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Abstract
This study challenges the current para-
digm shift in machine translation, where
large language models (LLMs) are gain-
ing prominence over traditional neural ma-
chine translation models. We focus on
English-to-Faroese translation. We com-
pare the performance of fine-tuned multi-
lingual models, LLMs (GPT-SW3, Llama
3.1), and closed-source models (Claude
3.5, GPT-4). Our findings show that a
finetuned NLLB model outperforms most
LLMs, including larger models, in both
automatic and human evaluations. We
also demonstrate the effectiveness of us-
ing LLM-generated synthetic data for fine-
tuning. While closed-source models like
Claude 3.5 perform best overall, the com-
petitive performance of smaller, finetuned
models suggests a nuanced approach to
low-resource machine translation. Our re-
sults highlight the potential of specialized
multilingual models and the importance
of language-specific knowledge. We dis-
cuss implications for resource allocation
in low-resource settings and suggest future
directions, including targeted data creation
and comprehensive evaluation methods.

1 Introduction

The recent rise of LLMs has introduced new
possibilities in machine translation (Lyu et al.,
2024, 2023). LLMs demonstrated impressive
performance across various language pairs, of-
ten through the use of in-context learning (Brown
et al., 2020). These new opportunities often come
at a price in terms of computational resources:
LLMs have massive requirements in terms of pre-
training data and high-end hardware. Hardware
requirements can sometimes be mitigated by us-
ing closed-source LLM APIs (e.g., OpenAI API).

However, this approach introduces issues related
to transparency and license limitations.

These limitations and high requirements dis-
proportionately affect low-resource languages and
communities. For such languages, lack of re-
sources can often extend beyond data scarcity and
effectively imply lack of computational infrastruc-
ture and expertise, rendering the use of APIs of-
fered by tech giants the only available option. This
is the case for Faroese, an Insular Scandinavian
language and official language of the Faroe Is-
lands.

Neural machine translation (NMT) models are
less demanding in terms of computational re-
sources. However, due to their more limited rea-
soning capabilities compared to LLMs, they often
underperform in low-resource settings. Nonethe-
less, there are potential strategies to leverage the
linguistic knowledge of an LLM in conjunction
with lightweight MT models to optimize perfor-
mance while minimizing resource requirements.
One such approach is to use LLMs to augment par-
allel datasets, allowing a lighter MT model to be
trained on this synthetic data (Yang and Nicolai,
2023).

In NLP, efficiency encompasses various factors
like data requirements, model size, training costs,
and performance metrics. This paper focuses on
the relationship between model performance and
size, a crucial consideration for real-world ap-
plications. We explore different approaches to
English-to-Faroese machine translation, investi-
gating how various techniques balance translation
quality with model compactness. Our research
aims to shed light on the trade-offs between per-
formance and model size in this specific language
pair. We will compare the following approaches,
in the context of English to Faroese MT:

• Using LLMs in a few-shot learning setting.

• Fine-tuning LLMs for translation (English-
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to-Faroese).

• Using a multilingual NMT out of the box.

• Fine-tuning a multilingual model on English-
Faroese parallel data.

• Fine-tuning a multilingual model on English-
to-Faroese parallel data and LLM-generated
synthetic parallel data.

These strategies will be compared based on au-
tomatic and human evaluation.We will be compar-
ing the following open-source LLMs: Llama 3.1,
(Meta) (Dubey et al., 2024)in its 8B version, and
GPT-SW3, a generative model for the Nordic lan-
guages, primarily Swedish, (Ekgren et al., 2022,
2024), in its 1.3, 6.7 and 40B version.

Their performance will be compared to closed-
source models such as Claude 3.5 Sonnet (An-
thropic, 2024) by Anthropic, GPT-4 Turbo (Ope-
nAI et al., 2024) and GPT-4o (OpenAI, 2024) by
OpenAI. We compare the LLMs with No Lan-
guage Left Behind (NLLB)(Team, 2024), an open-
source NMT multilingual model covering, among
other under-resourced languages, Faroese. All
new models produced via fine-tuning in this paper
are now publicly available.1

2 Background and related work

2.1 LLMs for translation

The emergence of LLMs has challenged the domi-
nance of sequence-to-sequence transformer-based
models in the field of machine translation (MT)
(Lyu et al., 2024; Hendy et al., 2023; Robin-
son et al., 2023). LLMs like initially observed
for GPT-3 can perform translations with mini-
mal input through in-context learning (ICL), sig-
nificantly reducing the data requirements typi-
cally needed for the training process. This abil-
ity to achieve state-of-the-art results with mini-
mal data has highlighted the potential of LLMs
as a promising solution for low-resource transla-
tion. A few studies have investigated methods to

1https://huggingface.co/barbaroo/
llama3.1_translate_8B,
https://huggingface.co/barbaroo/gptsw3_
translate_1.3B,
https://huggingface.co/barbaroo/gptsw3_
translate_6.7B,
https://huggingface.co/barbaroo/nllb_
200_1.3B_en_fo,
https://huggingface.co/barbaroo/nllb_
200_600M_en_fo

enhance LLMs’ MT capabilities in low-resource
settings, employing techniques such as layer adap-
tation and fine-tuning (Tran et al., 2024), retrieval-
augmented prompting (Merx et al., 2024), inte-
gration with rule-based systems (Coleman et al.,
2024), and synthetic parallel data generation with
an LLM (Yang and Nicolai, 2023). Addition-
ally, LLMs have demonstrated remarkable perfor-
mance as evaluators of translation quality, achiev-
ing near-human accuracy, although these results
have been primarily studied in high-resource lan-
guages (Karpinska and Iyyer, 2023; Fernandes
et al., 2023; Huang et al., 2024; Kocmi and Fe-
dermann, 2023). However, the effectiveness of
LLMs in low-resource contexts, such as Faroese,
remains relatively underexplored. Some studies
suggest that LLM-driven translation may be less
competitive for low-resource languages (Robinson
et al., 2023), when compared to their higher re-
source counterparts.

2.2 Machine Translation for Faroese

In recent years, a few notable efforts have focused
on improving coverage for Faroese in machine
translation (MT). A key initiative was the creation
of Sprotin’s parallel corpus (Mikkelsen, 2021),
which includes around 100,000 short human-
translated English-Faroese sentences. This cor-
pus supported Faroese’s integration into Microsoft
Translator and an Icelandic Machine Translation
platform called Vélþýðing, by the Icelandic com-
pany Miðeind. The rise of multilingual MT mod-
els has led to initiatives like Google’s MADLAD
400 (Kudugunta et al., 2023) and Meta’s No Lan-
guage Left Behind (NLLB) (Team, 2024), tar-
geting low-resource languages such as Faroese.
Since July 2024, Faroese has also been included
in Google Translate (Bapna et al., 2022). The lin-
guistic proximity of Faroese to its higher-resource
relatives, the Scandinavian languages, makes it
an ideal candidate for transfer learning (Snæb-
jarnarson et al., 2023). GPT-SW3, an LLM
trained on English and Scandinavian languages,
has demonstrated significant potential for under-
standing Faroese (Scalvini and Debess, 2024).
Likewise, GPT-4 has shown promising results in
Faroese sentiment analysis (Debess et al., 2024)
and Faroese-to-English translation (Simonsen and
Einarsson, 2024).
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3 Methods

3.1 Experiments

In this study, we evaluate machine translation per-
formance for English into low-resource Faroese
of various models: 5 LLM models (GPT-SW3,
Llama 3.1, GPT-4 Turbo, GPT-4o, Claude 3.5
Sonnet) and one multilingual MT model cover-
ing Faroese in its pre-training phase, NLLB. We
chose NLLB as representative of multilingual MT
because it demonstrated the highest potential in
earlier studies (Simonsen, 2024). Since the goal
of this paper is to analyze which settings are best
for open-source MT in a low-resource scenario,
we mostly preferred smaller, less computation-
ally costly versions of the models. We utilize
NLLB in its 600M and 1.3B parameters, and fine-
tune LLMs that have sizes below 10B parame-
ters, as these would be the ones most likely to
be fine-tuned and deployed on common, commer-
cial hardware. In order to investigate different
modalities to exploit LLM language capabilities in
machine translation, we fine-tune the MT model,
NLLB, on LLM generated parallel sentences, in
addition to the available human made corpus. This
approach is presented as an alternative to either di-
rectly deploying the LLM in a few-shot manner, or
instruct fine-tuning it directly for the desired trans-
lation direction. We evaluate these models both
automatically and by human evaluation, for which
we build an openly available evaluation platform
online2. The performance of these open-source
models is also benchmarked against that of three
of the most popular closed-source models (GPT-4
Turbo, GPT-4o and Claude 3.5 Sonnet), for com-
parison.

3.2 Datasets

Faroese, as a low-resource language, lacks sub-
stantial parallel datasets for machine translation.
The most comprehensive resource is the Sprotin
corpus (Mikkelsen, 2021), though it may miss
Faroese-specific cultural elements since it was
translated from English. Recent studies have
explored using LLMs to generate synthetic par-
allel datasets, like the fo_en_synthetic 3

dataset (Scalvini and Debess, 2024), created
through back-translation with GPT-SW3, contain-

2https://github.com/Haffi112/
error-span-labelling

3https://huggingface.co/datasets/
barbaroo/fo_en_synthetic

ing 70,000 sentences from the BLARK corpus
(Simonsen et al., 2022).

The inclusion of Faroese in Meta’s No Lan-
guage Left Behind (NLLB) initiative (Team,
2024) enabled the language’s integration into the
FLORES-200 benchmark for machine translation.
Currently, FLORES-200 is the only available eval-
uation benchmark for Faroese translation, mak-
ing it our choice for the automatic comparison
of model performance. While FLORES-200 is
a well-established benchmark in the field, it has
known limitations, such as its domain composition
and a narrow representation of cultural elements,
given that it was originally translated from En-
glish (Simonsen and Einarsson, 2024). To address
this, we manually compiled a small dataset of
200 English sentences for human evaluation. The
dataset consists of 68 sentences sourced from doc-
uments produced by the University of the Faroe
Islands (Strategic Plan 2025-2030), 56 from the
webpage of the Nordic Council 4 and 92 sen-
tences from international news outlets such as
BBC, CNN, and Al Jazeera. The dataset is pub-
licly available on Hugging Face, together with all
synthetic translations produced in the context of
this paper.5 All sentences were guaranteed to be
created within a specific recent time period, ensur-
ing that none of the data had been used in the train-
ing of any models included in the study. The inclu-
sion of sentences from Faroese and Nordic-related
contexts aimed to better represent Faroese-specific
cultural elements, which are typically underrepre-
sented in datasets despite being highly relevant to
the end users of Faroese machine translation prod-
ucts. For example, using sentences from locally
relevant contexts included concepts and named en-
tities that actually have a Faroese translation, as
they are Faroese or Nordic by origin (e.g. the lo-
cal institution ’Statistics Faroe Islands’ - Hagstova
Føroya). This is opposed to many concepts or enti-
ties in sentences from international sources, where
the translation of such can be difficult due to the
entities not having a direct Faroese translation, as
they are often irrelevant to Faroese society (e.g.
the concept of a ’US Governor’, which has no
Faroese equivalent). These foreign concepts make
evaluation more complex. Furthermore, using lo-
cally or regionally sourced data together with in-
ternationally sourced data enables evaluating con-

4https://www.norden.org/en
5https://huggingface.co/datasets/

barbaroo/news_en_fo
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tent for real-use Faroese scenarios.

3.3 Prompting LLMs for English to Faroese
translation

All LLMs used in this study were prompted in a
few-shot fashion. Each translation query consisted
of a prompt presenting the model with 5 randomly
selected examples of English to Faroese transla-
tion. Examples were selected from a small sub-
set of the Sprotin corpus comprising of 25 manu-
ally selected parallel sentences. These sentences
were selected by a Faroese linguist based on the
following criteria: 1) the meaning of the sentence
is fully preserved in its translation 2) all words
have unambiguous meaning, 3) they present sim-
ple syntax (declarative sentences or interrogative
sentences, excluding subordinate clauses or sen-
tences), 4) there are no typographical and inflec-
tional errors. Two different prompting strategies
were used for open-source (GPT-SW3 and Llama)
and closed-source models (GPT-4o, Claude 3.5
Sonnet). These distinction was made in order to
provide each model with an optimal prompting
format.

3.4 Open-source models
We used the base versions of the Llama 3.1 and
GPT-SW3 models. To facilitate model compre-
hension, we framed the prompt as a language
completion task. Each example was structured as
follows:
The English sentence {english_sentence} is trans-
lated to Faroese as {faroese_sentence}

The query followed the same format but omit-
ted the Faroese translation:
The English sentence {english_sentence} is trans-
lated to Faroese as

This approach minimized the number of failed
translation outputs.

3.5 Closed-source models
Closed-source models (GPT-4 Turbo, GPT-4o and
Claude 3.5 Sonnet) were prompted via their re-
spective APIs. The prompt structure was then
adapted to the API format, with a system prompt
containing the few-shot examples and the instruc-
tions of the task (When I give you a sentence in
English, you translate it into Faroese. Only an-
swer with a translation.) and a translation prompt
containing the translation query.

3.6 Fine-tuning of models for English to
Faroese translation

All open-source models in this study, except GPT-
SW3 40B, were also fine-tuned for English-to-
Faroese translation. For the LLMs, fine-tuning
was conducted for three epochs with early stop-
ping, using the Sprotin corpus. We adopted the Al-
paca prompting format for both Llama and GPT-
SW3, which includes an instruction ("Translate
this sentence from English to Faroese"), an input
(the English sentence), and an output (the Faroese
sentence). Training was performed in 8-bit pre-
cision to reduce computational resource require-
ments. Two versions of NLLB, with 0.6 billion
and 1.3 billion parameters, were also fine-tuned
for English-to-Faroese translation. The training
was carried out in two settings: (1) using only
the Sprotin corpus and (2) using a combination of
the Sprotin corpus and the fo_en_synthetic
dataset. These different settings were chosen to
demonstrate the potential benefits of incorporat-
ing LLM-generated parallel sentences to improve
translation quality. The complete training config-
uration can be found in our GitHub repository.6

3.7 Evaluation

Automatic evaluation is performed using the met-
rics BLEU, ChrF and BERTscore. We do not use
more advanced neural metrics, as these are not cur-
rently available for Faroese.

For human evaluation, we adopted the recently
developed Error Span Annotation (ESA) metric
proposed by Kocmi et al. (2024). ESA combines
elements from two established methods: the over-
all scoring approach of Direct Assessment (DA)
and the error severity span markings from Multidi-
mensional Quality Metrics (MQM). In their study,
Kocmi et al. (2024) compared ESA to MQM
and DA across several MT systems. Their find-
ings demonstrated that ESA offers a more cost-
effective and time-efficient alternative to MQM
without compromising evaluation quality. The
ESA operates with a dual error system, which
is less complex to the annotator compared to
the multiple error categories and subcategories of
MQM.

We created an annotation user interface based
on the task description in Kocmi et al. (2024). Fig-
ure 1 shows an example from the interface. The

6https://github.com/barbaroo/finetune_
translation
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Figure 1: The annotation interface. Annotators
were presented with the original text along with
four translations (three shown here). The annota-
tors mark any segment and are prompted to label
it minor (pink) or major (orange). The annotators
assign an overall score (1-100) to each translation
(blue). For each translation, the annotators can op-
tionally mark missing elements as major or minor.

annotation process was the following: the anno-
tator is presented with the original English sen-
tence along with four Faroese translations. The
annotator then marks all the errors in the Faroese
translations and to each error assigns one of the
two severity levels: major or minor. Addition-
ally, there is a label for omission errors, called mi-
nor/major missing. After marking the errors, the
annotators assign each translation with an overall
score from 0 to 100. The overall score reflects
translation quality in a broad sense, covering ad-
equacy, fluency and comprehension.

3.8 Annotator Guidelines

For the human evaluation, we had two human
annotators, both linguists and native speakers of
Faroese. The annotators developed the annotation
guidelines together, using the original guidelines
from Kocmi et al. (2024) as a starting point and
adjusting it to fit the specific task. The full guide-
lines are shown below.

Approach
Annotators identified and marked error spans in
translations, assigning severity levels (major or
minor) to each. They then provided an indepen-
dent, holistic overall score that could consider fac-

tors beyond marked errors, such as fluency. Major
errors include significant meaning changes, mis-
translations, foreign words, untranslated named
entities, and synthetic words (constructed well-
structured and sensible words, that are however
not recognized in human language use). Minor
errors encompass slight meaning alterations, style
issues, grammatical mistakes, spelling errors, and
punctuation problems.

Other
• Grammatical errors spanning over multiple

words are marked as a single error

• If the source sentence has an error, annotators
consider this original error in their evaluation
of the translations

• If the source sentence is erroneous to an ex-
tent where translation output is completely
off, all 4 sentences are given 0% and no er-
rors are marked.

Scoring
This method provides two scores: an ESA over-
all score (0-100) and the ESAspans (number and
severity of errors). The ESAspans is calculated
as segment score, SEG, SCORE = −1 ∗ NMINOR
−4.8 ∗ NMAJOR, as suggested by Kocmi et al.
(2024). As the evaluations of overall score and
errors are meant to be performed independently,
these scores can be treated separately.

4 Results

4.1 Automatic evaluation

The results for automatic evaluation on the
FLORES-200 benchmark for all models can be
found in Table 1. For all three different scores,
we can see how closed-source Claude yields the
best results. However, NLLB 1.3B, in its fine-
tuned version (Sprotin + fo_en_synthetic )
scores second overall and first among open-source
models. A representation of the CHRF score with
respect to model size, for all models under 10B
is shown in Figure 2. As we can see the top
left corner, representing the best performing mod-
els with respect to their hardware requirements, is
dominated by fine-tuned NLLB models. NLLB
1.3 fine-tuned with the Sprotin corpus alone does
yield a better performance with respect to fine-
tuned LLMs, and with respect to GPT-4o as well.
The performance is anyway sensibly increased (1
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Figure 2: Translation performance for all models
(with fewer than 10 billion parameters) in the au-
tomatic evaluation, quantified by the CHRF score.
The performance is plotted against the model size,
expressed in billions of parameters.

ChrF point and 3 BLEU points) by adding LLM-
generated synthetic data. Llama 3.1 8 B does
yield the worst performance in a few-shot set-
ting, demonstrating however great potential for
improvement after fine-tuning, beating out of the
box NLLB and GPT-SW3 1.3 B.

4.2 Human evaluation

When picking models for human evaluation, we
picked the best models from each category accord-
ing to the automatic evaluation (see Table 1). We
picked the following four models: GPT-SW3 6.7B
- Sprotin, Llama 3.1 8B - Sprotin, NLLB 1.3B
- Sprotin + fo_en_synthetic and we also
picked the best performing closed-source model,
Claude 3.5 Sonnet. The results from the human
evaluation, in terms of ESA - overall quality score
- and ESAspans scores, are displayed in Table 2.
Claude 3.5 Sonnet shows the best performance
of the four, with NLLB getting the best results
for the open-source models. GPT-SW3, despite
the smaller size, does beat Llama 3.1 in both hu-
man and automatic evaluation, showing that fam-
ily language specific knowledge is an advantage
for models of comparable sizes.

Figure 3 shows the average ESA score for
the two annotators separately, showing that the
two annotators agree on how the models should
be ranked in terms of translation quality. The
ESAspans score can be deconstructed into different
error types, as shown in Figure 4. Here we see the

Figure 3: Average overall quality score (ESA) per
model, assigned by the two annotators. "Average
overall quality score (ESA) per model, as assigned
by the two annotators. All models in the plot
are shown in their fine-tuned versions (GPT-SW3
6.7B - Sprotin, Llama 3.1 8B - Sprotin, NLLB
1.3B - Sprotin + fo_en_synthetic), except
for Claude."

two best performing models, Claude and NLLB
1.3, have comparable number of minor and ma-
jor errors, with Claude performing better when it
comes to preserving content (missing content, ma-
jor and minor). NLLB and Claude do display com-
parable performance across the metrics. While the
ESA scores assigned to the two models are statisti-
cally distinct (p = 0.017, as calculated by Mann-
Whitney U test), the same cannot be said for the
ESAspans scores (p = 0.465). GPT-SW3 6.7B
seems to struggle the most with preserving content
due to the greatest number of missing content er-
rors. However, it is performing largely better than
Llama 3.1 8B when it comes to number of errors.

4.2.1 Annotator agreement
Figure 5 shows the distribution of ESA scores
from both annotators. While mostly overlapping,
the distributions have different variances (Levene
test, p = 1.34 × 10−28). Krippendorff’s al-
pha indicates moderate to strong agreement for
absolute ESA (0.58) and ESAspans (0.67) scores.
We also converted scores to rankings for each
translation query, assigning equal ranks for tied
scores. Kendall’s W analysis of these rankings
showed moderate to strong inter-annotator agree-
ment (ESA: 0.514, ESAspans: 0.518), further sup-
porting the reliability of our annotations.

4.3 Common Error Patterns

From a qualitative perspective the annotators re-
port some common error patterns that emerged in
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Model BLEU CHRF BERTScore (f1)

GPT-SW3 40 B 0.173 ± 0.005 48.3 ± 0.4 0.9472 ± 0.0005
GPT-SW3 6.7 B 0.119 ± 0.004 44.7 ± 0.4 0.9373 ± 0.0005
GPT-SW3 1.3 B 0.084 ± 0.004 37.1 ± 0.4 0.9279 ± 0.0006
GPT-SW3 6.7 B∗ - Sprotin 0.183 ± 0.006 50.3 ±0.4 0.951 ± 0.001
GPT-SW3 1.3 B∗- Sprotin 0.179 ± 0.005 49.2 ± 0.4 0.947 ± 0.001
Llama 3.1 8 B 0.062 ± 0.003 35.6 ± 0.3 0.9311 ± 0.0005
Llama 3.1 8 B∗ - Sprotin 0.175 ± 0.005 49.5 ± 0.4 0.9487 ± 0.0005
NLLB 600 M 0.129 ± 0.005 43.7 ± 0.4 0.9428 ± 0.0005
NLLB 600 M∗ - Sprotin 0.171 ±0.005 48.2 ± 0.5 0.9458 ± 0.0006
NLLB 600 M∗ - Sprotin + fo_en_synthetic 0.200 ± 0.006 53.1 ± 0.4 0.9524 ± 0.0005
NLLB 1.3 B 0.161 ± 0.005 45.9 ± 0.4 0.9459 ± 0.0005
NLLB 1.3 B∗ - Sprotin 0.209 ±0.006 52.4 ± 0.4 0.9516 ± 0.0005
NLLB 1.3 B∗ - Sprotin + fo_en_synthetic 0.212 ±0.006 53.5 ± 0.4 0.9530 ± 0.0005

GPT-4 Turbo 0.193 ±0.006 52.7 ± 0.4 0.9518 ± 0.0005
GPT-4o 0.191 ± 0.005 51.7 ± 0.4 0.9509 ± 0.0005
Claude 3.5 Sonnet 0.226 ± 0.006 55.3 ± 0.4 0.9546 ± 0.0005

Table 1: Model performance metrics, calculated over the FLORES-200 dataset. All scores pertaining
to LLMs were obtained in a few shot setting, with the exception of those that were fine-tuned (∗). The
mention of Sprotin and fo_en_synthetic indicate which datasets was the model fine-tuned on. The
error term represents the standard error of the mean for 1012 translations.

Model ESA ESAspans N (ESA = 0)

Claude 3.5 Sonnet 87.7 ± 0.5 -2.3 ± 0.1 0
NLLB 1.3B - Sprotin + fo_en_synthetic 84.8 ± 0.7 -2.3 ± 0.1 3
Llama 3.1 8B - Sprotin 75.3 ± 0.6 -6.3 ± 0.2 0.5∗

GPT-SW3 6.7B - Sprotin 78.8 ± 0.7 -4.6 ± 0.2 2

Table 2: Comparison of Models based on human evaluation. The table portrays ESA and ESAspans
scores, and number of failed translations, expressed in terms of number of translations that received a
0 as ESA score, N (ESA = 0). The * indicates that only one of the two annotators assigned a 0 score,
therefore we do not assign N = 1, but N = 0.5. The error term represents the standard error of the mean
for 215 translations.

the annotation process. Taking a closer look at
linguistic errors, morphological errors seem more
common with inflectional errors in adjectives be-
ing prevalent. Errors in translating named entities
were also frequent, as the models struggle with
identifying the correct entities in Faroese. An in-
teresting observation is the occurrences of a type
of error, where the models make up new words,
that are structurally well-formed for Faroese and
semantically appropriate to various extents, but
are complete neologisms and not recognised in
natural Faroese language use, spoken or written.
These words were typically compound words, like
the example of "artificial intelligence" being trans-
lated into telduheimsniðgóðskapur. Finally, all

models tend to translate word-for-word, which
leads to literal translations of idioms and fixed
phrases. Error patterns like these can suggest ef-
fective focus areas when creating parallel data for
improving the models.

5 Discussion

Our study on English to Faroese machine transla-
tion reveals several important findings that provide
new insights into the relative strengths of differ-
ent approaches to low-resource language transla-
tion, including large language models and special-
ized multilingual models. Surprisingly, the fine-
tuned NLLB model outperformed most LLMs, in-
cluding GPT-4 and GPT-SW3 40B, in both au-
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Figure 4: Average error type per model, as de-
fined by the ESA framework: minor error, ma-
jor error, minor missing content and major missing
content. All models in the plot are shown in their
fine-tuned versions (GPT-SW3 6.7B - Sprotin,
Llama 3.1 8B - Sprotin, NLLB 1.3B - Sprotin +
fo_en_synthetic), except for Claude.

Figure 5: Distribution of overall quality scores
(ESA) given by the annotators.

Figure 6: Scatterplot of CHRF scores versus over-
all quality scores (ESA). All models in the plot
are shown in their fine-tuned versions (GPT-SW3
6.7B - Sprotin, Llama 3.1 8B - Sprotin, NLLB
1.3B - Sprotin + fo_en_synthetic), except
for Claude.

tomatic and human evaluations. This suggests
that specialized multilingual models, when fine-
tuned appropriately, can be highly effective, of-
ten achieving comparable or even superior per-
formance to larger LLMs for specific language
pairs. The success of NLLB highlights the impor-
tance of domain-specific training and more com-
pact, efficient models, which can be especially
valuable in low-resource settings where compu-
tational power may be limited. Furthermore, the
performance of GPT-SW3, despite its smaller size
compared to Llama 3.1, underscores the critical
role of language-specific knowledge in translation
tasks. These findings have significant implications
for resource allocation and model selection in low-
resource language translation.

While automatic and human evaluations gener-
ally aligned on model rankings, there were key dif-
ferences in perceived quality. This reveals the lim-
itations of relying solely on automatic metrics, es-
pecially for low-resource languages. Human eval-
uations showed that while Claude 3.5 Sonnet and
NLLB 1.3B had similar error counts, Claude per-
formed better in content preservation and received
a higher overall ESA score, suggesting that evalu-
ators may prioritize factors like fluency and natu-
ralness beyond just error quantity.

The improvement in NLLB’s perfor-
mance when fine-tuned on both the Sprotin
corpus and LLM-generated synthetic data
(fo_en_synthetic) highlights the potential
of leveraging LLMs to augment training data for
low-resource languages (Yang and Nicolai, 2023).
This strategy could enhance translation quality in
resource-constrained settings. However, despite
these gains, all evaluated models still exhibit
significant errors, falling short of human-quality
translation, which calls for further research. These
findings suggest that fine-tuning smaller, spe-
cialized models may offer a more cost-effective
solution than relying on large LLMs, and that
targeted data creation, informed by common error
patterns, could further boost performance. Addi-
tionally, the discrepancies between automatic and
human evaluations emphasize the need for more
nuanced evaluation methods for low-resource
language translation.

Future work should focus on iterative improve-
ment techniques such as back-translation, ex-
ploring methods to distill knowledge from larger
LLMs to smaller, more deployable models, and
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creating more diverse and representative parallel
datasets for low-resource languages like Faroese.

6 Conclusion

Our study on English to Faroese machine transla-
tion offers a nuanced perspective on the effective-
ness of different approaches to low-resource lan-
guage pairs, highlighting how fine-tuned models
like NLLB can rival or outperform larger LLMs
for low-resource languages. This suggests that fo-
cusing on fine-tuning smaller models and creating
targeted synthetic datasets may be more effective
and resource-efficient. Despite improvements, all
models still fall short of human-quality translation,
emphasizing the need for further research on er-
ror patterns, data augmentation, and better evalu-
ation methods. Advancing low-resource transla-
tion likely calls for a tailored combination of spe-
cialized models with effective data augmentation
strategies.

7 Limitations

One possible limitation of our study is that we did
not consider how much Faroese text these mod-
els were exposed to during pre-training. We ex-
cluded this information because, for some mod-
els, it is not publicly available: we do not
have access to closed-source training data, and
detailed documentation on the data sources for
Llama 3.1 had not been released as of Decem-
ber 2024. GPT-SW3 does not officially cover
Faroese, although it is possible that some Faroese
text was misclassified as Icelandic within the train-
ing data. Conversely, NLLB was trained on ap-
proximately 2.8 million Faroese–English bitext
sentences (Schwenk et al., 2020; Fan et al., 2020),
which are now available on Opus (Tiedemann,
2012). The amount of Faroese these models have
seen certainly influences their final performance;
however, quantifying this exposure is difficult for
most LLMs, making such comparisons challeng-
ing.
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