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Abstract

Due to the sensitive nature of clinical letters,
their use in model training, medical research,
and education is limited. This work aims to gen-
erate diverse, de-identified, and high-quality
synthetic clinical letters to enhance privacy
protection. This study explores various pre-
trained language models (PLMs) for text mask-
ing and generation, employing various masking
strategies with a focus on Bio_ClinicalBERT.
Both qualitative and quantitative methods are
used for evaluation, supplemented by a down-
stream Named Entity Recognition (NER) task.
Our results indicate that encoder-only models
outperform encoder-decoder models. General-
domain and clinical-domain PLMs exhibit com-
parable performance when clinical information
is preserved. Preserving clinical entities and
document structure yields better performance
than fine-tuning alone. Masking stopwords en-
hances text quality, whereas masking nouns
or verbs has a negative impact. BERTScore
proves to be the most reliable quantitative eval-
uation metric in our task. Contextual infor-
mation has minimal impact, indicating that
synthetic letters can effectively replace orig-
inal ones in downstream tasks. Unlike pre-
vious studies that focus primarily on recon-
structing original letters or training a privacy-
detection and substitution model, this project
provides a framework for generating diverse
clinical letters while embedding privacy de-
tection, enabling sensitive dataset expansion
and facilitating the use of real-world clinical
data. Our codes and trained models will be
publicly available at https://github.com/
HECTA-UoM/Synthetic4Health

1 Introduction

Electronic clinical letters play a crucial role in
healthcare communication. However, their sen-
sitive nature makes them challenging to share and
limits their adoption in clinical education and re-
search (Tarur and Prasanna, 2021; Tucker et al.,

Figure 1: An Example of the Objective: generating
more clinical letters from the original anonymised clini-
cal letter segment with clinical soundness

2016; Spasic and Nenadic, 2020). Although pub-
lic datasets such as MIMIC and i2b2 provide de-
identified clinical data, they are often restricted
to specific regions and institutions, limiting their
representativeness of diverse clinical conditions
(Humbert-Droz et al., 2022).

To address these challenges, synthetic clinical
letter generation has attracted growing interest.
While existing methods primarily rely on structured
data, Natural Language Generation (NLG) models
provide a promising alternative by integrating lin-
guistic and clinical knowledge (HÜSKE-KRAUS,
2003; Amin-Nejad et al., 2020a; Tang et al., 2023).
Unlike previous studies, we go beyond training
de-identification models to detect and substitute
private information. This work focuses on lever-
aging NLG methods to generate synthetic clinical
letters while indirectly minimising privacy risks.
Although the dataset we used has been anonymised,
we additionally apply a privacy detection and mask-
ing process as an additional verification step to fur-
ther enhance the security of synthetic letters. Our
findings contribute to bridging the gap in privacy-
aware clinical letter generation, facilitating a more
effective approach to processing real-world clinical
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letters and addressing data scarcity in the medical
domain.

A brief example of our objective is shown in
Figure 1. To achieve this, we investigate different
model architectures, segmentation strategies, and
masking techniques and evaluate their effectiveness
both qualitatively and quantitatively. Additionally,
we assess their usability in downstream NLP tasks
such as Named Entity Recognition (NER). We en-
sure compliance with ethical guidelines by using
only de-identified clinical data and adhering to all
data use agreements.

2 Related Work

Biomedical patient data privacy protection has
been an important task for clinical research, es-
pecially when it comes to big data era. Developing
privacy-preserving decision support tools has been
a challenge for statisticians and clinical researchers
(Tucker et al., 2016; Claerhout and DeMoor, 2005;
Terry, 2012; Liu et al., 2015).

Recent studies in clinical Natural Language Pro-
cessing (NLP) explored various tasks, including
NER, de-identification, and NLG. Several tools,
such as SciSpacy (Dernoncourt et al., 2017; Ko-
vačević et al., 2024), are designed to enhance
domain-specific entity recognition, while Philter
(Norgeot et al., 2020) combines both traditional
and modern NLP models to identify and remove
Protected Health Information (PHI). Transformer-
based architectures are widely used in clinical
NLG, particularly in text rewriting, discharge sum-
mary generation, and data augmentation, (Vaswani
et al., 2017). For instance, LT3 (Belkadi et al.,
2023) improves label-to-text generation, while
DeID-GPT (Liu et al., 2023) employs GPT-4 to
identify and generate substitute words for private
information. Micheletti et al. (2024) demonstrate
that Masked Language Models (MLMs) outper-
form Causal Language Models (CLMs) in text
masking tasks. Existing studies either focus on
training models, utilize existing LLMs identify to
identify private information, or concentrate solely
on NLG without much attention in privacy. How-
ever, few studies integrate clinical text generation
with privacy-preservation and diversity considera-
tions, which is the focus of this study.

3 Methodology

To generate clinical letters that retain the original
clinical narrative without being exact duplicates,

we employed various PLMs. Sensitive data is
masked by and substituted with contextually pre-
dicted tokens using PLMs. Additionally, we evalu-
ate different masking strategies to de-identify po-
tentially sensitive information as an additional vali-
dation step. We also considered how non-sensitive
elements, such as stopwords, indirectly influence
the effectiveness of de-identification. A brief work-
flow is presented in Figure 2.

3.1 Dataset
The dataset used in this research comprises 204
clinical letters and 51,574 manually annotated clin-
ical entities from the SNOMED CT Entity Linking
Challenge (A et al., 2000; Johnson et al., 2024,
2023). Protected health information (PHI) was
manually reviewed and replaced with underscores
to ensure privacy. The length of the clinical let-
ters ranges from 360 to 3,329 words, with an aver-
age length of approximately 1,450 words. Each
letter contains patient information, medical his-
tory, and follow-up instructions. They are also
stored in CSV format with unique identifiers and
textual content. Given the input constraints of lan-
guage models, clinical letters are tokenised and
segmented into smaller chunks for processing be-
fore being merged. The entity annotations, sourced
from SNOMED CT, cover 5,336 distinct clinical
concepts and are stored in CSV format. These an-
notations map entity positions in the text to their
corresponding SNOMED CT concepts. An excerpt
from the dataset is shown in Figure 3.

3.2 Clinical Information Preserving
3.2.1 Experimental Setup
The collected dataset consists of raw clinical letters
and annotations, which were first merged into a uni-
fied DataFrame. Manually annotated entities were
then extracted based on their index. Since PLMs
such as BERT, RoBERTa, and T5 have a token limit
(typically 512 (Zeng et al., 2022)), we employed
a variable-length chunking strategy (Subsection
3.2.2) rather than fixed-length truncation. All ex-
periments were conducted using Google Colab
Pro+ environment equipped with a T4 GPU (16GB
VRAM), 52GB of system RAM, and 225GB of
disk space, running Python 3.10, PyTorch 2.3.1,
and Hugging Face Transformers 4.42.4.

For feature extraction, we used word_tokenize
to preserve word integrity, which is crucial for re-
taining clinical entities. For masking and gener-
ation, we followed each model’s native tokeniza-
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Figure 2: Overall Workflow

Figure 3: Text Excerpt from the Original Letter (A et al.,
2000; Johnson et al., 2024, 2023) (‘note_id’: ’17656866-
DS-6’)

tion method. BERT-based models utilize Word-
Piece tokenization, which is effective for handling
out-of-vocabulary words and masked predictions.
T5-based models employ Sentence-Piece tokeniza-
tion, which better handles abbreviations and non-
standard characters (e.g., “COVID-19”)—common
in clinical letters—as it does not rely on spaces for
splitting. The pre-processing pipeline is shown in
Figure 4.

Figure 4: Pre-Processing Pipeline

3.2.2 Splitting Letters into Variable-Length
Chunks

As mentioned above, pre-trained language models
(PLMs) such as BERT, RoBERTa, and T5 have a to-
ken limit (typically 512 (Zeng et al., 2022)), requir-
ing an effective strategy to process longer clinical
letters. To preserve the full semantics of medical
text, we adopted a Variable-Length Chunking ap-
proach based on semantic boundaries, instead of
using tradition truncation methods like fixed-length
or discarding tokens (Hou et al., 2022).

Initially, each letter was processed at the sen-
tence level. However, this approach proved inef-
ficient and lacked sufficient contextual informa-
tion for inference. To address this, we segmented
letters into paragraph-sized chunks while main-
taining sentence integrity. Rather than strictly re-
stricting each paragraph by ‘max_tokens’ limit for
each paragraph, we prioritised preserving com-
plete sentences. To constrain fragmenting sen-
tences, we introduced a ‘max_lines’ threshold. If
adding a sentence exceeds either the ‘max_lines’
or max_tokens limit, it is moved to the next chunk.
However, adhering to the max_tokens constraint
should be our primary consideration due to model
requirements. Therefore, if a single sentence
does not exceed ‘max_lines’ but surpasses the
‘max_tokens’ limit, it is further segmented based
on ‘max_tokens’. To detect sentence boundaries,
we used the NLTK library. Figure 5 illustrates this
process.
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Figure 5: Text Chunking Workflow

3.2.3 Feature Extraction
To generate de-identified clinical letters while main-
taining clinical narratives, we extracted key fea-
tures before masking and generation. These fea-
tures include:

• Document Structure: structural elements
often correspond to capitalized headers and
colons (:). They should be preserved as they
define the document’s format.

• Privacy Information Identification: An
NER model (Stanza (Qi et al., 2020)) detected
entities such as Name, Date, and Location,
while regex masked structured data like phone
numbers and emails.

• Medical Terminology: An NER model pre-
trained on i2b2 (Zhang et al., 2021) supple-
mented manual annotations by recognizing
medical terms (e.g., Test, Treatment, Prob-
lem).

• Special Patterns: Medication dosages (e.g.,
enoxaparin 40 mg/0.4 mL) and abbreviations
(e.g., b.i.d.) were retained unless classified as
private.

• POS Tagging: To assess the impact of POS
tagging on the model’s understanding of clin-
ical text, we employed a MIMIC-III-based
model (Zhang et al., 2021), which outper-
formed NLTK and SpaCy in clinical syntactic
comprehension.

3.3 Clinical Letters Generation
Our objective is to generate synthetic clinical let-
ters that differ from the originals rather than pro-
ducing near-identical copies, as repeated statement

may indirectly reveal the patients’ privacy. While
fine-tuning improves precision and semantic com-
prehension, it risks overfitting, leading to outputs
too closely aligned with the original dataset and
reducing generalisability. Therefore, simply fine-
tuning a model is suboptimal if PLMs can already
generate readable text. Instead, the focus should be
on protecting clinical terms and narratives while
preventing privacy breaches. Since decoder-only
models struggle with long-text processing (Amin-
Nejad et al., 2020b) and require substantial compu-
tational resources, we explored both encoder-only
and encoder-decoder PLMs with random mask-
ing. After evaluating their ability to generate syn-
thetic letters, we selected Bio_ClinicalBERT for
its strong domain adaptation and tested various
masking strategies, as detailed in Appendix A. Ad-
ditionally, given the discussion in Subsection 3.2.2,
we assessed the impact of variable-length chunking
on generation quality with Bio_ClinicalBERT.

3.3.1 Encoder-Only Models

Standard masked language modelling (MLM) was
used in this study. First, tokens were selected for
masking and then corrupted, resulting in masked
text containing both masked and unmasked to-
kens. The model then predicted the masked to-
kens, replacing them with the most probable can-
didates. We predict all masked tokens in paral-
lel within a single forward pass for each clini-
cal letter. If processed sequentially, it might gen-
erate more coherent text, but the computational
complexity would increase significantly (from
O(N) to O(N!)). Given the clinical focus of this
task, we explored models fine-tuned on clinical
or biomedical datasets. However, since no clini-
cally fine-tuned RoBERTa (Zhuang et al., 2021)
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Figure 6: Comparison of Encoder-Only and Encoder-
Decoder Model Architectures

variant was available, RoBERTa-base was used
for comparison. The encoder-only models we
evaluated include Bio_ClinicalBERT (Alsentzer
et al., 2019), medicalai/ClinicalBERT (Wang et al.,
2023), RoBERTa-base (Zhuang et al., 2021), and
Clinical-Longformer (Li et al., 2023).

3.3.2 Encoder-Decoder Models

Although encoder-decoder models are not typically
used for MLM, they excel in coherent text gener-
ation, particularly T5. Therefore, we included T5
family models in our comparisons. Unlike BERT,
which replaces masked tokens with ‘<mask>’, the
T5 family models indexing masked words as ‘ex-
tra_id_x’. The text, with these words removed,
serves as input for generation, referred to as "text
with blanks". For consistency, ‘<mask>’ was later
used when displaying masked text. Additionally,
a structured prompt was required, formatted as
"Fill in the blanks in the following sentence in clin-
ical background" + text with blanks. Like encoder-
only models, masked tokens are predicted in par-
allel across clinical letters. In this part, we experi-
mented with T5-base (Raffel et al., 2020), Clinical-
T5-Base (Eric and Johnson, 2023; Goldberger et al.,
2000), Clinical-T5-Sci (Eric and Johnson, 2023;
Goldberger et al., 2000), and Clinical-T5-Scratch
(Eric and Johnson, 2023; Goldberger et al., 2000)
for comparison. The architectures of encoder-only
and encoder-decoder models are shown in Figure
6.

3.4 Evaluation
Both quantitative and qualitative methods are used
to evaluate performance. Additionally, a down-
stream NER task assesses whether synthetic clin-
ical letters can replace raw data. The evaluation
pipeline is illustrated in Figure 8 of the Appendix.

3.4.1 Quantitative Evaluation
To assess the quality of synthetic letters, we con-
duct quantitative evaluation across multiple dimen-
sions, including inference performance, readability,
and similarity to raw data.

• Standard NLG Metrics: ROUGE, BERT
Score, and METEOR assess textual similar-
ity while ensuring generated text differs from
the original. Synthetic text is compared with
the original, and a baseline is established by
comparing masked text to the original. The
evaluation score should exceed the baseline
but stay below 1.

• Readability Metrics: SMOG, Flesch Read-
ing Ease, and Flesch-Kincaid Grade Level as-
sess readability, with SMOG prioritised for
clinical relevance.

• Advanced Text Quality Metrics: Perplexity,
subjectivity, and information entropy are used
to evaluate informativeness and subjectivity.

• Invalid Prediction Rate: Measures the ratio
of invalid token predictions (e.g., subwords,
punctuation) to assess the model’s ability to
generate meaningful text.

• Inference Time: Records generation time
per letter, with shorter times indicating im-
proved computational efficiency for large-
scale deployment.

3.4.2 Qualitative Evaluation
While some synthetic texts performed well on most
metrics, they did not always appear satisfactory
upon visual inspection, whereas others with aver-
age scores appeared more natural. Although human
evaluation is the most reliable method for assessing
clinical letters, it is limited by time constraints and
workload demands. Thus, combining qualitative
and quantitative evaluations helps the identification
of the most effective quantitative metrics for model
evaluation. Once identified, one metric can serve
as the benchmark standard, while others function
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Model Evaluation
RoBERTa-base medicalai / Clini-

calBERT
Clinical-
Longformer

Bio _ Clinical-
BERT

ROUGE-1
Generation Performance 86.54 88.46 89.52 84.91

Baseline 84.91 84.91 84.91 84.91
ROUGE-2

Generation Performance 74.51 78.43 79.61 73.08
Baseline 73.08 73.08 73.08 73.08

ROUGE-L
Generation Performance 86.54 88.46 89.52 84.91

Baseline 84.91 84.91 84.91 84.91
BERTScore F1

Generation Performance 0.81 0.83 0.84 0.85
Baseline 0.79 0.65 0.79 0.65

METEOR
Generation Performance 0.87 0.88 0.90 0.86

Baseline 0.85 0.85 0.85 0.85
Flesch Reading Ease

Generation Performance 10.24 18.70 9.22 16.67
Baseline (Original) 8.21 8.21 8.21 8.21

Baseline (Mask) 16.67 16.67 16.67 16.67

Table 1: Encoder-Only Models Comparison at the Sentence Level (The ‘Baseline’ without annotations was calculated
by comparing masked text to the original text)

as complementary indicators. To address this, we
selected a representative sample of clinical letters
based on evaluation results, analysed the impact of
different generation methods on these outcomes,
and validated the findings with six additional sam-
ples to verify their consistency with quantitative
metrics.

3.4.3 Downstream NER task
Beyond qualitative and quantitative evaluation, syn-
thetic clinical letters were tested in a downstream
NER task to assess their quality and potential as
replacements for real clinical data. As shown in
Figure 7, entities were first extracted from clinical
letters using ScispaCy 1 and then used to train a
base SpaCy 2 model. The trained model was ap-
plied to the test set, and the extracted entities were
compared with those initially identified by Scis-
paCy to evaluate the consistency of entity recogni-
tion between synthetic and original clinical letters.

4 Results and Discussion

4.1 Model Comparison and Evaluation
Metric Selection

4.1.1 Qualitative Results
Among encoder-only models, all four success-
fully generated meaningful words for masked
input, correctly inferring ’r’ from ’R ankle’,

1https://allenai.github.io/scispacy/
2https://spacy.io/

demonstrating strong contextual understanding.
Bio_ClinicalBERT further introduced relevant
words absent from the input (e.g., "admitted")
while maintaining clinical coherence, producing
clinically sound sentences even without direct to-
ken matches, and effectively retaining clinical in-
formation while introducing diversity.

For encoder-decoder models, T5-base outper-
formed other variants but produced irrational out-
puts, including incomplete or nonsensical phrases
(e.g., "open is a ___ yo male"). The other
three T5 family models frequently generated de-
identification (DEID) tags instead of meaningful re-
placements due to corpus biases. Overall, encoder-
only models outperformed encoder-decoder mod-
els, aligning with previous research (Micheletti
et al., 2024) showing that Masked Language Mod-
elling (MLM) outperforms Causal Language Mod-
elling (CLM) in medical text generation.

4.1.2 Quantitative Results

For sentence-level results, among encoder-only
models, clinical-related models consistently out-
perform general domain RoBERTa-base, aligning
with qualitative observations. Bio_ClinicalBERT,
despite having no word overlap in this sample,
achieves the highest BERTScore while maintain-
ing a clinically coherent output. The encoder-
decoder models generally perform poorly in most
metrics compared to encoder-only models, except
for METEOR. Their BERTScores are significantly
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Figure 7: Workflow of Downstream NER Task

lower than the baseline, suggesting a large devia-
tions from the original meaning. These findings
further support the validity of BERTScore as the
primary evaluation metric, with other metrics serv-
ing as supplementary references.

On the full dataset, all encoder-only models
performed similarly, contradicting our hypothesis
that clinical-related models would outperform base
models. This suggests that training in clinical data
does not significantly improve synthetic letter qual-
ity, likely because most clinical tokens were pre-
served, leaving only general tokens masked in our
settings. BERTScore remains a reliable primary
metric, as qualitative and quantitative evaluations
align at both the sentence and dataset levels.

4.2 Variable-Length Chunk Segmentation

As mentioned in Subsection 3.2.2, we set
‘max_lines’ as a variable parameter and assigned
a fixed value of 256 to ‘max_tokens’. We tested
increasing ‘max_lines’ values until the average to-
kens per chunk peaked, indicating that more clin-
ical information could be preserved. Due to time
constraints, the initial experiment on seven letters
showed that 41 was the optimal ‘max_lines value’,
where inference time decreased up to this point but
rose beyond it (Table 3). This trend was consistent
in 10- and 30-letter samples. However, inference
time reflects only a general trend rather than pre-
cise measurements, as it is influenced by multiple
factors, including chunk size and network condi-

tions.

4.3 Masking Strategies

4.3.1 Random Masking
We evaluated the impact of masking ratios (i.e.,
masked tokens / total tokens) on the quality of syn-
thetic clinical letters using Bio_ClinicalBERT. As
expected, higher masking ratios led to lower sim-
ilarity metrics, but all evaluation values remained
above the baseline while staying below 1.0, indi-
cating that the model preserves clinical context and
generates understandable text. Notably, at a 1.0
masking ratio, BERTScore increased from 0.29 to
0.63, demonstrating Bio_ClinicalBERT’s ability
to retain meaningful clinical information despite
extensive masking.

4.3.2 Masking Only Nouns
Masking nouns, which often correspond to Per-
sonally Identifiable Information (PII), helps verify
de-identification while retaining clinical context.
We found that masking fewer nouns led to better
performance across all metrics, consistent with
random masking. When the noun masking ratio
reached 1.0, BERTScore increased from 0.70 to
0.89, indicating meaningful noun predictions. All
evaluations are higher than the baseline but lower
than 1.0. However, as the noun masking ratio in-
creased further, BERTScore decreased significantly.
To generate synthetic clinical letters that retain clin-
ical information while being distinguishable, we
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Model Evaluation
T5-base Clinical-T5-base Clinical-T5-

Scratch
Clinical-T5-Sci

ROUGE-1
Generation Performance 86.79 85.19 87.38 80.36

Baseline 73.77 73.77 73.77 73.77
ROUGE-2

Generation Performance 75.00 71.70 75.25 69.09
Baseline 63.33 63.33 63.33 63.33

ROUGE-L
Generation Performance 84.91 83.33 87.38 80.36

Baseline 73.77 73.77 73.77 73.77
BERTScore F1

Generation Performance 0.44 0.40 0.45 0.40
Baseline 0.50 0.50 0.50 0.50

METEOR
Generation Performance 0.85 0.83 0.83 0.82

Baseline 0.85 0.85 0.85 0.85
Flesch Reading Ease

Generation Performance 8.21 8.21 19.71 8.21
Baseline (Original) 8.21 8.21 8.21 8.21

Baseline (Mask) 8.21 8.21 8.21 8.21

Table 2: Encoder-Decoder Models Comparison at the Sentence Level (The Baseline without annotations was
calculated by comparing masked text to the original text)

max_lines 10 20 30 35 40 41 42 45 50
Inference
Time
(min)

13:47 8:10 6:44 5:24 5:10 5:01 5:12 5:54 6:05

Average
Tokens
Per
Chunk

51.59 90.23 131.26 136.55 144.34 146.43 146.43 146.43 146.43

Table 3: Comparison for different Chunk Size

recommend masking around 80% of nouns to main-
tain balanced evaluation scores. Full noun masking
significantly reduces synthetic letter quality.

4.3.3 Masking Only Verbs

Masking verbs also help identify appropriate token
types for masking while retaining clinical meaning.
Although verbs are crucial for describing clinical
events, they can often be inferred from context.
Therefore, masking verbs may have a slight effect
on the synthetic clinical letters quality, but can also
introduce some variation. From our experimental
investigations, masking verbs followed a similar
trend to other masking strategies, with both invalid
prediction rates and NLG metrics decreasing as
the masking ratio increased. This is likely due
to two factors: the model prioritises generating
coherent sentences and may be less sensitive to
verbs due to their relative scarcity in the raw data.
BERTScore remained high at 0.95 when all verbs
were masked, compared to 0.89 when all nouns
were masked.

4.3.4 Masking Only Stopwords

Masking stopwords aims to reduce noise, allow-
ing the model to focus on clinically relevant in-
formation while enhancing generalisation in syn-
thetic clinical letters to distinguish them from ac-
tual letters. Additionally, varying syntax by mask-
ing stopwords mitigates the risk of PHI reconstruc-
tion from adversarial attacks. It is often combined
with other masking strategies to strengthen privacy
protection. From our experiments, the results fol-
low a similar trend to random masking, where a
higher masking ratio leads to lower ROUGE Score
and BERTScore. Notably, the Invalid Prediction
Rate is lowest at a medium masking ratio, as higher
ratios cause information loss, while lower ratios
make small prediction errors more impactful. The
overall low Invalid Prediction Rate and high
BERTScore suggest that stopwords have minimal
influence on the model’s contextual understanding.

4.3.5 Comparison of Identical Actual
Masking Ratios

To further observe how different masking strate-
gies influence the generation of clinical letters,
we compared the results using the same actual
masking ratios but with different strategies, where
the number of masked tokens remained constant.
Masking only stopwords resulted in the highest
BERTScore and lowest invalid prediction rate, con-
firming that stopwords have minimal impact on
meaning. Conversely, masking nouns and verbs
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performed worse than random masking, suggest-
ing that excessive masking of these token types can
compromise the clinical information preservation.

4.3.6 Hybrid Masking
Hybrid masking strategies are compared at the
same actual masking ratio. Masking only stop-
words yielded the best performance, while adding
noun masking reduced performance, confirming
that masking nouns negatively affects results. How-
ever, it still outperformed random masking, sug-
gesting that stopwords have a greater influence
than nouns. Additionally, when verbs were fur-
ther masked alongside nouns and stopwords, per-
formance deteriorated further, indicating that verbs
also negatively impact model performance.

4.3.7 Comparison with and without Entity
Preservation

To assess the impact of entity preservation, we com-
pared results with a baseline model that did not
retain entities. When 40% of nouns were masked
while preserving entities, the models outperformed
those without entity preservation. Additionally,
with a 0.3 masking ratio, entity-preserving mod-
els had lower ROUGE-1 and ROUGE-2 scores but
higher ROUGE-L and BERTScores, indicating less
direct overlap with the original text but better nar-
rative retention. These findings confirm that pre-
serving entities and document structure enhances
model performance, matching our goal of generat-
ing clinically coherent yet diverse synthetic letters.

4.3.8 Downstream NER Task
We evaluated whether synthetic letters can replace
original (anonymised) clinical letters in NER tasks
for research and model training. SpaCy models
trained on synthetic letters performed similarly to
those trained on original letters, achieving compara-
ble evaluation scores with an F1 score close to Scis-
paCy’s 0.843. This suggests that unmasked context
does not significantly impact model understanding.
Therefore, synthetic letters can be effectively used
in NER tasks to replace real-world clinical letters,
ensuring data privacy.

5 Conclusion

This study explores de-identified synthetic clinical
letters that preserve document structure and clini-
cal narratives while enhancing diversity. Encoder-
only models outperformed encoder-decoder mod-
els, with base models performing comparable to

Metric spaCy
Trained on
Original
Letters

spaCy
Trained on
Synthetic
Letters

Performance
Delta (∆)

F1 0.855 0.853 -0.002
P 0.865 0.863 -0.002
R 0.846 0.843 -0.003

Table 4: Comparisons on Downstream NER Task (Pre-
cision, Recall, F1)

clinical-specific models when clinical terms were
preserved. Variable-length chunking strategy ef-
fectively maintained sentence meaning, and POS-
based masking influenced output quality. Masking
stopwords improved text quality, whereas masking
nouns and verbs had negative impacts. BERTScore
was identified as the primary evaluation metric,
aligning well with both quantitative and qualitative
evaluations. A downstream NER task demon-
strated the feasibility of replacing real-world let-
ters with synthetic ones for this task. Unlike exist-
ing research that focuses on improving similarity
through model fine-tuning or training a privacy
detection and substitution model, this study em-
phasises preserving clinically relevant information
while maintaining diversity. It provides a frame-
work for better utilisation of real-world datasets
while mitigating privacy risks.

Limitations

Although the strategies outlined above facilitate
the generation of diverse, de-identified synthetic
clinical letters, several limitations remain. One pri-
mary concern is the quality of the data set, which is
affected by spelling errors, ambiguous polysemous
words, and limited data volume, potentially impact-
ing generalisability. Additionally, the model strug-
gles with long-tail phenomena, frequently failing
to comprehend novel words that are common in the
clinical domain. Moreover, processing shorthand
and abbreviations presents an additional challenge,
often resulting in misinterpretations of key medical
terms.

Moreover, the limited scope of the dataset, which
includes only 204 letters, constraints generalising
the findings to broader clinical scenarios. Further-
more, the evaluation framework, primarily based
on BERTScore, focuses on textual similarity and
fails to comprehensively evaluate other critical as-
pects such as privacy protection efficacy, text diver-
sity, and clinical soundness.

Future work should focus on evaluating de-
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identification performance using non-anonymous
datasets, developing a comprehensive evaluation
benchmark and enhancing clinical and general
knowledge integration, e.g. (Shaji et al., 2025).
The evaluation benchmark should include:

• Privacy protection evaluation using alternative
PHI detection models, Membership Inference
Attacks, and Model Inversion Attacks (Fang
et al., 2024; Ying et al., 2020).

• Diversity evaluation through TF-IDF cosine
similarity or Dependency Tree Edit Distance
(Thompson et al., 2015; Tsarfaty et al., 2012).

• Clinical soundness evaluation using MEDNLI
(Medical Natural Language Inference) or
GPT-based assessments (Romanov and Shiv-
ade, 2018).

Additionally, techniques such as synonymous sub-
stitution, entity linking to SNOMED CT, and spe-
cialised spelling correction could be leveraged to
enhance the quality and diversity of synthetic clin-
ical letters, e.g. (Romero et al., 2025). Another
potential direction is leveraging models to predict
and replace privacy-sensitive content that was orig-
inally substituted with underscores.

Impact Statement

We use only de-identified clinical data from
MIMIC and strictly adhere to all data use agree-
ments. The dataset has already been anonymised,
and in this project, we further applied dual
anonymisation and re-generation techniques to en-
hance privacy protection. These strategies are de-
scribed in Appendix A.

All code used in this project, which will be re-
leased, is adapted from well-known language mod-
els open-sourced in Hugging Face. However, if
applied to real-world clinical letters, it must be re-
viewed prior to release to mitigate potential data
privacy risks. Synthetic clinical letters can be repro-
duced using the MIMIC-IV dataset and the code
provided. However, if users apply this method
to process privately collected clinical letters, they
should ensure compliance with data protection reg-
ulations and clarify copyright ownership.

Our findings help bridge the gap in NLG-based
clinical letter generation, facilitating better utilisa-
tion of real-world clinical letters by re-generating
text while masking sensitive information. This
approach helps address data scarcity in medical

research and education. However, challenges inher-
ent to LLMs, such as hallucinations and data bias,
still persist.

Acknowledgements

LH, WDP, and GN are grateful for the support
from the grant “Assembling the Data Jigsaw: Pow-
ering Robust Research on the Causes, Determi-
nants and Outcomes of MSK Disease”, and the
grant “Integrating hospital outpatient letters into
the healthcare data space” (EP/V047949/1; funder:
UKRI/EPSRC). LH is grateful for the 4D Picture
EU project (https://4dpicture.eu/) on cancer
patient journey support.

References
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov

PC, Mark R, Mietus JE, Moody GB, Peng CK,
and Stanley HE. 2000. Physiobank, physiotoolkit,
and physionet: Components of a new research re-
source for complex physiologic signals. https:
//physionet.org/content/.

Emily Alsentzer, John Murphy, William Boag, Wei-
Hung Weng, Di Jindi, Tristan Naumann, and
Matthew McDermott. 2019. Publicly available clini-
cal bert embeddings. In Proceedings of the 2nd Clin-
ical Natural Language Processing Workshop, pages
72–78.

Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai.
2020a. Exploring transformer text generation for
medical dataset augmentation. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4699–4708.

Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai.
2020b. Exploring transformer text generation for
medical dataset augmentation. In Proceedings of the
Twelfth Language Resources and Evaluation Confer-
ence, pages 4699–4708, Marseille, France. European
Language Resources Association.

Samuel Belkadi, Nicolo Micheletti, Lifeng Han, Warren
Del-Pinto, and Goran Nenadic. 2023. Generating
medical instructions with conditional transformer. In
NeurIPS 2023 Workshop on Synthetic Data Genera-
tion with Generative AI.

Brecht Claerhout and Georges JE DeMoor. 2005. Pri-
vacy protection for clinical and genomic data: The
use of privacy-enhancing techniques in medicine. In-
ternational Journal of Medical Informatics, 74(2-
4):257–265.

Franck Dernoncourt, Ji Young Lee, Ozlem Uzuner,
and Peter Szolovits. 2017. De-identification of pa-
tient notes with recurrent neural networks. Journal
of the American Medical Informatics Association,
24(3):596–606.

69

https://4dpicture.eu/
https://physionet.org/content/
https://physionet.org/content/
https://aclanthology.org/2020.lrec-1.578
https://aclanthology.org/2020.lrec-1.578


Lehman Eric and Alistair Johnson. 2023. Clinical-T5:
Large Language Models Built Using MIMIC Clinical
Text. PhysioNet.

Hao Fang, Yixiang Qiu, Hongyao Yu, Wenbo Yu, Jiawei
Kong, Baoli Chong, Bin Chen, Xuan Wang, Shu-Tao
Xia, and Ke Xu. 2024. Privacy leakage on dnns:
A survey of model inversion attacks and defenses.
arXiv preprint arXiv:2402.04013.

Ary L. Goldberger, Luis A. N. Amaral, Leon Glass,
Jeffrey M. Hausdorff, Plamen Ch. Ivanov, Roger G.
Mark, Joseph E. Mietus, George B. Moody, Chung-
Kang Peng, and H. Eugene Stanley. 2000. Phys-
iobank, physiotoolkit, and physionet. Circulation,
101(23):e215–e220.

Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin
Wu, Xinying Song, Xiaodan Song, and Denny Zhou.
2022. Token dropping for efficient bert pretraining.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3774–3784.

Marie Humbert-Droz, Pritam Mukherjee, and Olivier
Gevaert. 2022. Strategies to address the lack of la-
beled data for supervised machine learning training
with electronic health records: Case study for the
extraction of symptoms from clinical notes. JMIR
Medical Informatics, 10(3):e32903.

D HÜSKE-KRAUS. 2003. Text generation in clini-
cal medicine: A review. Methods of information in
medicine, 42(1):51–60.

Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Brian
Gow, Benjamin Moody, Steven Horng, Leo Anthony
Celi, and Roger Mark. 2024. Mimic-iv.

Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin
Gayles, Ayad Shammout, Steven Horng, Tom J Pol-
lard, Sicheng Hao, Benjamin Moody, Brian Gow,
et al. 2023. Mimic-iv, a freely accessible electronic
health record dataset. Scientific data, 10(1):1.

Aleksandar Kovačević, Bojana Bašaragin, Nikola
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A Different Masking Strategies

To make the synthetic letters more readable, clini-
cally sound, and privacy-protective, different mask-
ing strategies are experimented based on the fol-
lowing principles.

• Retain Annotated Entities: Preserve clinical
knowledge and context.

• Preserve Extracted Structures: Keep tem-
plates for clinical letters intact.

• Mask Detected Private Information: Useful
for de-identification, especially in real-world
applications.

• Preserve Medical Terminology: Ensure es-
sential clinical terms remain unmasked.

• Preserve Non-Private Numbers: Keep
medical-related numbers (e.g., dosage, heart
rate) while masking private ones (e.g., phone
numbers, postal codes).

• Preserve Punctuation: Maintain punctua-
tion marks such as periods (‘.’) and under-
scores (‘___’) to improve text clarity and co-
herence (Lamprou et al., 2022).

• Retain Special Patterns in Samples: Retain
clinically relevant patterns (e.g. ‘Ibuprofen
> 200 mg’, etc) identified from raw sample
letters to preserve important clinical details.

Based on the principles above, different masking
strategies were experimented with:

• Mask Randomly: Tokens are randomly
masked in 10% increments (0%-100%) to as-
sess how the number of masked tokens affects
synthetic letter quality and provides a baseline
for other masking strategies.

• Mask Based on POS Tagging: Tokens are
masked based on their part-of-speech (POS)
category (e.g., only nouns, only verbs) in 10%
increments to analyse POS influence on con-
text understanding.

• Mask Stopwords: Stopwords are masked to
reduce noise and enhance text diversity while
ensuring that crucial clinical information re-
mains intact. This approach can also serve
as an indirect strategy to prevent reconstruc-
tion by attackers leveraging the same syntactic
patterns.
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• Hybrid Masking Using Different Ratio Set-
tings: Combines different masking strategies
at varying ratios (e.g., 50% nouns + 50% stop-
words) to evaluate their combined effects.

B Evaluation Pipeline

The detailed evaluation pipeline is shown in Figure
8.

C More Evaluation Details

We evaluated the performance of encoder-only and
encoder-decoder models at both the sentence level
(using the sample sentence in Table 1 and Table
2) and the full dataset level in Table 5. Although
SMOG is commonly used for medical datasets, it
is less suitable for sentence-level analysis; thus,
Flesch Reading Ease was used instead.

As shown in Table 7 and Table 8, readability
metrics showed minor variations, with SMOG and
Flesch-Kincaid scores occasionally falling below
both the masked and original baselines, likely due
to punctuation or spacing errors at high masking
ratios. Perplexity remained stable, suggesting that
synthetic letters are effective for training clinical
models, while information entropy was preserved
regardless of masking ratios. Subjectivity scores
remained consistent, mitigating concerns about
model bias.
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Figure 8: Evaluation Pipeline

Model Evaluation
RoBERTa-base medicalai / Clini-

calBERT
Clinical-
Longformer

Bio_ Clinical-
BERT

ROUGE-1
Generation Performance 92.98 93.63 94.66 93.18

Baseline 85.64 85.44 85.64 85.61
ROUGE-2

Generation Performance 86.10 87.42 89.50 86.50
Baseline 74.96 74.64 74.96 74.92

ROUGE-L
Generation Performance 92.54 93.22 94.38 92.71

Baseline 85.64 85.44 85.64 85.61
BERTScore F1

Generation Performance 0.91 0.90 0.92 0.90
Baseline 0.82 0.63 0.82 0.63

Table 5: Encoder-Only Models Comparison on the Full Dataset with Masking Ratio 0.4 (The Baseline was calculated
by comparing masked text to the original text)
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Bio_ClinicalBERT Masking Ratio
1.0 0.8 0.6 0.4 0.2 0.0

ROUGE-1
Generation Performance 76.28 83.75 88.91 93.18 96.76 99.51

Baseline 64.05 71.56 78.56 85.61 92.63 99.22
ROUGE-2

Generation Performance 62.60 70.77 78.81 86.50 93.42 99.02
Baseline 51.72 57.88 65.38 74.92 86.27 98.61

ROUGE-L
Generation Performance 74.33 81.69 87.71 92.71 96.65 99.50

Baseline 64.05 71.56 78.56 85.61 92.63 99.22
BERTScore

Generation Performance 0.63 0.75 0.83 0.90 0.95 0.99
Baseline 0.29 0.39 0.50 0.63 0.79 0.98

METEOR
Generation Performance 0.70 0.80 0.87 0.93 0.97 1.00

Baseline 0.66 0.72 0.78 0.85 0.92 0.99

Table 6: Standard NLG Metrics Across Different Masking Ratios Using Bio_ClinicalBERT (The Baseline was
calculated by comparing masked text to the original text)

Bio_ClinicalBERT Masking Ratio
1.0 0.8 0.6 0.4 0.2 0.0

SMOG
Generation Performance 8.91 9.18 9.50 9.79 10.00 10.13

Baseline (Original) 10.16 10.15 10.15 10.15 10.15 10.15
Baseline (Mask) 9.04 9.29 9.52 9.74 9.95 10.13

Flesch Reading Ease
Generation Performance 63.77 63.44 61.41 59.54 58.06 57.02

Baseline (Original) 56.85 56.87 56.87 56.87 56.87 56.87
Baseline (Mask) 70.11 67.39 64.75 62.15 59.62 57.13

Flesch-Kincaid Grade
Generation Performance 7.32 7.70 8.24 8.66 9.01 9.22

Baseline (Original) 9.26 9.26 9.26 9.26 9.26 9.26
Baseline (Mask) 7.41 7.79 8.16 8.52 8.87 9.22

Table 7: Readability Metrics Across Different Masking Ratios Using Bio_ClinicalBERT (The Baseline without
annotations was calculated by comparing masked text to the original text)

Bio_ClinicalBERT Masking Ratio
1.0 0.8 0.6 0.4 0.2 0.0

Perplexity
Generation Performance 2.24 2.32 2.31 2.30 2.29 2.29

Baseline (Original) 2.22 2.28 2.28 2.28 2.28 2.28
Baseline (Mask) 250.37 65.42 24.29 8.95 4.03 2.39

Information Entropy
Generation Performance 5.46 5.80 5.92 5.96 5.98 5.98

Baseline (Original) 5.98 5.98 5.98 5.98 5.98 5.98
Baseline (Mask) 4.51 4.93 5.29 5.60 5.85 5.97

Subjectivity
Generation Performance 0.32 0.32 0.32 0.32 0.33 0.33

Baseline (Original) 0.33 0.33 0.33 0.33 0.33 0.33
Baseline (Mask) 0.41 0.39 0.38 0.37 0.35 0.33

Table 8: Advanced Text Quality Metrics Across Different Masking Ratios Using Bio_ClinicalBERT (The Baseline
without annotations was calculated by comparing masked text to the original text)
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