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Abstract

We present SNAKMODEL, a Danish
large language model (LLM) based on
LLAMA2-7B, which we continuously
pre-train on 13.6B Danish words, and
further tune on 3.7M Danish instructions.
As best practices for creating LLMs for
smaller language communities have yet
to be established, we examine the effects
of early modeling and training decisions
on downstream performance throughout
the entire training pipeline, including (1)
the creation of a strictly curated corpus
of Danish text from diverse sources; (2)
the language modeling and instruction
tuning training process itself, including
the analysis of intermediate training
dynamics, and ablations across different
hyperparameters; (3) an evaluation on
eight language and culturally-specific tasks.
Across these experiments SNAKMODEL

achieves the highest overall performance,
outperforming multiple contemporary
LLAMA2-7B-based models. By making
SNAKMODEL, the majority of our pre-
training corpus, and the associated code
available under open licenses, we hope to
foster further research and development in
Danish Natural Language Processing, and
establish training guidelines for languages
with similar resource constraints.1

1 Introduction

The landscape of large language models (LLMs)
has seen rapid expansion, with an increasing

' These authors contributed equally.
1The code and data scripts are available here:

https://github.com/nlpnorth/snakmodel/.

trend towards open-weight releases for a broader
range of languages. Notable English-centric ex-
amples include Pythia (Biderman et al., 2023), Vi-
cuna (Zheng et al., 2023), Mistral (Jiang et al.,
2023), Qwen (Bai et al., 2023), Llama2 (Tou-
vron et al., 2023), Llama3 (Dubey et al., 2024),
OLMo (Groeneveld et al., 2024), and Phi (Ab-
din et al., 2024). Simultaneously, recent efforts
have extended LLMs to multilingual settings, in-
cluding models such as mT5 (Xue et al., 2021),
Bloom (Le Scao et al., 2023), Aya (Üstün et al.,
2024; Singh et al., 2024), RomanSetu (J et al.,
2024), and EuroLLM (Martins et al., 2024).

As anglocentric and/or multilingual LLMs have
nonetheless continued struggling to adapt to lower-
resource settings—especially with respect to prag-
matic and sociolinguistic factors (Hershcovich
et al., 2022; Cao et al., 2023; Naous et al., 2024;
Wang et al., 2024)—there is growing interest in
language-specific LLMs, either tailored to a single
language (see Related Work; Section 2) or special-
ized for a small set of similar languages (SiloAI,
2024; Dou et al., 2024). However, the best practices
for creating such language-adapted LLMs have yet
to be established—especially for smaller language
communities with resource limitations with respect
to data, compute, or both.

Danish offers a particularly interesting testbed
among these smaller languages. As a mid-resource
language, which is typologically related to English
and has largely overlapping character sets, it has
sufficient textual data for LLM adaptation, yet is
far from the levels of its neighbors (e.g., Swedish;
Ekgren et al., 2024). Additionally, it lacks ad-
vanced resources like native instruction-tuning data
or human-preference data, making it necessary to
use translated datasets for which the downstream ef-
fects on model functionality are not yet well under-
stood. Linguistically, Danish has also been shown
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to be more challenging to learn for humans than its
neighbors due its phonological complexity (Trecca
et al., 2021; Christiansen et al., 2023), which re-
sults in downstream effects on discourse, such as
additional conversational redundancy (Christiansen
et al., 2023; Dideriksen et al., 2023).

With the goal to provide the Danish commu-
nity with a custom-adapted resource, as well as to
establish better-grounded guidelines for creating
LLMs in languages with similar linguistic charac-
teristics and resource constraints, we present and
analyze SNAKMODEL-7Bbase/instruct, two LLMs de-
signed specifically for the Danish language. Our
base model builds upon LLAMA2-7B, which we
continuously pre-train on a diverse collection of
Danish corpora comprising 350M documents (sen-
tences/paragraphs) and 13.6B words, before tuning
it on 3.7M Danish instruction-answer pairs. We
evaluate our model against contemporary LLAMA2-
7B-based models on the Danish part of the ScandE-
val benchmark (Nielsen, 2023) that encompasses
both language and culture-specific tasks. By re-
leasing not just the related artifacts (final model,
intermediate checkpoints, pre-training data, code),
but by also analyzing the effects of early decisions
in the training and model design process on inter-
mediate training dynamics and downstream perfor-
mance, we aim to provide resources that are not
just relevant for Danish, but for LLM adaptation in
general.

Contributions. This work contributes:

• A large, diverse, high-quality collection of
Danish corpora, totaling 350M documents
with 13.6B words (Section 3). We provide
scripts to collect and process the data.

• SNAKMODEL-7Bbase/instruct, two open-weight
7B-parameter language models continuously
pre-trained and instruction-tuned specifically
for Danish, for which we release all related
artefacts, and extensively analyze the model’s
intermediate training dynamics (Section 4).

• An evaluation comparing SNAKMODEL-
7Binstruct and contemporary Danish models,
which analyzes performance with respect to
language and cultural tasks (Section 5).

• A consolidation of our findings into recom-
mendations for efficiently training LLMs un-
der similar resource constraints (Section 6).

2 Related Work

Continuously Pre-trained LLMs. Previous
work has shown that for both encoder and de-
coder language models (LM), continuous pre-
training is the de facto standard for adapting an
LM to a specific domain (Han and Eisenstein,
2019; Alsentzer et al., 2019; Lee et al., 2020;
Gururangan et al., 2020; Nguyen et al., 2020)
or another language, such as German (LeoLM-
Team, 2024), Spanish and Catalan (Ǎguila Team,
2023), Finnish (Luukkonen et al., 2023), Dutch (Ri-
jgersberg and Lucassen, 2023; Vanroy, 2024),
Italian (Bacciu et al., 2024), Japanese (Rakuten
Group et al., 2024), Basque (Etxaniz et al., 2024),
Swedish (AI-Sweden, 2024), Modern Greek (Vouk-
outis et al., 2024), Norwegian (NORA.LLM-Team,
2024), or multiple languages (Xue et al., 2021;
Alves et al., 2024; Üstün et al., 2024; Costa-jussà
et al., 2022; Martins et al., 2024; Dou et al., 2024;
Nguyen et al., 2024; Aryabumi et al., 2024; Dang
et al., 2024).

Open Large Language Models. Recent open
language models can be broadly divided into open-
source LLMs and open-weight LLMs. The main
difference is that open-weight releases include at
least a basic description of the training data, as well
as the model weights themselves. For open-source
LLMs, instead, the (non-trivial) expectation is to
have all resources released, including data, training
scripts, evaluation scripts, and model weights. We
follow previous endeavors such as Pythia (Bider-
man et al., 2023), OLMo (Groeneveld et al., 2024),
Latxa (Etxaniz et al., 2024), and Meltemi (Vouk-
outis et al., 2024), and release most sources of
our training data, including training and evaluation
scripts, as well as the model weights.

Danish Language Resources. In-language re-
sources are the fundamental building block for
further training an LLM for the Danish language.
There are several open-source toolkits for Dan-
ish, including models and datasets (Pauli et al.,
2021; Enevoldsen et al., 2021). Additionally,
there are several Danish-specific large corpora
of raw text, such as DaNewsroom (Varab and
Schluter, 2020) and Danish Gigaword (Strømberg-
Derczynski et al., 2021). Additionally, Danish
subsets can be found in public resources built on
crawled web data such as CommonCrawl (Wenzek
et al., 2020) and CulturaX (Nguyen et al., 2023).
In this work, we collect and combine a variety of
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sources for wider coverage, before pre-processing
them through a joint pipeline.

Danish Large Language Models. Previous en-
deavors at training LLMs that cover the Danish lan-
guage include Ciosici and Derczynski (2022), who
trained a T5 model (Raffel et al., 2020) for Dan-
ish. More recently, within the decoder-only fam-
ily of models, Munin (Danish-Foundation-Models-
Team, 2024) and Viking (SiloAI, 2024) were re-
leased. Munin is based on Mistral-7B (v0.1 Jiang
et al., 2023) and is further pre-trained on the
Danish Gigaword Corpus (Strømberg-Derczynski
et al., 2021) containing 1B words. However, the
model seems to underperform compared to its base
model counterpart, indicating some form of catas-
trophic forgetting. Viking is based on LLAMA2-
7B, and pre-trained from scratch on a mix of En-
glish, Finnish, Swedish, Danish, Norwegian, Ice-
landic and code (SiloAI, 2024). In this work,
SNAKMODEL-7Binstruct is continuously pre-trained
for Danish, and outperforms its original checkpoint,
as well as all other currently available Danish mod-
els with a comparable size.

3 Data & Pre-processing

3.1 Pre-training
Our Danish pre-training data, as shown in Table 1,
initially encompassed 927M documents and 24.6B
words, as measured by the Unix wc command. The
data is sourced from diverse platforms, for which
we verify appropriate licensing (wherever possible),
and include:

Bookshop (cc-by-4.0). EU Bookshop text
from OPUS (Tiedemann, 2012), as integrated
by Skadiņš et al. (2014). It contains well-edited,
official EU publications across diverse topics, con-
verted automatically from PDFs.

CC-100 (UNK). A cleaned version of a 2018
CommonCrawl dump (Wenzek et al., 2020), repro-
ducing data from Conneau et al. (2020). It consists
of web data, filtered using the fastText language
classifier (Joulin et al., 2017).

CulturaX (odc-by + cc0). mC4 (v3.1.0)
combined with accessible OSCAR cor-
pora (Nguyen et al., 2023).

DaNewsroom (UNK). Scraped from 19 news out-
lets (Varab and Schluter, 2020), originally for sum-
marization. We use the full news articles instead of
summaries.

DATASET ORIGINAL + FASTTEXT
Docs Words Docs Words

Bookshop 8.65M 208M 6.80M 187M
CC-100 344M 7.82B 256M 7.16B
CulturaX 449M 14.8B 333M 13.7B
DaNewsroom 24.2M 391M 11.3M 369M
Dawiki 1.70M 62.4M 1.20M 57.3M
FTSpeech 2.03M 43.3M 1.69M 40.9M
Gigaword 62.0M 1.02B 39.3M 898M
OpenSubtitles 30.2M 207M 19.6M 156M
Reddit 4.50M 73.9M 2.37M 64.0M
Twitter 1.69M 21.9M 406K 6.61M

TOTAL 927M 24.6B 672M 22.6B
+ DEDUPLICATION 350M 13.6B

Table 1: Preprocessing Steps. Data in number of
words using wc command. In the Original column,
we already use a pre-defined Danish slice of the
dataset. In the FastText column, we apply another
round of language identification to the data. In the
Deduplication row, we combine all data and dedu-
plicate it, which results in around 350M documents
and 13.6B words for the pre-training process.

Dawiki (cc-by-sa). Cleaned Wikipedia data
from 01-01-2024 (Attardi, 2015).

FTSpeech (FT-OD + FT-TV). A
transcription-based corpus from Danish par-
liamentary data (Kirkedal et al., 2020), used in
language modeling due to its large text volume.2

Gigaword (cc0 + cc-by). Danish Giga-
word (Strømberg-Derczynski et al., 2021) covers a
range of domains including wiki, books, web, and
social media data.

OpenSubtitles (UNK). Danish data from OPUS
OpenSubtitles (Lison and Tiedemann, 2016; Tiede-
mann, 2016).3

Reddit (UNK). Danish Reddit data from
ConvoKit (Chang et al., 2020), specifically
Denmark.corpus.zip.

Twitter (MIT). Data from the public Twitter
stream,4 reclassified using our own pipeline due
to inaccurate language labels.

To refine the overall concatenated dataset,
we implemented a preprocessing pipeline using
fastText (Joulin et al., 2017)5 for language iden-

2FT-OD and FT-TV refer to Folketing’s open data and
Folketing TV license.

3http://www.opensubtitles.org/
4https://archive.org/details/

twitterstream
5Using the lid.176.bin model with a threshold of 0.6.
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tification and text-dedup (Mou et al., 2023)6

for text deduplication. The language identification
process eliminated 28% of the documents while
retaining 92% of the tokens, indicating that many
short documents were removed, where language
prediction was less confident. The deduplication
step further reduced the corpus by 48% in docu-
ment count and 40% in token count. We antici-
pated significant content overlap between CC-100
and CulturaX, which underlines the importance
of deduplication in creating a more efficient and
representative dataset. These preprocessing steps
reduced our dataset to approximately 350M docu-
ments with 13.6B words. Following the open LLM
approach, we release all scripts used for collecting
and processing the data.

3.2 Instruction Tuning

As for most mid-to-low resource languages, Dan-
ish (Joshi et al., 2020) currently lacks human-
generated instruction tuning data, and instead re-
lies on automatically translated data from English,
which itself may be generated by LLMs. From
these sources, we select the following three after
manually inspecting them for quality:

SkoleGPT (Professionshøjskole, 2024) : A sub-
set of OpenOrca (Lian et al., 2023), which was au-
tomatically translated into Danish and filtered for
quality, containing 21.6k instruction-output pairs.

Danish OpenHermes (Mabeck, 2024) : A sub-
set of the automatically generated OpenHermes
dataset (“Teknium”, 2023), which was automat-
ically translated into Danish. It contains 98.7k
instruction-output pairs.

Aya Collection (Singh et al., 2024) : A collec-
tion of 44 datasets, which were automatically trans-
lated based on instruction templates from fluent
speakers. While the underlying Aya Dataset, on
which these translations are based, was created by
native speakers, the Danish portion of this data con-
tains less than 100 instances, leading us to opt for
the translations instead. We use 3.6M instruction-
output pairs from the Danish subset of the data.

Together, these data sources sum up to a total
of 3.7M instruction-answer pairs, which we train
SNAKMODEL-7Bbase on in Section 4.2.

6https://github.com/ChenghaoMou/
text-dedup

Parameter Value

Data Split

Training data 96.9%
Validation data 3.1%

Training Configuration

Vocabulary size 32,000
Context length 4,096
Training steps 12,500
Warmup steps 1,250
Number of epochs 1
Global batch size 512

Optimizer Parameters (AdamW)

β1; β2 0.9; 0.95
ϵ 10−5

Peak learning rate 1.5× 10−5

Minimum learning rate 5× 10−8

Weight decay 0.1
Gradient clipping 1.0

Table 2: Pre-training Hyperparameters and Con-
figuration Details. We show the hyperparameter
details of SNAKMODEL-7Bbase pre-training.

3.3 Evaluation Framework
For evaluation, we use the SCANDEVAL bench-
mark (Nielsen, 2023) covering eight tasks. The
tasks cover named entity recognition (NER;
DANSK by Hvingelby et al., 2020), sentiment anal-
ysis (SENTI; AngryTweets by Pauli et al., 2021),
linguistic acceptability (LA; ScaLA7), abstrac-
tive summarization (SUMM; Nordjylland-News
by Kinch, 2023), commonsense reasoning (CSR;
translated HellaSwag by Zellers et al., 2019), and
question answering (QA; ScandiQA8). The bench-
mark also include culture-specific datasets, namely
Danske Talemåder (TM; Nielsen, 2023), which
prompts for meanings behind common proverbs,
and a collection of official Danish Citizenship Tests
(CT; Nielsen, 2024). Evaluation metrics differ
per task, and are indicated as F1, macro-averaged
F1 (mF1), micro-averaged F1 (µF1), BERTScore
(BERTS.; Zhang et al., 2020), and Accuracy (Acc.).

4 Model Training

4.1 Language Modeling Pre-training
Training Details. We continuously pre-train
from LLAMA2-7Bbase (Touvron et al., 2023). We
show configuration and hyperparameter details

7Based on the Universal Dependencies dataset from (Kro-
mann and Lynge, 2004).

8ScandiQA is a translation of the English MKQA
dataset (Longpre et al., 2021) and does not strictly focus on
Scandinavian knowledge.
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in Table 2. For further pre-training and fine-tuning,
we make use of the Megatron-LLM library (Cano
et al., 2023), based on the Megatron-LM library.9

We use the same tokenizer as LLAMA2-7B, byte-
pair encoding (BPE; Sennrich et al., 2016) as im-
plemented in the SentencePiece toolkit (Kudo and
Richardson, 2018), with a vocabulary size of 32K
subwords. As Danish and English share the same
Indo-European language family, we assume large
overlap in vocabulary subwords. Hence, we do not
re-train nor extend the vocabulary.

Hardware and Emissions. SNAKMODEL-
7Bbase is trained on private infrastructure with
one node, containing four NVIDIA A100-PCIe
40GB GPUs. The node has an AMD Epyc 7662
128 Core Processor and 1TB of RAM. Total
time of training took 8,928 GPU hours (93 days
× 24 hours × 4 GPUs) between March–June
2024. The average carbon efficiency was 0.122
kgCO2eq/kWh during this time in Denmark.10

This is equivalent to 272.3 kg CO2 eq. emitted,
based on the Machine Learning Impact calculator
(Lacoste et al., 2019).11

Loss Trajectories. In Figure 1, we show the
continuous pre-training process of SNAKMODEL-
7Bbase in terms of loss curve based on perplexity.
The loss shows a declining gain over time. We
speculate that the model is close to convergence
or that the learning rate is reduced, although previ-
ous work has shown that downstream performance
can still increase with more training after loss and
perplexity have converged (Liu et al., 2023).

Leakage. The training data of LLAMA2-7B is
not public. However, since it was released in July
2023 after the ScandEval benchmark, we investi-
gate potential test data leakage by prompting the
model for information about the dataset (inspired
by Sainz et al., 2023; Balloccu et al., 2024), as well
as completions for the first five sentences of each
dataset. This process yielded no evidence that the
evaluation datasets were included during training.

For SNAKMODEL-7Bbase, we have access to all
training data, such that we can search for 200 ran-
dom 8-grams from each of our datasets in the raw
data. We find that a small amount (6/200) of the
tweets from AngryTweets are included in our Twit-

9https://github.com/NVIDIA/Megatron-LM.
10According to https://app.electricitymaps.

com/map.
11https://mlco2.github.io/impact.
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Figure 1: SNAKMODEL-7Bbase Pre-training Be-
haviour. We report the stable language model loss
during training and validation.

ter sample (without labels). The DANSK NER
dataset was completely included (without labels),
as it was sampled from Gigaword, and many parts
of the ScaLA dataset were also included in its orig-
inal form in GigaWord and CC100. The code for
all leakage tests is included in our code repository.

4.2 Instruction Tuning

Starting from SNAKMODEL-7Bbase, we train our
model on the Danish instruction datasets outlined
in Section 3.2.

Training Details. For instruction tuning, we opt
for the more parameter-efficient low-rank adapta-
tion (LoRA; Hu et al., 2022), to enable faster it-
erations across multiple ablations (different tem-
plate formats and base models), and to more eas-
ily analyze the intermediate training dynamics
(Section 4.3). Nonetheless, we choose a substan-
tially higher-parameter setup than is commonly
employed when using LoRA (Hu et al., 2022;
Dettmers et al., 2023), in order to approximate
full fine-tuning as closely as possible given our
computational budget. Specifically, we use rank
r = 128 adaptation matrices, which are applied
to all parameters within the model without quan-
tization (Dettmers et al., 2023). We train for one
epoch over our instruction data using the AdamW
optimizer with a constant learning rate of 2×10−4,
and a global batch size of 64.

Instruction Template. The formatting of
instruction-answer pairs is an important design de-
cision with significant downstream impacts (Sclar
et al., 2024). For our adaptation context (LLAMA2-
7B + Danish), we therefore ablate across three
templates: (1) CONCAT, which concatenates
instructions and answers; (2) CHAT, which wraps
the instruction in special [INST]/[/INST]
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(a) SNAKMODEL-7Bbase
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(b) SNAKMODEL-7Binstruct
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(c) Instruction Tuning Dynamics
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Figure 2: SNAKMODEL Training Dynamics of LM pre-training, instruction tuning, and multi-epoch
instruction tuning, as measured on the ScandEval (validation) tasks of linguistic acceptability (LA), named
entity recognition (NER), sentiment analysis (SENTI), summarization (SUMM), commonsense reasoning
(CSR), question answering (QA), proverb meaning (TM), and citizenship tests (CT).

delimiters following LLAMA2-7Bchat
12; (3)

ALPACA, following a multi-line format with
instruction/input/answer headers (Wang et al.,
2023), which we translate into Danish.

Instruction tuning using the CHAT format leads
to the highest overall scores on the validation split
of our evaluation benchmark (56.37 avg.). CON-
CAT performs comparably (55.52 avg.), however
we observe that models trained using this template
frequently generate continuations to an instruction,
instead of an answer. ALPACA performs worst
(53.26 avg.), and we observe that when prompting
models without correctly terminating the instruc-
tion, the CHAT model consistently terminates the
instruction on its own (by generating [/INST]),
while the ALPACA model often struggles to do so.

4.3 Training Dynamics

We next investigate our models’ intermediate train-
ing dynamics to establish how much language mod-
eling and/or instruction tuning are required to ob-
tain a certain level of performance (evaluated ac-
cording to Section 3.3), and whether these trajecto-
ries differ across task types.13

Language Modeling. By tracking the valida-
tion performance of the non-instruction-tuned
SNAKMODEL-7Bbase checkpoints across pre-
training, we aim to identify when the English base

12Note that these delimiters are not split by the tokenizer.
13The intermediate checkpoints can be found

here: https://huggingface.co/NLPnorth/
snakmodel-7b-base/tree/main for SNAKMODEL-
7Bbase and https://huggingface.co/NLPnorth/
snakmodel-7b-instruct for SNAKMODEL-7Binstruct.

model begins adapting to Danish. Figure 2a shows
performance on the Danish ScandEval tasks from
start (LLAMA2-7Bbase) to finish (SNAKMODEL-
7Bbase). For SENTI, SUMM and CSR, perfor-
mance remains relatively consistent, while for LA,
TM and CT performance gradually increases until
4,000–6,000 steps before converging.

Meanwhile, we see performance decreases for
NER and QA, with the latter dropping from 61.9%
F1 to around 20% within the first 2,000 steps.
We attribute these changes to two respective hy-
potheses: for NER, answers are enforced to be in
JSON-format in ScandEval. As our pre-training
data consists exclusively of natural language, the
model’s output distribution may skew away from
tokens such as “{}”, required for this task. For
QA, we qualitatively observe that SNAKMODEL-
7Bbase tends to generate continuations to the pro-
vided questions, instead of answers. Additionally,
it does so in Danish, which may be detrimental
to performance, since many answers in QA are
English names.

Instruction Tuning. Next, we investigate the
effect of applying instruction tuning at different
points during Danish pre-training, in order to as-
sess when it starts becoming beneficial. Fig-
ure 2b shows the validation performance of in-
termediate SNAKMODEL-7Bbase checkpoints af-
ter instruction-tuning, i.e., from LLAMA2-7Bbase +
INSTda (instruction-tuning on Danish instruction–
completion pairs) until our final SNAKMODEL-
7Binstruct (fully pre-trained SNAKMODEL-7Bbase
+ INSTda). Once again, performance for most tasks
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Figure 3: Layer-wise Weight Divergence of
SNAKMODEL-7Bbase as measured in total SSAs.
Darker bars represent EMB and LMH respectively.

is surprisingly stable throughout training. We fur-
ther do not observe the same performance drops
for NER and QA as during language modeling
pre-training, showing that instruction tuning recov-
ers these original functionalities. Additionally, we
observe a general performance increase across the
board. In particular, performance for LA, TM, and
CT climbs and converges after 2,000–5,000 steps
of Danish pre-training, and subsequent instruction-
tuning. This indicates that training on less than
half of our corpus may already be sufficient to ob-
tain close-to-final performance. Interestingly, the
largest performance improvements are observed for
benchmark tasks based on Danish data, instead of
translations (e.g., LA, TM, CT).

In terms of the training dynamics of instruction
tuning itself, Figure 2c shows how one epoch of
instruction tuning is already sufficient to obtain
most performance gains, including the performance
recovery of NER and QA. While there may be
some benefit to one or two additional instruction
tuning epochs, we believe that at this scale, they
can be skipped in favor of efficiency. Since the
use of duplicate data across epochs has however
also been shown to negatively affect downstream
performance (Biderman et al., 2023), we leave the
exploration of this trade-off to future work.

Weight Divergence Analysis. Lastly, we take a
closer look at changes within the model to iden-
tify which parameters are most strongly affected by
Danish language adaptation. To measure weight di-
vergence, we follow Müller-Eberstein et al. (2024)
and measure the principal subspace angles (SSAs;
Knyazev and Argentati, 2002) of each parame-
ter before and after adaptatation (0◦/90◦ ↔ sim-
ilar/dissimilar). Across layers, Figure 3 shows how
there is a slightly higher rate of change towards
the penultimate layers of the model. This may be
representative of cross-lingual encoding early in

EMB Q K V O G W W LMH
Parameter Types

0

2

4

6

SS
As

Figure 4: Parameter-wise Weight Divergence of
SNAKMODEL-7Bbase as measured in mean SSA.
Darker bars represent EMB and LMH respectively.

the model, and subsequent target language special-
ization in later layers (Wendler et al., 2024).

Figure 4 provides a more granular view of which
parameter types are changing within each layer:
Most updates per layer appear to be concentrated
in the gate G and up-projection W↑ of the SwiGLU
feed-forward block (Shazeer, 2020), while the
down-projection W↓ and self-attention parameters
(Q, K, V , O) are relatively unaffected. For the
self-attention parameters, we hypothesize that this
lack of change could be an effect of the relatively
high syntactic similarity of English and Danish,
requiring less adaptation for in-sequence depen-
dencies. Interestingly, this pattern is also observed
when adapting speech recognition models to under-
resourced settings (Müller-Eberstein et al., 2024).

The initial embedding layer (EMB) as well as
final language modeling head (LMH) also diverge
to a comparable degree as G and W↑, which is to
be expected given their importance to receiving
and generating text in a new language. In terms
of token-level changes within EMB and LMH (as
measured by the absolute difference of each token
row before and after adaptation), we observe larger
updates to subwords, which occur both in Danish
and other Germanic languages (e.g., “ er”, “ ik”,
“ billion”), while subwords in other scripts appear
to be least affected. Overall, our findings indicate
that future work may be able to train language-
specific models more efficiently by focusing exclu-
sively on the EMB, G, W↑ and LMH parameters.

5 Final Results and Analysis

Benchmark Results. Using our final model con-
figurations, we present our results on the test split
of the Danish portion of ScandEval in Table 3. We
compare SNAKMODEL-7Binstruct against variants
built on the same base model, including the orig-
inal LLAMA2-7Bbase and LLAMA2-7Bchat. In ad-
dition, we train +INSTda variants of these English
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TASK → LA NER SENTI SUMM CSR QA TM CT AVG.
↓ MODEL (mF1) (µF1) (mF1) (BERTS.) (Acc.) (F1) (Acc.) (Acc.)

LLAMA2-7B BASED LLMS

LLAMA2-7Bbase 33.43 22.31 61.54 65.50 29.76 63.54 38.69 57.05 46.48
LLAMA2-7Bchat 47.42 24.63 62.35 66.15 32.24 61.34 46.67 55.18 49.50

LLAMA2-7Bbase + INSTda 36.10 28.48 62.86 66.43 29.04 64.40 49.10 58.46 49.35
LLAMA2-7Bchat + INSTda 43.40 29.70 65.92 65.81 30.95 62.46 57.26 55.59 51.39
VIKING-7B 33.67 17.18 49.48 61.96 25.11 56.29 23.97 34.90 37.82

SNAKMODEL-7Bbase 56.28 19.91 57.42 58.95 30.47 18.52 69.14 60.93 46.45
SNAKMODEL-7Binstruct 52.91 29.76 66.70 66.61 29.46 64.66 71.05 71.88 56.63↑10.15

MISTRAL-7B BASED LLMS

MISTRAL-7B-V0.1 38.38 32.66 54.53 66.47 37.39 64.55 64.50 71.56 53.76
MUNIN-7B-ALPHA 53.03 28.71 43.77 67.27 42.68 63.44 83.01 77.91 57.48
MUNIN-7B-V0.1DEV0 57.02 28.74 50.72 67.89 42.17 64.41 93.45 85.82 61.28↑7.52

Table 3: Results (Test) on the ScandEval Benchmark. We evaluate LLAMA2-7Bbase, as well as the
chat version against SNAKMODEL-7Binstruct and other 7B models in ScandEval (best results in blue). In
the subsequent rows, we test the same LLAMA2-7B tuned the Danish instruction tuning data (+ INSTda).
In the final rows, we show the Mistral-based models (best results in orange). We evaluate in F1, macro-
averaged F1 (mF1), micro-averaged F1 (µF1), BERTScore (BERTS.; Zhang et al., 2020), and Accuracy
(Acc.).

LLAMA2-7B models on the same Danish instruc-
tion datasets as SNAKMODEL-7Binstruct, in order
to isolate the effect of Danish language modeling
pre-training. Finally, we include comparisons to
the Viking-7B model (SiloAI, 2024) and similarly-
sized models based on the Mistral model suite
(Jiang et al., 2023; Danish-Foundation-Models-
Team, 2024).

Overall, SNAKMODEL-7Binstruct outperforms all
other LLAMA2-7B-based models, including those
with access to the same set of Danish instruction-
tuning data, with a final average benchmark score
of 56.63. The performance improvements over
the English model are particularly pronounced for
sub-tasks based on natural Danish data, including
LA (33.43 → 52.91), TM (38.69 → 71.05), and
CT (57.05 → 71.88). While the Mistral-7B-based
models outperform SNAKMODEL-7Binstruct by up
to 4.65% abs., this approximately matches the base
model performance difference between Mistral-7B-
v0.1 and LLAMA2-7Bbase which spans 7.28%.

Qualitative Behaviors. Since ScandEval scores
are largely computed using constrained generation,
we would like to highlight some qualitative obser-
vations from when models generate text without
constraint. First, we find that LLAMA2-7B models
fail to generate Danish text consistently, even when
explicitly prompted to do so (confirming the find-
ings by Puccetti et al., 2024). Since they nonethe-

less achieve non-trivial benchmark scores under
constrained generation, we hypothesize, that they
obtain some Danish language functionality during
their original, primarily English pre-training. Our
custom LLAMA2-7B models to which we add Dan-
ish instruction tuning (+INSTda) generate Danish
responses (even when prompted in English), high-
lighting that a relatively small amount of trans-
lated Danish instructions is sufficient to bias mod-
els towards generating output in a new language.
Nonetheless, the fact that SNAKMODEL-7Binstruct,
which is trained on non-translated Danish text out-
performs the models trained on translated data,
highlights the importance of curating high-quality
native-language data for the adaptation target.

6 Guidance for Future Work

From our final evaluation, as well as our analysis of
the training dynamics of SNAKMODEL-7Binstruct,
we next consolidate some guidance for future work
adapting English LLMs to languages with similar
linguistic properties and resource constraints.

Data. As we found large overlaps across data
sources, as well as large amounts of non-Danish
or irrelevant data (Section 3), applying stringent
pre-processing standards is important when work-
ing with smaller languages—especially when auto-
matic filtering tools may be biased towards larger,
related languages (e.g., Swedish).
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Training. Our training dynamics analysis (Sec-
tion 4.3) showed that despite our total 13.6B word
pre-training corpus, applying instruction tuning af-
ter 2,000–5,000 steps of Danish pre-training (i.e.,
less than half of the corpus) may already be suf-
ficient to obtain close-to-final performance. For
instruction tuning itself, one epoch over translated
data appears to be sufficient to amplify instruction-
following functionalities in the target language.
Nonetheless, training on non-translated target lan-
guage data is important to improve performance on
more culturally specific tasks based on native data
(i.e., LA, TM, and CT).

Finally, our weight divergence analysis revealed
that most parameter updates are consolidated in the
embeddings, feed-forward up-projections, and lan-
guage modeling head. As English and Danish share
a relatively similar syntactic structure, languages
with more distinctive typologies may nonetheless
exhibit larger changes to the self-attention param-
eters. For model adaption across a comparable ty-
pological distance as English and Danish however,
focusing training efforts on the aforementioned pa-
rameter types—in addition to employing existing
parameter-efficient fine-tuning techniques (e.g., Hu
et al., 2022; Dettmers et al., 2023)—may therefore
yield even higher efficiency gains.

7 Conclusion

In this work, we introduced the SNAKMODEL

suite, which includes a 7B-parameter base and
instruction-tuned LLM for Danish, in addition to
its pre-training and instruction-tuning data, inter-
mediate checkpoints, and evaluation. By analyzing
design decisions related to data curation and train-
ing dynamics, we further consolidated guidelines
for future work adapting LLMs to new languages,
to foster research not just in Danish, but in language
communities with similar resource constraints.

Limitations

What Went Wrong and What Decisions We
Took. Our training process encountered several
challenges across multiple runs. In Run 1, we be-
gan by restarting training from the LLAMA2-7B
checkpoint using the identical learning rate the orig-
inal model had been trained on. However, we faced
gradient explosion at iteration 2,031, which we
attempted to mitigate through gradient clipping.
Despite this effort, server crashes at step 3,500 and
persistent gradient explosions forced us to halt the

run after approximately 46 days, with a final lan-
guage model loss of ±1.77. For Run 2, we halved
the peak learning rate to 1.5 × 10−4 and adjusted
other parameters, but gradient explosion recurred
at step 1,390, leading us to terminate the run after
about 10 days with a final loss of ±1.79. In Run
3, we significantly reduced the peak learning rate
to 1.5 × 10−5, reasoning that as we were contin-
uing pre-training, we should aim for a rate lower
than Llama2’s final learning rate. This approach
has shown effective, with the training reaching it-
eration 12,500 after approximately 93 days and
achieving a language model loss of ±1.72.
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Castagné, Alexandra Sasha Luccioni, François Yvon,
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University Electronic Press, Sweden.

Københavns Professionshøjskole. 2024. Skolegpt
instruct. https://huggingface.co/
datasets/kobprof/skolegpt-instruct.

Giovanni Puccetti, Anna Rogers, Chiara Alzetta, Fe-
lice Dell’Orletta, and Andrea Esuli. 2024. AI ‘news’
content farms are easy to make and hard to detect:
A case study in Italian. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15312–
15338, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67.

Rakuten Group, Aaron Levine, Connie Huang, Chen-
guang Wang, Eduardo Batista, Ewa Szymanska,
Hongyi Ding, Hou Wei Chou, Jean-François Pes-
siot, Johanes Effendi, et al. 2024. Rakutenai-7b: Ex-
tending large language models for japanese. ArXiv
preprint, abs/2403.15484.

Edwin Rijgersberg and Bob Lucassen. 2023. Geitje:
een groot open nederlands taalmodel.

Oscar Sainz, Jon Ander Campos, Garcı́a-Ferrero Iker,
Julen Etxaniz, and Eneko Agirre. 2023. Did Chat-
GPT cheat on your test?

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2024. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
In The Twelfth International Conference on Learning
Representations.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Noam Shazeer. 2020. Glu variants improve transformer.
ArXiv preprint, abs/2002.05202.

SiloAI. 2024. Viking 7b/13b/33b: Sailing the nordic
seas of multilinguality.

Shivalika Singh, Freddie Vargus, Daniel D’souza,
Börje Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciu-
nas, Laura O’Mahony, Mike Zhang, Ramith Het-
tiarachchi, Joseph Wilson, Marina Machado, Luisa
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