
Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies
(NoDaLiDa/Baltic-HLT 2025), pages 755–766

March 3-4, 2025 ©2025 University of Tartu Library

Analyzing the Effect of Linguistic Instructions on Paraphrase Generation

Teemu Vahtola1 Songbo Hu2 Mathias Creutz1
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Abstract

Recent work has demonstrated that large
language models can often generate flu-
ent and linguistically correct text, adhering
to given instructions. However, to what
extent can they execute complex instruc-
tions requiring knowledge of fundamental
linguistic concepts and elaborate semantic
reasoning?

Our study connects an established linguis-
tic theory of paraphrasing with LLM-based
practice to analyze which specific types of
paraphrases LLMs can accurately produce
and where they still struggle. To this end,
we investigate a method of analyzing para-
phrases generated by LLMs prompted with
a comprehensive set of systematic linguis-
tic instructions. We conduct a case study
using GPT-4, which has shown strong per-
formance across various language genera-
tion tasks, and we believe that other LLMs
may face similar challenges in comparable
scenarios.

We examine GPT-4 from a linguistic per-
spective to explore its potential contribu-
tions to linguistic research regarding para-
phrasing, systematically assessing how ac-
curately the model generates paraphrases
that adhere to specified transformation
rules. Our results suggest that GPT-4 fre-
quently prioritizes simple lexical or syn-
tactic alternations, often disregarding the
transformation guidelines if they overly
complicate the primary task.

1 Introduction

Large language models (LLMs) can, without doubt,
generate fluent and linguistically correct language
with relevance to given prompts (Sottana et al.,

2023). However, to what extent can they fol-
low complex linguistic instructions and execute
them in a meaningful way? To this end, we pro-
pose a systematic approach for analyzing LLMs in
performing explicit, theoretically grounded para-
phrase transformations in English, using a vali-
dated list of 25 linguistic operations (Bhagat and
Hovy, 2013).

It is necessary to have knowledge of funda-
mental linguistic concepts to follow those special-
ized instructions. This study provides insight into
the capabilities and limitations of LLMs when
faced with such a demanding task. Extending
our understanding on the connections between lin-
guistically grounded theories of paraphrasing and
the practical abilities of LLMs, we hope to im-
prove paraphrasing performance with explicit lin-
guistic operations, with potential applications in
text simplification (Nisioi et al., 2017), computer-
assisted language learning (Mayhew et al., 2020),
machine translation (Callison-Burch et al., 2006;
Mehdizadeh Seraj et al., 2015) and automatic sum-
marization (Gupta and Gupta, 2019).

We conduct a case study analyzing paraphrases
generated by a representative state-of-the-art LLM,
GPT-4 (Achiam et al., 2023), focusing on the abili-
ties of the model to create meaning-preserving and
diverse paraphrases using systematic instructions
related to the 25 paraphrasing categories of Bhagat
and Hovy (2013). Our analysis further looks into
the complexity of individual transformations and
how GPT-4 copes with them with varying degrees
of in-context learning (Brown et al., 2020; Dong
et al., 2024). Furthermore, we study how humans
perceive the produced paraphrases in terms of se-
mantic similarity and linguistic diversity.

The contributions of the paper are the follow-
ing: (1) Our study connects a descriptive theory
of paraphrasing with generative language models
and human perception of sentence-level semantic
similarity. (2) We conduct a limited case study, in-
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Full Name Abbreviation

synonym substitution synonym
antonym substitution antonym
converse substitution converse
change of voice voice
change of person person
pronoun/co-referent substitution pron./co-ref.
repetition/ellipsis repetition
function word variations func. word
actor/action substitution actor/action
verb/’semantic-role noun’ substitution verb/sem. noun
manipulator/device substitution manip./device
general/specific substitution gen./spec.
metaphor substitution metaphor
part/whole substitution part/whole
verb/noun conversion verb/noun
verb/adjective conversion verb/adj.
verb/adverb conversion verb/adv.
noun/adjective conversion noun/adj.
verb-preposition/noun substitution vp./noun
change of tense tense
change of aspect aspect
change of modality modality
semantic implication sem. impl.
approximate numerical equivalences num. eq.
external knowledge ext. knowl.

Table 1: This table lists all the paraphrase defin-
ing transformations from Bhagat and Hovy (2013),
along with their abbreviations as used throughout
this paper, particularly in Figure 2.

vestigating a systematic approach for analyzing the
ability of LLMs to follow complex instructions and
how different degrees of complexity influence the
result of generated paraphrases. (3) To facilitate
further research on controlled paraphrase gener-
ation and the variability of human language, we
publicly release the set of automatically generated
sentence pairs exhibiting diverse transformations,
accompanied by their corresponding human anno-
tations, at https://github.com/Helsinki-NLP/
paraphrase-instructions.

2 Background

Paraphrasing denotes variability in expressed
meaning. Vague definitions such as this one are typ-
ical ways of framing the concept of paraphrasing
in NLP research (Vila et al., 2014). However, pre-
vious research in (computational) linguistics has
presented various, more fine-grained typologies
that outline the linguistic transformations defining
paraphrasing.

Through the lens of existing paraphrase the-
ories (Mel’čuk, 2012; Honeck, 1971; Harris,
1957), Bhagat and Hovy (2013) empirically val-
idate paraphrase examples from two corpora: the

Multiple-translation Corpus (Huang et al., 2002)
and the Microsoft Research Paraphrase Corpus
(MRPC) (Dolan et al., 2004). They outline 25 con-
crete operations with systematic linguistic instruc-
tions of transformations that produce sentences
with near-equivalent meaning. The perspective to
these operations is mostly lexical, focusing on the
specific lexical changes that can be made at the sen-
tence or phrase level to create paraphrases (Bhagat
and Hovy, 2013). However, several of the opera-
tions trigger changes that would traditionally fall
within the domain of syntactic theory. One such
operation would be ellipsis. We list all the trans-
formations defined in Bhagat and Hovy (2013) in
Table 1.

Correctly applying these transformations in au-
tomatic paraphrase generation requires the model
to process fundamental linguistic concepts and
accurately recognize the phrase-level transforma-
tions triggered by the defined lexical operations.
Furthermore, not every transformation is appropri-
ate for every context. Therefore, the model must
thoroughly process the definition and have intri-
cate semantic reasoning abilities to construct sen-
tence pairs that are appropriately suited for the
intended transformation. To this end, we analyze
the capabilities of LLMs in producing paraphrastic
sentence pairs given systematic linguistic instruc-
tions. The transformations span from simple local
changes, such as synonym substitution (to build/to
construct) or change of aspect (studying/studies),
to more complex alterations, such as converse sub-
stitution (buy/sell).

Along with systematic, descriptive defini-
tions, Bhagat and Hovy (2013) provide 1–3 exam-
ples for each paraphrase transformation. Synonym
substitution, for example, is defined as follows:1

Replacing a word/phrase by a synonymous word/phrase,
in the appropriate context, results in a paraphrase of
the original sentence/phrase. This category covers the
special case of genitives, where the clitic ’s is replaced by
other genitive indicators like of, of the, and so forth. This
category also covers near-synonymy, that is, it allows for
changes in evaluation, connotation, and so on, of words
or phrases between paraphrases. Example:

1. Google bought YouTube. ↔ Google acquired YouTube.

2. Chris is slim. ↔ Chris is slender. ↔ Chris is skinny.

These definitions followed by a small number
of examples can be utilized as such in prompts for

1For an exhaustive list of the definitions and examples of
the paraphrase transformations, we refer the reader to Bhagat
and Hovy (2013).

756

https://github.com/Helsinki-NLP/paraphrase-instructions
https://github.com/Helsinki-NLP/paraphrase-instructions


few-shot in-context learning, where an LLM is in-
structed to generate sentence pairs incorporating
the specific transformations. As few-shot learning
has been shown to be an effective approach for ap-
plying LLMs in various tasks (Brown et al., 2020),
we focus on leveraging the framework of Bhagat
and Hovy (2013) for evaluating few-shot learning
with GPT-4 across a wide range of linguistic oper-
ations related to paraphrasing.

In a contemporary work, Meier et al. (2024)
analyze various paraphrase types generated by
GPT-3.5 by employing more abstract linguistic
definitions of paraphrase phenomena as defined
by Barrón-Cedeño et al. (2013) and Vila et al.
(2014). These phenomena comprise abstract lin-
guistic properties, such as changes based on mor-
pholexicon, structure, and semantics. Each of
these classes is further divided into subclasses and
types, where one type (e.g., same-polarity sub-
stitution) can include multiple concrete transfor-
mations (e.g., synonymy, general/specific substitu-
tion, or exact/approximate alternations) (Barrón-
Cedeño et al., 2013). Meier et al. (2024) select
10 of such types for their analysis. Many of the
selected types focus on local substitutions, such
as inflectional changes, punctuation changes, and
spelling changes, while only a few focus on global
changes that require intricate contextual under-
standing. As opposed to this, we use the typology
of Bhagat and Hovy (2013), which provides an em-
pirically validated list of concrete linguistic trans-
formations for generating paraphrases, along with
their linguistic definitions and examples, covering
a wider range of local and contextual transforma-
tions. These concrete definitions enable a precise
assessment of which specific linguistic features are
well-represented by the chosen LLM and which
areas the model still lacks sufficient knowledge in.

3 Experimental Details

3.1 Data Generation

We apply GPT-42 (Achiam et al., 2023) via the
API to generate potential paraphrase pairs follow-
ing a comprehensive list of paraphrasing opera-
tions (Bhagat and Hovy, 2013). We selected GPT-
4 as a representative and powerful LLM after ini-
tial experiments with various LLMs suggested that
GPT-4 produced the most fluent output, which is
essential for accurately analyzing our setting. We

2gpt-4-turbo-2024-04-09 is used.

Template 1: System Prompt

You are a helpful assistant designed to output
JSON.

Synonym substitution: Replacing a
word/phrase by a synonymous word/phrase, in
the appropriate context, results in a paraphrase
of the original sentence/phrase. This category
covers the special case of genitives, where the
clitic ’s is replaced by other genitive indicators
like of, of the, and so forth. This category also
covers near-synonymy that is, it allows for
changes in evaluation, connotation, and so on,
of words or phrases between paraphrases.
Example:

(a) Google bought YouTube. ⇐⇒ Google ac-
quired YouTube.
(b) Chris is slim. ⇐⇒ Chris is slender. ⇐⇒
Chris is skinny.

Template 2: User Prompt for Simple Sentences

Could you give me 10 more examples follow-
ing the given description? Return the examples
as a list of json objects.

Template 3: User Prompt for Complex Sen-
tences

Could you give me 15 more examples follow-
ing the given description? Generate 5 com-
pound sentences, 5 complex sentences, and 5
compound-complex sentences to showcase a
variety of syntactic structures. It is enough
to perform the operation in only one of the
clauses. Return the examples as a list of json
objects.

Figure 1: Prompt templates we use for generating
the paraphrases.

use the default values provided by the OpenAI
package for all hyper-parameters. Additionally,
we configured the response output of the model to
JSON mode, following the text generation guide-
lines recommended by OpenAI.3

3https://platform.openai.com/docs/guides/
text-generation/json-mode
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Sentence type Example sentence

Simple The company employs 100 workers.
Simple The teacher explained the concept clearly.
Complex Although it was raining, we played football.

Compound-complex
She loves running in the morning, and when she returns, she makes
breakfast.

Compound-complex
She opened a savings account, and she deposited her birthday money,
while her parents watched proudly.

Table 2: A randomly sampled set of five generated sentences along with their corresponding sentence
types.

In paraphrase generation, a set of source sen-
tences is typically given, and the task is to generate
target sentences with the same meaning. In our
experiment, however, we let the model generate
both the source and the target sentences given the
definition and 1–3 examples. Since not all transfor-
mations are possible on just any source sentence,
this allows for the model to come up with suitable
source/target pairs for each transformation. More-
over, we believe that our approach more effectively
encourages the model to engage in deeper semantic
reasoning. When provided with a source sentence,
the model is already primed towards a certain trans-
formation, potentially making the task simpler. In
contrast, when given only a description of a para-
phrase operation along with a few examples, the
model must first fully identify the relationship be-
tween the description and the examples to generate
an appropriate source sentence.

We leverage the definitions and examples given
in Bhagat and Hovy (2013) as prompts for the
LLM, and request it to produce 25 sentence pairs
following the definitions of each of the 25 transfor-
mations. Our initial experiments suggest that when
we only use the definition and the examples as the
prompt, the model predominantly generates rather
short sentences with simple syntactic structures,
which may constrain its ability to execute more
complex paraphrasing transformations. Therefore,
we explicitly prompt the model to generate com-
pound, complex and compound-complex sentences.
Table 2 presents randomly sampled examples of
various sentence types.

The prompts are composed of two parts: sys-
tem prompts and user prompts, as illustrated in
Figure 1. For each paraphrase operation described
in Bhagat and Hovy (2013), we construct a system
prompt following Template 1, adapting the trans-

formation definition and examples as needed. To
generate simple sentence pairs, we use Template
2 as the user prompt. For syntactically complex
sentence pairs, we employ Template 3. These tem-
plates are specifically crafted to guide the model
in producing sentence pairs with varying levels of
syntactic complexity.

Eventually, we generate 10 simple sentences
and 5 each of compound, complex, and compound-
complex sentences for every paraphrase transfor-
mation.

3.2 Collecting Annotations

We collect manual annotations by four indepen-
dent annotators to the generated sentences to an-
swer three key questions: (1) Does the generated
sentence pair follow the given definition of a para-
phrase transformation? (2) Are the generated sen-
tences paraphrases of each others? (3) To what
extent are the generated sentences semantically
equivalent? Each sentence pair is annotated by
all annotators. For evaluating the third question
concerning semantic equivalency, we follow pre-
vious work involving manually annotating para-
phrases (Creutz, 2018; Kanerva et al., 2021), and
use the four-point Likert scale with the following
scores and associated descriptions: 4: Full para-
phrases, 3: Paraphrases in some contexts, 2: Se-
mantically similar sentences but not paraphrases,
1: Unrelated sentences.

The annotators are fluent speakers of English,
and knowledgeable of fundamental linguistic con-
cepts.4 They are provided with the definitions and
examples of each paraphrase operation, as well as

4In addition to some of the authors, we involve colleagues
as annotators, bringing the total number of annotators to four.
Each example is annotated by all four annotators to better
capture the range of human variability and subjectivity in
evaluating paraphrases.
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Annotator Para. Acc. Trans. Acc.

1 0.824 0.688
2 0.869 0.677
3 0.821 0.677
4 0.872 0.744

Average 0.847 0.696

Table 3: Model performance on paraphrase accu-
racy (Para. Acc.) and transformation accuracy
(Trans. Acc.), evaluated by four annotators. Para-
phrase Accuracy measures whether the generated
sentence pairs qualify as paraphrases. Transforma-
tion Accuracy measures whether the sentence pairs
adhere to the predefined transformation operation.

the generated sentence pairs. Appendix A shows a
screenshot of the customized annotation tool.

4 Results and Discussion

4.1 Paraphrase and Transformation
Accuracy

We first focus on evaluating the model’s perfor-
mance with respect to the aforementioned ques-
tions (1) and (2). By transformation accuracy we
understand the proportion of generated sentence
pairs that successfully follow the desired transfor-
mation operation (Question 1). By paraphrase
accuracy we understand the proportion of gener-
ated sentence pairs that are true paraphrases (Ques-
tion 2).

Table 3 presents the obtained paraphrase and
transformation accuracies for all the generated sen-
tence pairs, as assessed by our four expert annota-
tors. It can be seen that GPT-4 generally performs
well at providing alternative expressions that con-
vey the same meaning (average paraphrase accu-
racy is 84.7 %). However, it shows clear limitation
in accurately following the specified transforma-
tions (average transformation accuracy is 69.6 %).
Furthermore, the evaluation results indicate that the
scores provided by the annotators are consistent
and similar. To demonstrate the reliability of our
measurement approach, we compute Fleiss’ Kappa
for the two binary variables in our dataset: para-
phrase accuracy and transformation accuracy. The
Fleiss’ Kappa scores were 0.53 for paraphrase ac-
curacy and 0.71 for transformation accuracy. These
scores indicate moderate and substantial agreement
among annotators, respectively, demonstrating the
robustness of our evaluation methodology and the
inherent subjectivity in evaluating paraphrases.

Figure 2 presents the paraphrase and transfor-
mation accuracies for each individual paraphrase
transformation operation, averaged over the dif-
ferent annotators. The figure clearly illustrates
that the model achieves high results in paraphrase
and transformation accuracies for specific, local
changes, such as synonym substitution, antonym
substitution, change of voice, and change of as-
pect. In contrast, the model appears to struggle
with transformations that require a more nuanced
understanding of context, such as converse sub-
stitution, actor/action substitution, or verb/adverb
conversion.

Next, we provide an analysis across the various
types of paraphrase transformations to better un-
derstand where the model succeeds and the kinds
of mistakes it makes when it struggles.

4.2 Qualitative Analysis

Figure 3 illustrates the correlation between para-
phrase and transformation accuracy. All transfor-
mations except one are located either in the top row
or the right-most column of Figure 3, meaning that
either the transformation or the paraphrasing was
performed successfully (accuracy > 75 %). This is
an excellent result.

The top right corner represents the most suc-
cessful transformations, with a high transforma-
tion accuracy combined with a high paraphrase
accuracy. There are ten such transformations corre-
sponding to 40 % of all 25 types. These are fairly
straightforward or local transformations, such as
replacing synonyms within sentences (started vs.
began) or substituting a word with its negated
antonym (happy vs. not sad). Approximate nu-
merical equivalence (mapping between units) and
external knowledge (the Louvre is a museum) are
also found here. This outcome is not too surpris-
ing given that a number of well-known paraphrase
corpora, such as PPDB (Ganitkevitch et al., 2013)
and MRPC (Dolan et al., 2004), contain similar ex-
amples (cf. Rajana et al., 2017; Bhagat and Hovy,
2013) and the model has most likely been trained
on such data. Moreover, knowing that 125 miles
corresponds to about 200 kilometers can be mem-
orized from the training data rather than actually
being calculated by the model.

There are more transformations in the right-most
column (21) than in the top row (13), indicating
that the system more accurately generates para-
phrases than the desired transformation types.
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Figure 2: Model performance on Paraphrase Accuracy (Para. Acc.) and Transformation Accuracy (Trans.
Acc.). This figure highlights the aggregated mean values for each metric across the 25 transformation
operations, indicated by dashed horizontal lines. Abbreviations representing each operation are used,
with full names provided in Table 1. All the results are based on annotations by four expert annotators.
The number of examples provided by Bhagat and Hovy (2013) for each operation is noted in square
brackets. For example, synonym [2] indicates two examples for the synonym substitution operation.
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Figure 3: Distribution of the 25 transformations
into 3×3 distinct bins depending on paraphrase and
transformation accuracy. There are three intervals
on the axes, corresponding to accuracies between
0.0 and 0.5, above 0.5 up to 0.75, and between 0.75
and 1.0, respectively.

Failures to capture the desired transformation,
while still producing a valid paraphrase, include
the following mistakes: (1) using change of voice
(buy/be bought) instead of converse substitution
(buy/sell), verb/noun conversion (to try/make an at-
tempt) or verb/adjective conversion (to clean/make
clean), (2) confusion between the categories
part/whole (room/house) vs. general/specific (as-
tronomical body/sun), (3) poor metaphor genera-
tion capacity (“a sea of people” vs. “an ocean of
people.”). Apart from the very demanding task of
creating metaphors, the failures here are artefacts

of somewhat artificial, grammatical distinctions,
such that participle forms of verbs (interested) do
not qualify as adjectives (curious).

Failures to reliably produce paraphrases while
still being faithful to the desired transformation
(top row, left and center) comprise manipula-
tor/device substitution (“The photographer (vs.
camera) took stunning photos”) and change of
modality (finds/can find), which in fact can alter
the meaning. Nevertheless these types have been
included in the paraphrase taxonomy of Bhagat
and Hovy (2013), which may seem odd. While it
is possible to produce paraphrases within the limits
of the above transformations, it requires strong se-
mantic reasoning abilities from the model. It must
first generate a source sentence that is comprised of
(potentially limited) concepts that are suitable for
such transformations and then create an effective
paraphrase as a target sentence.

Additionally, the removal of repetition (ellipsis)
is sometimes performed too aggressively and the
meaning is not preserved (“The cat chased the
mouse and the dog chased the squirrel.” vs. “The
cat chased the mouse and the dog did, too.”). The
model may overly prioritize elliptical constructions
similar to the example prompt, failing to generalize
to different kinds of sentence structures. Specifi-
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cally in the above example, it fails to recognize that
omitting the object in the second clause changes
the meaning as the repeated part is the predicate
rather than the object.

The poorest result is obtained for actor/action
substitution (center left), which mostly generates
semantically or grammatically incorrect sentence
pairs: “I love teaching.” vs. “I love teacher.” This
operation is particularly challenging, as it demands
deep contextual understanding. Merely replacing
an actor, such as teacher with a corresponding
action, such as teaching, is not sufficient for pre-
serving the original meaning if the context does not
allow it. The example Bhagat and Hovy (2013) pro-
vide for actor/action substitution is: “I dislike rash
drivers (vs. driving).” It is possible that the train-
ing data has limited examples of correctly applying
this operation, which can result in poor accuracy
in recognizing appropriate concepts and contexts.

4.3 Semantic Equivalence

Our annotators assessed three criteria (Section 3.2),
two of which have been analyzed thoroughly above:
transformation accuracy (Question 1) and para-
phrase accuracy (Question 2). Question 3 on se-
mantic equivalency remains to be studied. Next,
we compare the binary annotations of paraphrase
accuracy (Question 2) to the 4-level Likert scale
annotations (Question 3). The four-level scale of-
fers a more nuanced view on semantic equivalency
than the binary paraphrase classification.

Two out of four annotators had virtually perfect
correlation between the binary paraphrase category
and Likert scale values 4 and 3 ("full paraphrases"
and "paraphrases in some contexts"). The other
two annotators did very similarly, but in addition,
there was a small number of data points (around
3 % and 6 %) in which Likert scale 3 ("paraphrases
in some context") rendered the "not paraphrases"
binary classification. An example where both anno-
tators classified the example as a non-paraphrase
but still assigned it a Likert scale score of 3 is:

“The driver (vs. car) accelerated quickly, but the
passenger felt nervous.” Overall, the binary an-
notations closely align with the detailed results
from the 4-level Likert scale. Consequently, we
do not conduct further analysis on the relationship
between the different annotation granularities but
reserve it for future work.
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(a) Actor/action Substitution
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(b) Verb/adjective Conversion
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(c) Manipulator/device Substitution

Figure 4: Model performance for (a) Actor/action
Substitution, (b) Verb/adjective Conversion, and
(c) Manipulator/device Substitution with increas-
ing number of in-context learning examples. For
each example, we append it to the system prompt
as shown in Template 1 in Figure 1. Results are
based on annotations by one expert annotator.

4.4 Additional In-context Learning
Bhagat and Hovy (2013) do not provide the same
number of examples for all of the 25 transforma-
tions. In fact, 15 transformations have only 1 ex-
ample, 9 have 2, and 1 has 3 examples.5 As LLMs
have been shown to generalize well from few-shot
learning (Brown et al., 2020), and as we observe a
slight correlation between the number of examples
and paraphrase and transformation accuracy6, we
experiment whether providing additional examples

5The example numbers corresponding to each transforma-
tion are shown in Figure 2.

6We report a mean paraphrase accuracies of 0.81, 0.91,
and 0.90, and mean transformation accuracies of 0.66, 0.77,
and 0.80 for operations that have 1, 2, and 3 examples, respec-
tively.
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improves GPT-4’s performance in the more diffi-
cult paraphrase operations (left-most column, and
bottom right of Figure 3). The operations we focus
on are actor/action substitution, verb/adjective con-
version, and manipulator/device substitution, each
having 1 provided example in the original prompt.

Figure 4 presents the model accuracies for para-
phrasing and the specified transformations for three
operations that GPT-4 struggles with. When we
add 2, 5, and 10 additional hand-crafted examples
to the prompt, we do not see consistent improve-
ment. Additional examples may improve the para-
phrasing results, but transformation accuracy does
not increase. In fact, higher paraphrase accuracy
might even be detrimental to transformation accu-
racy, because the model prioritizes paraphrasing,
if the two criteria seem conflicting. The inconsis-
tency in improving with additional ICL examples
suggests that these specific transformations may
be challenging to process, possibly due to a lack
of training data involving such transformations.
Further research is necessary for a deeper under-
standing of this phenomenon.

5 Related Work

Previous work related to diverse paraphrasing has
studied the generation of specific linguistic fea-
tures, for instance on lexical (e.g., Thompson and
Post, 2020) or syntactic level (Iyyer et al., 2018;
Chen et al., 2019; Sun et al., 2021, i.a.), or control-
ling for various granularities (Vahtola et al., 2023).

Additionally, previous research has presented
various taxonomies of paraphrase types for better
understanding of the diverse paraphrase phenom-
ena. Vila et al. (2014) propose a typology of 24
paraphrase types spanning three levels of granu-
larity, while Dutrey et al. (2010) define rephrasing
modifications extracted from the revision history
of Wikipedia. Less fine-grained categorizations
can include for instance differences in specificity
or tone (Kanerva et al., 2021). Bhagat and Hovy
(2013) propose a list of 25 empirically validated
paraphrase transformations with a systematic defi-
nition and examples of each transformation.

Detection and generation of diverse para-
phrases leveraging a corpus of various paraphrase
types (Kovatchev et al., 2018) has been pro-
posed (Wahle et al., 2023). In a concurrent
work, Meier et al. (2024) leverage the linguistic
phenomena defined in Barrón-Cedeño et al. (2013)
to generate specific types of paraphrases. Meier

et al. (2024) also gather human annotations to ana-
lyze the accuracy of GPT-3.5 across the different
paraphrase types and to evaluate how human anno-
tators rank the generated paraphrases. Their find-
ings are in line with ours, suggesting that LLMs
struggle with performing more complex paraphrase
transformations. Conversely to the framework of
paraphrase operations that we use, the phenomena
outlined in Barrón-Cedeño et al. (2013) can often
manifest themselves in various surface-form alter-
nations (i.e., one phenomenon can include multiple
operations) as they attempt to capture the general
phenomena rather than providing specific mech-
anisms for paraphrasing. Furthermore, we focus
on analyzing the performance of LLMs on vari-
ous specific paraphrase transformations given their
detailed linguistic definitions, and connect the the-
oretical perspectives of paraphrasing with genera-
tive language models and human understanding of
semantic similarity.

Another line of related work has focused on
benchmarking various pretrained language models,
such as BERT (Devlin et al., 2019), across a diverse
range of downstream tasks, e.g., GLUE (Wang
et al., 2018), SentEval (Conneau and Kiela, 2018),
and SICK (Marelli et al., 2014), or a limited range
of linguistic phenomena (Marvin and Linzen, 2018;
Jumelet and Hupkes, 2018; Ettinger, 2020; Vahtola
et al., 2022). Diverging from this line of work,
we focus on the capabilities of one state-of-the-art
LLM and connect human perception of semantic
equivalence to the theory and practice of diverse
paraphrasing. In particular, we propose a method
and conduct a pilot study to analyze how LLMs
manage semantic abstractions in the context of
systematically defined paraphrase transformations.

6 Conclusions

In this paper, we design a methodology for testing
LLMs to analyze whether they can follow theoret-
ically motivated instructions in the case of para-
phrase generation. We utilize explicit linguistic
prompts to guide complex transformations and
evaluate the results based on human assessment.

Using this framework, we conduct a focused
case study on the capabilities of GPT-4 in accu-
rately generating paraphrases. This study is based
on 25 paraphrase transformations provided in Bha-
gat and Hovy (2013), whose definitions of the trans-
formations serve as prompts for few-shot learning.
We have customized a web-interface for collecting
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manual annotations for the generated sentences in
order to assess how accurately the model produces
paraphrases that follow the specified transforma-
tions.

Our findings indicate that GPT-4 can effectively
follow detailed linguistic instructions to generate
paraphrastic sentence pairs through simple, local
transformations. However, it often prioritizes sim-
ple lexical or syntactic substitutions for paraphras-
ing instead of following specified transformation
guidelines. This is especially true when the trans-
formations trigger more complex alternations, in-
dicating limitations in controllability and its ability
to process complex linguistic instructions. Further-
more, increasing the number of examples for few-
shot in-context learning does not seem to improve
the model’s ability to accurately produce para-
phrase pairs involving complex operations. This
suggests that the model may still lack sufficient
proficiency in these linguistic structures. Future
work could include a more comprehensive evalua-
tion of how additional few-shot examples, encom-
passing a broader range of operations, influence
performance.

The presented methodology opens many alter-
native directions for further research. The use of
systematic linguistic instructions in text generation
tasks is still very much under-explored. Theoret-
ically controlled prompts may help to further un-
derstand the abilities of LLMs to generalize and
follow explicit rules and guidelines. Such prompts
can also be used to compare and benchmark differ-
ent models about their abstraction capabilities, and
the analysis of the results can also be combined
with interpretability studies of the network itself in
case model weights are openly available.

Limitations

We cover a comprehensive list of transformations,
which requires substantial annotations to properly
analyze the effect of the instructions. The number
of examples for each prompt is still limited in our
study but provides a systematic view on linguis-
tically motivated paraphrase generation. Another
limitation is the focus on one particular model,
GPT-4. Future work could compare the results to
other models to deepen our understanding of what
and how LLMs learn about human language, even
though this is a moving target that is impossible
to handle exhaustively. Preliminary studies indi-
cated that GPT-4 is better in handling the complex

instructions we used than other available models.
This motivated our choice to look at the limitations
of state-of-the-art generative models as GPT-4 abil-
ities in this space currently serve as an upper bound
for all the other LLMs. Additional prompt engi-
neering may also be possible to further push the
results, and chain-of-thought experiments would
also be interesting to study in connection with the
task. Finally, we would also like to extend the ex-
periments and annotations in order to expand the
dataset and the analyses that can be made on top
of the collection.
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Igor Mel’čuk. 2012. Semantics: From meaning to text.
Volume 1. John Benjamins.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P. Dinu. 2017. Exploring neural text sim-
plification models. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 85–91,
Vancouver, Canada. Association for Computational
Linguistics.

Sneha Rajana, Chris Callison-Burch, Marianna Apidi-
anaki, and Vered Shwartz. 2017. Learning antonyms
with paraphrases and a morphology-aware neural net-
work. In Proceedings of the 6th Joint Conference on
Lexical and Computational Semantics (*SEM 2017),
pages 12–21, Vancouver, Canada. Association for
Computational Linguistics.

Andrea Sottana, Bin Liang, Kai Zou, and Zheng Yuan.
2023. Evaluation metrics in the era of GPT-4: Reli-
ably evaluating large language models on sequence
to sequence tasks. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8776–8788, Singapore. Associa-
tion for Computational Linguistics.

Jiao Sun, Xuezhe Ma, and Nanyun Peng. 2021. AE-
SOP: Paraphrase generation with adaptive syntactic
control. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 5176–5189, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Brian Thompson and Matt Post. 2020. Paraphrase gen-
eration as zero-shot multilingual translation: Disen-
tangling semantic similarity from lexical and syntac-
tic diversity. In Proceedings of the Fifth Conference
on Machine Translation, pages 561–570, Online. As-
sociation for Computational Linguistics.

Teemu Vahtola, Mathias Creutz, and Jörg Tiedemann.
2022. It is not easy to detect paraphrases: Analysing
semantic similarity with antonyms and negation us-
ing the new SemAntoNeg benchmark. In Proceed-
ings of the Fifth BlackboxNLP Workshop on Ana-
lyzing and Interpreting Neural Networks for NLP,
pages 249–262, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Teemu Vahtola, Mathias Creutz, and Jrg Tiedemann.
2023. Guiding zero-shot paraphrase generation with
fine-grained control tokens. In Proceedings of the
12th Joint Conference on Lexical and Computational
Semantics (*SEM 2023), pages 323–337, Toronto,
Canada. Association for Computational Linguistics.

Marta Vila, M Antònia Martí, Horacio Rodríguez, et al.
2014. Is this a paraphrase? what kind? paraphrase
boundaries and typology. Open Journal of Modern
Linguistics, 4(01):205.

Jan Philip Wahle, Bela Gipp, and Terry Ruas. 2023.
Paraphrase types for generation and detection. In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages
12148–12164, Singapore. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 353–355, Brussels, Belgium. Association for
Computational Linguistics.

A Annotation Setup

Figure 5 presents an example of the web-based
annotation tool we used for collecting the manual
annotations.
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Figure 5: A screenshot of our web-based annotation tool.
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