2202.08904.

Niklas Muennighoff, Hongjin SU, Liang Wang, Nan
Yang, Furu Wei, Tao Yu, Amanpreet Singh, and
Douwe Kiela. 2024. Generative representational in-
struction tuning. In ICLR 2024 Workshop: How Far
Are We From AGI, Vienna, Austria.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo
Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan,
Keith Hall, Ming-Wei Chang, and Yinfei Yang. 2022.
Large dual encoders are generalizable retrievers. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
9844–9855, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav
Nakov. 2023. On the effect of dropping layers of
pre-trained transformer models. Computer Speech &
Language, 77:101429.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2024.
Repetition Improves Language Model Embeddings.
Preprint, arXiv:2402.15449.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting,
the rest can be pruned. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5797–5808.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. 2022. Text embeddings by weakly-
supervised contrastive pre-training. arXiv preprint.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao,
Linjun Yang, Daxin Jiang, Rangan Majumder, and
Furu Wei. 2024a. Text Embeddings by Weakly-
Supervised Contrastive Pre-training. Preprint,
arXiv:2212.03533.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024b. Improv-
ing text embeddings with large language models. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 11897–11916, Bangkok, Thai-
land. Association for Computational Linguistics.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity in
deep neural networks. In Advances in neural in-
formation processing systems, pages 2074–2082,
Barcelona, Spain.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

180

https://doi.org/10.48550/arXiv.2308.03281
https://doi.org/10.48550/arXiv.2308.03281
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2403.03853
https://arxiv.org/abs/2202.08904
https://arxiv.org/abs/2202.08904
https://openreview.net/forum?id=8cQrRO9iFe
https://openreview.net/forum?id=8cQrRO9iFe
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2022.emnlp-main.669
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1016/j.csl.2022.101429
https://doi.org/10.1016/j.csl.2022.101429
https://arxiv.org/abs/2402.15449
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2212.03533
https://doi.org/10.48550/arXiv.2212.03533
https://doi.org/10.48550/arXiv.2212.03533
https://aclanthology.org/2024.acl-long.642
https://aclanthology.org/2024.acl-long.642
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101


Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024a. C-pack:
Packed resources for general chinese embeddings. In
Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’24, page 641–649, New
York, NY, USA. Association for Computing Machin-
ery.

Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muen-
nighoff, Defu Lian, and Jian-Yun Nie. 2024b. C-
Pack: Packed Resources For General Chinese Em-
beddings. Preprint, arXiv:2309.07597.

Xiaohui Xie, Qian Dong, Bingning Wang, Feiyang Lv,
Ting Yao, Weinan Gan, Zhijing Wu, Xiangsheng Li,
Haitao Li, Yiqun Liu, and Jin Ma. 2023. T2ranking:
A large-scale chinese benchmark for passage ranking.
In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’23, page 2681–2690, New
York, NY, United States. Association for Computing
Machinery.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. Preprint, arXiv:2407.10671.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D. Manning. 2018. HotpotQA: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380, Brussels, Belgium. Association for Com-
putational Linguistics.

Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin.
2021. Mr. TyDi: A multi-lingual benchmark for
dense retrieval. In Proceedings of the 1st Workshop
on Multilingual Representation Learning, pages 127–
137, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo,
Ehsan Kamalloo, David Alfonso-Hermelo, Xi-
aoguang Li, Qun Liu, Mehdi Rezagholizadeh, and
Jimmy Lin. 2023. MIRACL: A Multilingual Re-
trieval Dataset Covering 18 Diverse Languages.
Transactions of the Association for Computational
Linguistics, 11:1114–1131.

Zhehao Zhang, Yan Gao, and Jian-Guang Lou. 2024.
e5: Zero-shot hierarchical table analysis using aug-
mented LLMs via explain, extract, execute, exhibit
and extrapolate. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
1244–1258, Mexico City, Mexico. Association for
Computational Linguistics.

Zhen Zhang, Wei Zhu, Jinfan Zhang, Peng Wang, Rize
Jin, and Tae-Sun Chung. 2022. PCEE-BERT: Ac-
celerating BERT inference via patient and confident

early exiting. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 327–338,
Seattle, United States. Association for Computational
Linguistics.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping
Wang. 2024. A survey on model compression for
large language models. Preprint, arXiv:2308.07633.

A Training

A.1 Dataset

The dataset we use consists of ELI5 (sample ra-
tio 0.1, Fan et al., 2019), HotpotQA (Yang et al.,
2018), FEVER (Thorne et al., 2018), MIRACL
(Zhang et al., 2023), MS-MARCO passage rank-
ing (sample ratio 0.5) and document ranking (sam-
ple ratio 0.2, Bajaj et al., 2018), NQ (Karpukhin
et al., 2020), SNLI (Bowman et al., 2015), MNLI
(Williams et al., 2018), SQuAD (Rajpurkar et al.,
2016), TriviaQA (Joshi et al., 2017), Quora Du-
plicate Questions2 (sample ratio 0.1), Mr- TyDi
(Zhang et al., 2021), DuReader (He et al., 2018),
and T2Ranking (sample ratio 0.5, Xie et al., 2023).
The instructions used for each dataset can be found
in Table 5.

A.2 Hyperparameters

All models are trained with LoRA rank r = 16 and
use brain floating point (bfloat16) precision, gra-
dient checkpointing, and FlashAttention-2 (Dao,
2024) to optimize GPU memory consumption.
Training is conducted with a batch size of 64 for
1000 steps, gradient accumulation over 1 step, and
a maximum sequence length of 512 tokens. The
Adam optimizer has a learning rate of 2 × 10−4

and a linear warm-up over the first 300 steps.

A.3 Training Time

Large Small

LLaMA-3-8B 2h 48m 35m
Mistral-7B 2h 41m 56m
Qwen2-7B 3h 1m 1h 14m
Phi3-4B 1h 40m 33m

Table 2: Training time for the variants produced by
L3Prune.

Table 2 shows the time taken to train the two vari-
ants (large and small) provided by L3Prune for

2https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

181

https://doi.org/10.1145/3626772.3657878
https://doi.org/10.1145/3626772.3657878
https://doi.org/10.48550/arXiv.2309.07597
https://doi.org/10.48550/arXiv.2309.07597
https://doi.org/10.48550/arXiv.2309.07597
https://doi.org/10.1145/3539618.3591874
https://doi.org/10.1145/3539618.3591874
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/2021.mrl-1.12
https://doi.org/10.18653/v1/2021.mrl-1.12
https://doi.org/10.1162/tacl_a_00595
https://doi.org/10.1162/tacl_a_00595
https://doi.org/10.18653/v1/2024.naacl-long.68
https://doi.org/10.18653/v1/2024.naacl-long.68
https://doi.org/10.18653/v1/2024.naacl-long.68
https://doi.org/10.18653/v1/2022.findings-naacl.25
https://doi.org/10.18653/v1/2022.findings-naacl.25
https://doi.org/10.18653/v1/2022.findings-naacl.25
https://arxiv.org/abs/2308.07633
https://arxiv.org/abs/2308.07633
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


01234567
Parameters

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ru
nt

im
e 

(H
ou

rs
)

Model
Phi3-4B
Mistral-7B
Qwen2-7B
LLaMA-3-8B

Figure 6: The total training time taken for all models at
different pruning percentages.

each model. Figure 6 shows the training time for
the models pruned at different pruning percentages,
with respect to total parameter count. As we expect,
the time taken to train a pruned model is linear to
the pruning percentage, and corresponds roughly to
the total parameter count. All models were trained
on a single NVIDIA A100 GPU. Including evalua-
tion, we estimate that all experiments took a total
of 200 GPU hours.

B Massive Text Embeddings Benchmark
(MTEB)

B.1 MTEB subset details

MTEB encompasses a diverse array of embedding
tasks varying in size, making a full evaluation quite
time-consuming—it takes over 160 hours for a full-
sized 7B model, such as Qwen2-7B, on an A100
GPU. To expedite our analysis, we use a represen-
tative subset of 15 tasks from MTEB, selected and
used by BehnamGhader et al. (2024), detailed in
Table 3. This subset includes tasks from each cate-
gory in proportions closely matching those of the
full MTEB.

B.2 MTEB instructions

For evaluation on MTEB-15, we use the instruc-
tions from Wang et al. (2024b), also used by
BehnamGhader et al. (2024). The list of instruc-
tions for each task is listed in Table 4.

C Licenses

All four models we used are available for research
purposes—LLaMA-3-8B is under its own permis-
sive license, Mistral-7B and Qwen2-7B are under

Category Dataset

Retrieval (3)
SciFact
ArguAna
NFCorpus

Reranking (2) StackOverflowDupQuestions
SciDocsRR

Clustering (3)
BiorxivClusteringS2S
MedrxivClusteringS2S
TwentyNewsgroupsClustering

Pair Classification (1) SprintDuplicateQuestions

Classification (3)
Banking77Classification
EmotionClassification
MassiveIntentClassification

STS (3)
STS17
SICK-R
STSBenchmark

SummEval (0) -

Overall 15 datasets

Table 3: MTEB-15, the subset of MTEB tasks used for
our work.

Apache License 2.0, and Phi3-4B is under MIT Li-
cense. MTEB and the tasks it includes are provided
under the Apache License 2.0. We overview the
licenses of all datasets used in training below:

• ELI5: Provided under no specified license,
available for research purposes.

• HotpotQA: Provided under CC BY-SA 4.0.
• FEVER: Provided under CC BY-SA 3.0.
• MIRACL: Provided under Apache License

2.0.
• MS-MARCO: Provided under no specific li-

cense, available for non-commercial research
purposes.

• Natural Questions (NQ): Provided under CC
BY 4.0.

• Stanford Natural Language Inference (SNLI):
Provided under CC BY-SA 4.0.

• Multi Natural Language Inference (MNLI):
Provided under a combination of permissive
licenses, elaborated by Williams et al. (2018).

• SQuAD: Provided under CC BY-NC 4.0.
• TriviaQA: Provided under Apache License

2.0.
• Quora Duplicate Questions: Provided un-

der no specified license, available for non-
commercial purposes.

• Mr. TyDi: Provided under Apache License
2.0

182



• DuReader: Provided under Apache License
2.0

• T2Ranking: Provided under Apache License
2.0

183



Task Name Instruction

Banking77Classification Given a online banking query, find the corresponding intents
EmotionClassification Classify the emotion expressed in the given Twitter message into one

of the six emotions: anger, fear, joy, love, sadness, and surprise
MassiveIntentClassification Given a user utterance as query, find the user intents
BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles
MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles
TwentyNewsgroupsClustering Identify the topic or theme of the given news articles
SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum
SciDocsRR Given a title of a scientific paper, retrieve the titles of other relevant

papers
StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum
ArguAna Given a claim, find documents that refute the claim
NFCorpus Given a question, retrieve relevant documents that best answer the

question
SciFact Given a scientific claim, retrieve documents that support or refute the

claim
STS* Retrieve semantically similar text.

Table 4: Instructions used for evaluation on the MTEB benchmark. “STS*” refers to all the STS tasks.

Dataset Instruction(s)

SNLI & MNLI Given a premise, retrieve a hypothesis that is entailed by the premise
Retrieve semantically similar text

DuReader Given a Chinese search query, retrieve web passages that answer the question
ELI5 Provided a user question, retrieve the highest voted answers on Reddit ELI5 forum
FEVER Given a claim, retrieve documents that support or refute the claim
HotpotQA Given a multi-hop question, retrieve documents that can help answer the question
MIRACL Given a question, retrieve Wikipedia passages that answer the question
MrTyDi Given a question, retrieve Wikipedia passages that answer the question
MSMARCO
Passage

Given a web search query, retrieve relevant passages that answer the query

MSMARCO
Document

Given a web search query, retrieve relevant documents that answer the query

NQ Given a question, retrieve Wikipedia passages that answer the question
QuoraDuplicates Given a question, retrieve questions that are semantically equivalent to the given

question
Find questions that have the same meaning as the input question

SQuAD Retrieve Wikipedia passages that answer the question
T2Ranking Given a Chinese search query, retrieve web passages that answer the question
TriviaQA Retrieve Wikipedia passages that answer the question

Table 5: Instructions used for each of the E5 datasets.

184


