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Abstract

Fine-tuning language models incurs
high costs in training, inference and
storage. Parameter-efficient fine-tuning
(PEFT) methods have emerged as a
more cost-effective alternative to full
fine-tuning. However, limited work has
compared different PEFT approaches for
tasks like code generation. In this study,
we examine the effect of various PEFT
training methods on model performance
in the task of Python code generation. We
fine-tune four model families, ranging
from 124M to 7B parameters, using three
PEFT approaches alongside standard full
fine-tuning. Our findings reveal that the
effectiveness of each PEFT method varies
with the model size and the corpus used.

1 Introduction

Language models (LMs) have shown great capa-
bilities across a variety of natural language pro-
cessing (NLP) downstream tasks, including code
generation tasks (Chen et al., 2021; Li et al.,
2023; Nijkamp et al., 2023; Roziere et al., 2023a;
Xu et al., 2022). Generally, larger LMs tend
to perform better on downstream tasks (Kaplan
et al., 2020), as evidenced by CodeLlama, which
exhibits improved code completion and genera-
tion abilities as its size increases from 7 billion
to 70 billion parameters (Roziere et al., 2023a).
However, the training of these larger models is
resource-intensive, requiring substantial computa-
tional power and high storage costs.

To address these challenges, Parameter-
Efficient Fine-Tuning (PEFT) methods have
emerged (Dettmers et al., 2023; Houlsby et al.,
2019; Hu et al., 2022; Lester et al., 2021; Lialin
et al., 2023; Liu et al., 2022). These approaches
update a small subset of the model parameters
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during fine-tuning, while the rest remain frozen,
significantly reducing both computational and
storage costs for each downstream task.

While significant research has been conducted
on both PEFT methods and code LMs individu-
ally, at the time of this study, there is only lim-
ited research evaluating PEFT approaches applied
to code LMs for code generation tasks (Purnawan-
syah et al., 2024; Weyssow et al., 2023; Zhuo et al.,
2024). Existing studies on this topic have no-
table shortcomings: many focus only on smaller
models, ignoring those with 1B parameters or
more (Ayupov and Chirkova, 2022; Zou et al.,
2023), while others concentrate solely on tasks
like code understanding or clone detection, which
often outperform code generation tasks under sim-
ilar PEFT training conditions (Liu et al., 2023;
Wang et al., 2023; Zou et al., 2023). These limi-
tations highlight a significant research gap, partic-
ularly as state-of-the-art models increasingly fea-
ture billions of parameters and are predominantly
generative.

We aim to fill existing research gaps through
two key questions: 1) Which PEFT method de-
livers the best performance across various model
sizes for Python generation tasks? 2) How do
these methods compare to full fine-tuning?

2 Parameter Efficient Fine-Tuning

Parameter efficient fine-tuning (PEFT) methods
provide a more efficient alternative to full fine-
tuning of large LMs (LLMs), significantly reduc-
ing both computational and storage costs (Lialin
et al., 2023). Various PEFT methods achieve
remarkable performance compared to full fine-
tuning for models of different sizes (Ding et al.,
2023; Lester et al., 2021; Wang et al., 2023), all
while offering substantial computational savings.
We present an overview of the three methods that
are relevant to our work. These methods are illus-
trated in Figure 1.
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Figure 1: Diagram showing a decoder layer, as

well the PEFT Techniques employed in the study.

Low Rank Adaptation (LoRA) LoRA (Hu
et al., 2022) approximates model weight matrices
through low-rank decomposition into a smaller set
of parameters. The pretrained weights are frozen,
and the approximation is fine-tuned during train-
ing. LoRA can be applied to any weight matrix,
and Dettmers et al. (2023) shows that applying it to
all linear layers enhances performance compared
to limiting it to query and value matrices as done
in Hu et al. (2022). The efficiency of LoRA is
determined by the rank of the decomposed matri-
ces and the scaling factor, alpha. Alpha is often
set to be twice the size of the rank (Zhuo et al.,
2024; Weyssow et al., 2023) or equivalent to the
rank (Lee et al., 2023).

Prefix-tuning Inspired by in-context learning,
this method (Li and Liang, 2021) prepends train-
able tensors called ”soft prompts” to the input of
each transformer block. These task-specific pre-
fixes are updated during training while the original
model parameters are frozen.

Prompt-tuning Similar to  prefix-tuning,
prompt-tuning (Lester et al., 2021) adds trainable
parameters to the input layer only, leading to a
further reduction in the number of parameters that
need updating compared to prefix-tuning.

3 Experimental Approach

In this section, we describe the methodology used
to investigate how models of different sizes adapt
to the Python code generation task using PEFT.
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The experimental approach is illustrated in Fig-
ure 2, which outlines the models, dataset, data
processing methods, training setup, and evaluation
strategy. These elements will be described in de-
tail in the following section.
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Figure 2: Diagram describing the experimental
approach adopted in this study.

3.1 Models

In this study, we strategically select four distinct
model families, mainly GPT-2, CodeGPT, CodeL-
lama, and Mistral v0.1'.

We selected the models with sizes ranging from
124M to 7B parameters and trained them on ei-
ther text, code, or both. This enable us to explore
model sizes that have been overlooked in similar
studies.

GPT-2 (Radford et al., 2019) Autoregressive
models ranging from 124M to 1.5B. The study
employs GPT-2, GPT-2 M, L, and XL.

CodeGPT (Lu et al., 2021) is initialized from
GPT-2 and fine-tuned on code corpora. The study
focuses on the Python variants of the models, us-

ing both adapted and small versions?.

CodeLlama (Roziere et al., 2023b) Available in
three sizes (7B, 13B, and 34B) and three variants.

Only the 7 billion parameter base model was fine-
tuned for this study.

Mistral Mistral v.01 (Jiang et al., 2023) A 7B
autoregressive model trained on open-source text
and code data, with no training datasets listed.
At the time of this study, Mistral did not support
prefix-tuning.

!"This model was the latest release at the time of the study.
It was selected as it is trained on both text and code.

The adapted is trained using the same tokenizer as GPT-2
and the small uses another newly trained BPE tokenizer.



3.2 Datasets

The study utilizes the CoNalLa dataset (Yin et al.,
2018), consisting of 2,379 natural language-code
pairs for training and 500 pairs for testing. This
dataset is derived from the larger CoNalLa-mined
dataset, initially sourced from Stack Overflow. For
training, we use the rewritten_intent field,
which contains the natural language instruction
(i.e., Python problem), and the snippet field,
which provides the corresponding Python code so-
lution. As the dataset was already curated for qual-
ity by annotators, no additional filtering was con-
ducted prior to training.

We formatted the data for model input by
adding indicator prompts ### Instruction:
before the rewritten_intent and
### Response: before the snippet,
followed by a newline separator’. An example
from the processed dataset can be seen in Table 1.

### Instruction:

How can I send a signal from a Python program?
### Response:

os.kill(os.getpid(), signal. SIGUSR1)

Rewritten Intent

Snippet

Table 1: Example from the CoNaLa dataset show-
ing the structure of processed training data.

3.3 Training Setup

The implementation relies on the following li-
braries: HuggingFace transformers (Wolf et al.,
2020), TRL (Werra et al., 2020) and PEFT (Man-
grulkar et al., 2022). We perform the training us-
ing HuggingFace’s SFTTrainer. The training argu-
ments were selected to be the same as the reported
hyperparameters for each model whenever feasi-
ble; otherwise, we pick hyperparameters and em-
pirically validate them to ensure a reliable baseline
for our experiments.

The models were given packed* input se-
quences of length 1024, which included any ad-
ditional prefix or prompt tokens when needed, and
were separated by an EOS (end-of-sequence) to-
ken. This value was selected due to GPU mem-
ory limitations. As done by Shi et al. (2024), we
include the entire instruction-response set in the
loss calculation rather than masking the instruc-

3This structure follows the Stanford Alpaca.

“Packed input sentences combine multiple sequences into
a single one separated by end-of-sequence token, to maxi-
mize training efficiency.
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tions, as this approach can enhance performance
with smaller datasets.

We apply LoRA to all linear layers of the model
following Dettmers et al. (2023), and we set the
rank to 16 and alpha to 32. Experiments by Lester
et al. (2021) on prompt length demonstrated that
only marginal gains were achieved when prompts
exceeded 20 tokens, motivating the use of just 20
tokens for prompt-tuning and prefix-tuning.

3.4 Evaluation

We evaluate the models on the CoNaLa dataset
using BLEU-4 (Papineni et al., 2002) and Code-
BLEU (Ren et al., 2020). For both metrics, 1.0
is the highest score. To generate the predictions,
we use a temperature of 0.2 and nucleus sampling
(Holtzman et al., 2020) with top p = 0.95. All
models are loaded using BF16 for inference.

4 Discussion

Table 2 summarizes the BLEU and CodeBLEU?
scores of the different models on the CoNalLa
dataset.

Best PEFT Approach We observe that smaller
models tend to achieve higher CodeBLEU scores
when utilizing prompt-based techniques, while
larger models show improved performance with
LoRA. Prompt-tuning, which tunes the fewest pa-
rameters, demonstrates enhanced effectiveness as
model size increases, consistent with the findings
of Lester et al. (2021). In terms of BLEU scores,
LoRA consistently outperforms other PEFT tech-
niques. It seems that LoRA tries to learn the
exact n-gram matches from the Python solution,
succeeding to do so for larger models. Con-
versely, prefix-tuning appears to degrade perfor-
mance across all models, aligning with the results
reported by Zou et al. (2023).

Full Fine-tuning versus PEFT Table 3 displays
the number of parameters trained for each PEFT
method across the models in addition to the peak
GPU memory consumption, reported by Hugging-
Face’s Trainer. Full fine-tuning often outperforms
PEFT methods. Although PEFT approaches of-
fer greater efficiency, they still effectively compete
with full fine-tuning despite the significant reduc-
tion in trained parameters. Additionally, memory
savings from utilizing PEFT methods increase as

>Unlike BLEU, CodeBLEU captures semantically equiv-
alent code snippets that may differ in syntax.


https://github.com/tatsu-lab/stanford_alpaca

BLEU CodeBLEU

FT LoRA Prefix Prompt FT LoRA Prefix Prompt
GPT2 0.06025 | 0.05043 0.00035 O 0.113 | 0.09006 0.25 0
CodeGPT-Small | 0.12152 | 0.04647 0.00093 0.00328 | 0.1096 | 0.08588 0.13349 0.08974
CodeGPT-Adapt | 0.20204 | 0.05877 0.00050 0.00470 | 0.14476 | 0.14085 0.07047 0.13243
GPT2-M 0.17327 | 0.06364 0 0 0.16641 | 0.10781 0 0.25
GPT2-L 0.24957 | 0.12984 0.04929 0.03104 | 0.18253 | 0.17777 0.13185 0.13504
GPT2-XL 0.27059 | 0.221  0.00340 0.02419 | 0.1771 | 0.18665 0.0296  0.12399
CodeLlama 0.44735 | 0.43625 0.0001  0.33996 | 0.29512 | 0.27793 0.13267 0.20798
Mistral 0.00019 | 0.43533 O 0.39626 | 0.25132 | 0.29378 0O 0.25466

Table 2: Performance comparison of models using BLEU and CodeBLEU metrics. Scores highlighted in

bold and italic represent the maximum and second-highest scores for each metric per row, respectively.
Rows shaded in gray indicate models that are pre-trained on code data.

model size grows. Unexpectedly, Mistral expe-
rienced a significant decline in BLEU after fine-
tuning, but not on CodeBLEU. This indicates that
fine-tuning impacted Mistral’s ability to generate
exact n-gram matches with the reference, but did
not compromise its performance in code-related
tasks, highlighting a key distinction between these
evaluation metrics.

Avg. GPU

Model # Par. | Method | % Par. Trained | Use (GB)
J— FT 100.00% 7.15
CodeGPT-Small | 124M | LORA 047% 691
CodeGPT-Adapted Prefix 0.30% 5.85
Prompt 0.01% 6.17

FT 100.00% 17.19

LoRA 2.99% 16.49

GPT2-M M| b eix 0.28% 13.59
Prompt 0.01% 14.37

FT 100.00% 31.56

LoRA 1.50% 29.82

GPT2-L TTAM | b ofix 0.003% 2433
Prompt 1.50% 25.83

FT 100.00% 52.85

LoRA 1.25% 48.94

GPT2-XL 6B | prefix 0.20% 39.72
Prompt 0.002% 42.19

FT 100.00% 50.23

LoRA 0.59% 37.33

CodeLlama 678 | prefix 0.08% 2291
Prompt 0.001% 23.39

FT 100.00% 54.98

. LoRA 0.58% 41.80
Mistral 728 | prompt 0.0011% 26.52

Table 3: Percentage of Parameters Trained and
Average GPU Use Across Model Families and
Training Methods.

Code vs No-code models We compare GPT-2 to
the CodeGPT models, as they share the same ar-
chitecture. Fine-tuning consistently leads to the
best BLEU performance, with CodeGPT-Adapt
achieving the top BLEU and CodeBLEU scores,
indicating the effectiveness of fine-tuning when
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a model is pretrained on code (without adapt-
ing the tokenizer). In addition, prefix-tuning on
GPT-2 achieves the highest CodeBLEU scores.
This motivates further use of such PEFT meth-
ods on general-purpose models, like GPT-2, where
prefix-tuning can achieve competitive or even su-
perior performance without the need for extensive
fine-tuning. Interestingly, Code-Llama and Mis-
tral, pretrained on both code and text, achieve the
best overall performance when paired with LoRA,
highlighting that large models pretrained on both
types of data combined with efficient PEFT meth-
ods offer strong performance gains, especially for
computationally efficient code generation.

5 Related Work

Most research combining software engineering
tasks with PEFT methods has focused on small
models (under 1B parameters), often comparing
only a few PEFT techniques or excluding code
generation tasks. Ayupov and Chirkova (2022)
evaluated LoRA (Hu et al., 2022) and Adapters
(Houlsby et al., 2019) on PLBART (Ahmad et al.,
2021) and CodeT5 (Wang et al., 2021), finding
that for complex tasks like code generation, these
PEFT methods underperformed compared to full
fine-tuning. Wang et al. (2023) showed that PEFT
approaches can mitigate catastrophic forgetting in
code summarization and search tasks but did not
explore code generation. Recent studies have be-
gun to address larger models. Weyssow et al.
(2023) trained models up to 7B parameters us-
ing PEFT techniques and full fine-tuning, finding
that LoRA provides improvements over in-context
learning while offering significant memory sav-
ings compared to full fine-tuning. Zhuo et al.



(2024) instruction-tuned 28 models ranging from
1B to 16B parameters across 7 different methods
for code generation tasks, concluding that while
full fine-tuning generally yields the best perfor-
mance, LoRA can achieve comparable results.

6 Conclusion

We investigated the effect of PEFT approaches
on code generation tasks by training four model
families with four fine-tuning methods on the cu-
rated CoNalLa dataset. Our findings suggest that
LoRA is an efficient and effective PEFT method,
one which rivals full fine-tuning once the model
size is sufficiently large. Notably, smaller mod-
els excel with prompt-based techniques, achiev-
ing higher CodeBLEU scores, while larger models
benefits more from LoRA, which focuses on fit-
ting the exact n-gram matches from the reference
code. This dual performance is reflected in the
differing results of BLEU and CodeBLEU, giving
us insights in how these technique work. Over-
all, techniques like LoRA and prompt-tuning are
promising for enhancing efficiency and maintain-
ing performance in code generation tasks, particu-
larly in models pretrained on both code and text.

Limitations

We acknowledge several limitations of this work.
Firstly, no hyperparameter search has been con-
ducted on the PEFT approaches. Many studies
(Zhuo et al., 2024; Weyssow et al., 2023), includ-
ing ours, rely on previously reported fine-tuning or
pre-training hyperparameters as an expedient so-
lution and do not run the experiments with dif-
ferent seeds, due to the computation restrictions
that incentifies the use of PEFT approaches. How-
ever, we note that Zhang et al. (2024) found that
scaling up LoRA and Prompt-Tuning parameters
does not significantly impact downstream task per-
formance, though they also indicate that this ef-
fect may be highly task-dependent. Secondly, this
study was limited to decoder-only models, de-
spite encoder-decoder models also being applied
to code generation tasks (Li et al., 2022). Addi-
tionally, we focused specifically on addition-based
and re-parameterization-based PEFT methods. As
new approaches are developed, further research
should explore their impact on code generation
tasks. Lastly, as model sizes increased during ex-
perimentation, we did not proportionally increase
the amount of data used in training, as recom-

mended by Kaplan et al. (2020) and Hoffmann
et al. (2022). Future work should investigate this
aspect further.
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