A Comparative Study of PEFT Methods for Python Code Generation

Johanna Mannisto Joseph Attieh Jorg Tiedemann
Department of Digital Humanities, University of Helsinki
{first.last}@helsinki.fi

Abstract

Fine-tuning language models incurs
high costs in training, inference and
storage. Parameter-efficient fine-tuning
(PEFT) methods have emerged as a
more cost-effective alternative to full
fine-tuning. However, limited work has
compared different PEFT approaches for
tasks like code generation. In this study,
we examine the effect of various PEFT
training methods on model performance
in the task of Python code generation. We
fine-tune four model families, ranging
from 124M to 7B parameters, using three
PEFT approaches alongside standard full
fine-tuning. Our findings reveal that the
effectiveness of each PEFT method varies
with the model size and the corpus used.

1 Introduction

Language models (LMs) have shown great capa-
bilities across a variety of natural language pro-
cessing (NLP) downstream tasks, including code
generation tasks (Chen et al., 2021; Li et al.,
2023; Nijkamp et al., 2023; Roziere et al., 2023a;
Xu et al., 2022). Generally, larger LMs tend
to perform better on downstream tasks (Kaplan
et al., 2020), as evidenced by CodeLlama, which
exhibits improved code completion and genera-
tion abilities as its size increases from 7 billion
to 70 billion parameters (Roziere et al., 2023a).
However, the training of these larger models is
resource-intensive, requiring substantial computa-
tional power and high storage costs.

To address these challenges, Parameter-
Efficient Fine-Tuning (PEFT) methods have
emerged (Dettmers et al., 2023; Houlsby et al.,
2019; Hu et al., 2022; Lester et al., 2021; Lialin
et al., 2023; Liu et al., 2022). These approaches
update a small subset of the model parameters

390

during fine-tuning, while the rest remain frozen,
significantly reducing both computational and
storage costs for each downstream task.

While significant research has been conducted
on both PEFT methods and code LMs individu-
ally, at the time of this study, there is only lim-
ited research evaluating PEFT approaches applied
to code LMs for code generation tasks (Purnawan-
syah et al., 2024; Weyssow et al., 2023; Zhuo et al.,
2024). Existing studies on this topic have no-
table shortcomings: many focus only on smaller
models, ignoring those with 1B parameters or
more (Ayupov and Chirkova, 2022; Zou et al.,
2023), while others concentrate solely on tasks
like code understanding or clone detection, which
often outperform code generation tasks under sim-
ilar PEFT training conditions (Liu et al., 2023;
Wang et al., 2023; Zou et al., 2023). These limi-
tations highlight a significant research gap, partic-
ularly as state-of-the-art models increasingly fea-
ture billions of parameters and are predominantly
generative.

We aim to fill existing research gaps through
two key questions: 1) Which PEFT method de-
livers the best performance across various model
sizes for Python generation tasks? 2) How do
these methods compare to full fine-tuning?

2 Parameter Efficient Fine-Tuning

Parameter efficient fine-tuning (PEFT) methods
provide a more efficient alternative to full fine-
tuning of large LMs (LLMs), significantly reduc-
ing both computational and storage costs (Lialin
et al., 2023). Various PEFT methods achieve
remarkable performance compared to full fine-
tuning for models of different sizes (Ding et al.,
2023; Lester et al., 2021; Wang et al., 2023), all
while offering substantial computational savings.
We present an overview of the three methods that
are relevant to our work. These methods are illus-
trated in Figure 1.

Proceedings of the Joint 25th Nordic Conference on Computational Linguistics and 11th Baltic Conference on Human Language Technologies

(NoDaLiDa/Baltic-HLT 2025), pages 390-396
March 3-4, 2025 ©2025 University of Tartu Library

]

|
Add & Norm

Frozen Layer

Prefix-Tuning
é h
Add &lNorm i\ @ + Embedding j
(___Attention] LoRA 1
1} S
[a] (x [—]
| \B/ |
Low = |
i |

| Embedding l

Prompt-Tuning

@)
Figure 1: Diagram showing a decoder layer, as

well the PEFT Techniques employed in the study.

Low Rank Adaptation (LoRA) LoRA (Hu
et al., 2022) approximates model weight matrices
through low-rank decomposition into a smaller set
of parameters. The pretrained weights are frozen,
and the approximation is fine-tuned during train-
ing. LoRA can be applied to any weight matrix,
and Dettmers et al. (2023) shows that applying it to
all linear layers enhances performance compared
to limiting it to query and value matrices as done
in Hu et al. (2022). The efficiency of LoRA is
determined by the rank of the decomposed matri-
ces and the scaling factor, alpha. Alpha is often
set to be twice the size of the rank (Zhuo et al.,
2024; Weyssow et al., 2023) or equivalent to the
rank (Lee et al., 2023).

Prefix-tuning Inspired by in-context learning,
this method (Li and Liang, 2021) prepends train-
able tensors called ”soft prompts” to the input of
each transformer block. These task-specific pre-
fixes are updated during training while the original
model parameters are frozen.

Prompt-tuning Similar to prefix-tuning,
prompt-tuning (Lester et al., 2021) adds trainable
parameters to the input layer only, leading to a
further reduction in the number of parameters that
need updating compared to prefix-tuning.

3 Experimental Approach

In this section, we describe the methodology used
to investigate how models of different sizes adapt
to the Python code generation task using PEFT.

391

The experimental approach is illustrated in Fig-
ure 2, which outlines the models, dataset, data
processing methods, training setup, and evaluation
strategy. These elements will be described in de-
tail in the following section.

*\ Models

Curated
CoNalLa
Dataset

GPT2
CodeGPT
Codellama
Mistral

!

!

Data Processing

Data formatting
for instruction
tuning

Training
Approaches:
e Full Finetuning
e [ORA
e Prompt-Tuning

|

+ Evaluation

e BLEU
e CodeBLEU

o Prefix-Tuning

Figure 2: Diagram describing the experimental
approach adopted in this study.

3.1 Models

In this study, we strategically select four distinct
model families, mainly GPT-2, CodeGPT, CodeL-
lama, and Mistral v0.1'.

We selected the models with sizes ranging from
124M to 7B parameters and trained them on ei-
ther text, code, or both. This enable us to explore
model sizes that have been overlooked in similar
studies.

GPT-2 (Radford et al., 2019) Autoregressive
models ranging from 124M to 1.5B. The study
employs GPT-2, GPT-2 M, L, and XL.

CodeGPT (Lu et al., 2021) is initialized from
GPT-2 and fine-tuned on code corpora. The study
focuses on the Python variants of the models, us-

ing both adapted and small versions?.

CodeLlama (Roziere et al., 2023b) Available in
three sizes (7B, 13B, and 34B) and three variants.

Only the 7 billion parameter base model was fine-
tuned for this study.

Mistral Mistral v.01 (Jiang et al., 2023) A 7B
autoregressive model trained on open-source text
and code data, with no training datasets listed.
At the time of this study, Mistral did not support
prefix-tuning.

!"This model was the latest release at the time of the study.
It was selected as it is trained on both text and code.

The adapted is trained using the same tokenizer as GPT-2
and the small uses another newly trained BPE tokenizer.

3.2 Datasets

The study utilizes the CoNalLa dataset (Yin et al.,
2018), consisting of 2,379 natural language-code
pairs for training and 500 pairs for testing. This
dataset is derived from the larger CoNalLa-mined
dataset, initially sourced from Stack Overflow. For
training, we use the rewritten_intent field,
which contains the natural language instruction
(i.e., Python problem), and the snippet field,
which provides the corresponding Python code so-
lution. As the dataset was already curated for qual-
ity by annotators, no additional filtering was con-
ducted prior to training.

We formatted the data for model input by
adding indicator prompts ### Instruction:
before the rewritten_intent and
Response: before the snippet,
followed by a newline separator’. An example
from the processed dataset can be seen in Table 1.

Instruction:

How can I send a signal from a Python program?
Response:

os.kill(os.getpid(), signal. SIGUSR1)

Rewritten Intent

Snippet

Table 1: Example from the CoNaLa dataset show-
ing the structure of processed training data.

3.3 Training Setup

The implementation relies on the following li-
braries: HuggingFace transformers (Wolf et al.,
2020), TRL (Werra et al., 2020) and PEFT (Man-
grulkar et al., 2022). We perform the training us-
ing HuggingFace’s SFTTrainer. The training argu-
ments were selected to be the same as the reported
hyperparameters for each model whenever feasi-
ble; otherwise, we pick hyperparameters and em-
pirically validate them to ensure a reliable baseline
for our experiments.

The models were given packed* input se-
quences of length 1024, which included any ad-
ditional prefix or prompt tokens when needed, and
were separated by an EOS (end-of-sequence) to-
ken. This value was selected due to GPU mem-
ory limitations. As done by Shi et al. (2024), we
include the entire instruction-response set in the
loss calculation rather than masking the instruc-

3This structure follows the Stanford Alpaca.

“Packed input sentences combine multiple sequences into
a single one separated by end-of-sequence token, to maxi-
mize training efficiency.

392

tions, as this approach can enhance performance
with smaller datasets.

We apply LoRA to all linear layers of the model
following Dettmers et al. (2023), and we set the
rank to 16 and alpha to 32. Experiments by Lester
et al. (2021) on prompt length demonstrated that
only marginal gains were achieved when prompts
exceeded 20 tokens, motivating the use of just 20
tokens for prompt-tuning and prefix-tuning.

3.4 Evaluation

We evaluate the models on the CoNaLa dataset
using BLEU-4 (Papineni et al., 2002) and Code-
BLEU (Ren et al., 2020). For both metrics, 1.0
is the highest score. To generate the predictions,
we use a temperature of 0.2 and nucleus sampling
(Holtzman et al., 2020) with top p = 0.95. All
models are loaded using BF16 for inference.

4 Discussion

Table 2 summarizes the BLEU and CodeBLEU?
scores of the different models on the CoNalLa
dataset.

Best PEFT Approach We observe that smaller
models tend to achieve higher CodeBLEU scores
when utilizing prompt-based techniques, while
larger models show improved performance with
LoRA. Prompt-tuning, which tunes the fewest pa-
rameters, demonstrates enhanced effectiveness as
model size increases, consistent with the findings
of Lester et al. (2021). In terms of BLEU scores,
LoRA consistently outperforms other PEFT tech-
niques. It seems that LoRA tries to learn the
exact n-gram matches from the Python solution,
succeeding to do so for larger models. Con-
versely, prefix-tuning appears to degrade perfor-
mance across all models, aligning with the results
reported by Zou et al. (2023).

Full Fine-tuning versus PEFT Table 3 displays
the number of parameters trained for each PEFT
method across the models in addition to the peak
GPU memory consumption, reported by Hugging-
Face’s Trainer. Full fine-tuning often outperforms
PEFT methods. Although PEFT approaches of-
fer greater efficiency, they still effectively compete
with full fine-tuning despite the significant reduc-
tion in trained parameters. Additionally, memory
savings from utilizing PEFT methods increase as

>Unlike BLEU, CodeBLEU captures semantically equiv-
alent code snippets that may differ in syntax.

https://github.com/tatsu-lab/stanford_alpaca

BLEU CodeBLEU

FT LoRA Prefix Prompt FT LoRA Prefix Prompt
GPT2 0.06025 | 0.05043 0.00035 O 0.113 | 0.09006 0.25 0
CodeGPT-Small | 0.12152 | 0.04647 0.00093 0.00328 | 0.1096 | 0.08588 0.13349 0.08974
CodeGPT-Adapt | 0.20204 | 0.05877 0.00050 0.00470 | 0.14476 | 0.14085 0.07047 0.13243
GPT2-M 0.17327 | 0.06364 0 0 0.16641 | 0.10781 0 0.25
GPT2-L 0.24957 | 0.12984 0.04929 0.03104 | 0.18253 | 0.17777 0.13185 0.13504
GPT2-XL 0.27059 | 0.221 0.00340 0.02419 | 0.1771 | 0.18665 0.0296 0.12399
CodeLlama 0.44735 | 0.43625 0.0001 0.33996 | 0.29512 | 0.27793 0.13267 0.20798
Mistral 0.00019 | 0.43533 O 0.39626 | 0.25132 | 0.29378 0O 0.25466

Table 2: Performance comparison of models using BLEU and CodeBLEU metrics. Scores highlighted in

bold and italic represent the maximum and second-highest scores for each metric per row, respectively.
Rows shaded in gray indicate models that are pre-trained on code data.

model size grows. Unexpectedly, Mistral expe-
rienced a significant decline in BLEU after fine-
tuning, but not on CodeBLEU. This indicates that
fine-tuning impacted Mistral’s ability to generate
exact n-gram matches with the reference, but did
not compromise its performance in code-related
tasks, highlighting a key distinction between these
evaluation metrics.

Avg. GPU

Model # Par. | Method | % Par. Trained | Use (GB)
J— FT 100.00% 7.15
CodeGPT-Small | 124M | LORA 047% 691
CodeGPT-Adapted Prefix 0.30% 5.85
Prompt 0.01% 6.17

FT 100.00% 17.19

LoRA 2.99% 16.49

GPT2-M M| b eix 0.28% 13.59
Prompt 0.01% 14.37

FT 100.00% 31.56

LoRA 1.50% 29.82

GPT2-L TTAM | b ofix 0.003% 2433
Prompt 1.50% 25.83

FT 100.00% 52.85

LoRA 1.25% 48.94

GPT2-XL 6B | prefix 0.20% 39.72
Prompt 0.002% 42.19

FT 100.00% 50.23

LoRA 0.59% 37.33

CodeLlama 678 | prefix 0.08% 2291
Prompt 0.001% 23.39

FT 100.00% 54.98

. LoRA 0.58% 41.80
Mistral 728 | prompt 0.0011% 26.52

Table 3: Percentage of Parameters Trained and
Average GPU Use Across Model Families and
Training Methods.

Code vs No-code models We compare GPT-2 to
the CodeGPT models, as they share the same ar-
chitecture. Fine-tuning consistently leads to the
best BLEU performance, with CodeGPT-Adapt
achieving the top BLEU and CodeBLEU scores,
indicating the effectiveness of fine-tuning when

393

a model is pretrained on code (without adapt-
ing the tokenizer). In addition, prefix-tuning on
GPT-2 achieves the highest CodeBLEU scores.
This motivates further use of such PEFT meth-
ods on general-purpose models, like GPT-2, where
prefix-tuning can achieve competitive or even su-
perior performance without the need for extensive
fine-tuning. Interestingly, Code-Llama and Mis-
tral, pretrained on both code and text, achieve the
best overall performance when paired with LoRA,
highlighting that large models pretrained on both
types of data combined with efficient PEFT meth-
ods offer strong performance gains, especially for
computationally efficient code generation.

5 Related Work

Most research combining software engineering
tasks with PEFT methods has focused on small
models (under 1B parameters), often comparing
only a few PEFT techniques or excluding code
generation tasks. Ayupov and Chirkova (2022)
evaluated LoRA (Hu et al., 2022) and Adapters
(Houlsby et al., 2019) on PLBART (Ahmad et al.,
2021) and CodeT5 (Wang et al., 2021), finding
that for complex tasks like code generation, these
PEFT methods underperformed compared to full
fine-tuning. Wang et al. (2023) showed that PEFT
approaches can mitigate catastrophic forgetting in
code summarization and search tasks but did not
explore code generation. Recent studies have be-
gun to address larger models. Weyssow et al.
(2023) trained models up to 7B parameters us-
ing PEFT techniques and full fine-tuning, finding
that LoRA provides improvements over in-context
learning while offering significant memory sav-
ings compared to full fine-tuning. Zhuo et al.

(2024) instruction-tuned 28 models ranging from
1B to 16B parameters across 7 different methods
for code generation tasks, concluding that while
full fine-tuning generally yields the best perfor-
mance, LoRA can achieve comparable results.

6 Conclusion

We investigated the effect of PEFT approaches
on code generation tasks by training four model
families with four fine-tuning methods on the cu-
rated CoNalLa dataset. Our findings suggest that
LoRA is an efficient and effective PEFT method,
one which rivals full fine-tuning once the model
size is sufficiently large. Notably, smaller mod-
els excel with prompt-based techniques, achiev-
ing higher CodeBLEU scores, while larger models
benefits more from LoRA, which focuses on fit-
ting the exact n-gram matches from the reference
code. This dual performance is reflected in the
differing results of BLEU and CodeBLEU, giving
us insights in how these technique work. Over-
all, techniques like LoRA and prompt-tuning are
promising for enhancing efficiency and maintain-
ing performance in code generation tasks, particu-
larly in models pretrained on both code and text.

Limitations

We acknowledge several limitations of this work.
Firstly, no hyperparameter search has been con-
ducted on the PEFT approaches. Many studies
(Zhuo et al., 2024; Weyssow et al., 2023), includ-
ing ours, rely on previously reported fine-tuning or
pre-training hyperparameters as an expedient so-
lution and do not run the experiments with dif-
ferent seeds, due to the computation restrictions
that incentifies the use of PEFT approaches. How-
ever, we note that Zhang et al. (2024) found that
scaling up LoRA and Prompt-Tuning parameters
does not significantly impact downstream task per-
formance, though they also indicate that this ef-
fect may be highly task-dependent. Secondly, this
study was limited to decoder-only models, de-
spite encoder-decoder models also being applied
to code generation tasks (Li et al., 2022). Addi-
tionally, we focused specifically on addition-based
and re-parameterization-based PEFT methods. As
new approaches are developed, further research
should explore their impact on code generation
tasks. Lastly, as model sizes increased during ex-
perimentation, we did not proportionally increase
the amount of data used in training, as recom-

mended by Kaplan et al. (2020) and Hoffmann
et al. (2022). Future work should investigate this
aspect further.

Acknowledgments

This work was supported by the GreenNLP
project, which is funded by the Research Council
of Finland.

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2021. Unified Pre-training for Pro-
gram Understanding and Generation. In Proceed-
ings of the 2021 conference of the north american
chapter of the association for computational linguis-
tics: Human language technologies, pages 2655—
2668, Online. Association for Computational Lin-
guistics.

Shamil Ayupov and Nadezhda Chirkova. 2022.
Parameter-Efficient Finetuning of Transformers for
Source Code.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,
Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse,
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba.
2021. Evaluating Large Language Models Trained
on Code.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. QLoRA: Efficient Fine-
tuning of Quantized LLMs.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2023. Parameter-efficient fine-tuning of large-
scale pre-trained language models. Nature Machine
Intelligence, 5(3):220-235.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, Tom Hennigan, Eric

https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
http://arxiv.org/abs/2212.05901
http://arxiv.org/abs/2212.05901
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4

Noland, Katherine Millican, George van den Driess-
che, Bogdan Damoc, Aurelia Guy, Simon Osin-
dero, Karen Simonyan, Erich Elsen, Oriol Vinyals,
Jack William Rae, and Laurent Sifre. 2022. An em-
pirical analysis of compute-optimal large language
model training. In Advances in Neural Information
Processing Systems.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural Text
Degeneration. ArXiv:1904.09751 [cs].

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-Rank Adaptation
of Large Language Models. In International Con-
ference on Learning Representations.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Tim-
othée Lacroix, and William El Sayed. 2023. Mistral
7B. ArXiv:2310.06825 [cs].

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario
Amodei. 2020. Scaling Laws for Neural Language
Models. ArXiv:2001.08361 [cs, stat].

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
Ilms.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3045-3059, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Ur-
vashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov,

395

Fedor Zhdanov, Manuel Romero, Tony Lee, Na-
dav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine
Jernite, Carlos Mufoz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. 2023. Starcoder: may the source be
with you!

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4582-4597, Online. Association for Computational
Linguistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’ Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with al-
phacode. Science, 378(6624):1092-1097.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling down to scale up: A
guide to parameter-efficient fine-tuning.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay
Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. 2022. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning.

. Liu, C. Sha, and X. Peng. 2023. An Empiri-
cal Study of Parameter-Efficient Fine-Tuning Meth-
ods for Pre-Trained Code Models. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 397-408, Los
Alamitos, CA, USA. IEEE Computer Society.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learn-
ing benchmark dataset for code understanding and
generation. In Proceedings of the neural informa-
tion processing systems track on datasets and bench-
marks, volume 1. Curran.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and Benjamin Bossan.
2022. PEFT: State-of-the-art Parameter-Efficient
Fine-Tuning Methods. https://github.com/
huggingface/peft.

https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2308.07317
http://arxiv.org/abs/2308.07317
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
http://arxiv.org/abs/2305.06161
http://arxiv.org/abs/2305.06161
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2205.05638
http://arxiv.org/abs/2205.05638
https://doi.org/10.1109/ASE56229.2023.00125
https://doi.org/10.1109/ASE56229.2023.00125
https://doi.org/10.1109/ASE56229.2023.00125
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c16a5320fa475530d9583c34fd356ef5-Paper-round1.pdf
https://github.com/huggingface/peft
https://github.com/huggingface/peft

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu,
Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. 2023. CodeGen: An Open Large
Language Model for Code with Multi-Turn Program
Synthesis.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of
the 40th annual meeting of the association for com-
putational linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Purnawansyah, Zahrizhal Ali, Herdianti Darwis,
Lutfi Budi Ilmawan, Sitti Rahmah Jabir, and Ab-
dul Rachman Manga. 2024. Memory Efficient with
Parameter Efficient Fine-Tuning for Code Genera-
tion Using Quantization. In 2024 18th International
Conference on Ubiquitous Information Management
and Communication (IMCOM), pages 1-6.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Am-
brosio Blanco, and Shuai Ma. 2020. CodeBLEU: a
method for automatic evaluation of code synthesis.
ArXiv: 2009.10297 [cs.SE].

Baptiste Rozieére, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023a. Code Llama: Open Foundation Models for
Code. ArXiv:2308.12950 [cs].

Baptiste Rozieére, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas
Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023b. Code llama: Open foundation models for
code.

Zhengyan Shi, Adam X. Yang, Bin Wu, Laurence
Aitchison, Emine Yilmaz, and Aldo Lipani. 2024.
Instruction tuning with loss over instructions.

Deze Wang, Boxing Chen, Shanshan Li, Wei Luo,
Shaoliang Peng, Wei Dong, and Xiangke Liao.
2023. One Adapter for All Programming Lan-
guages? Adapter Tuning for Code Search and Sum-
marization. In Proceedings of the 45th Interna-
tional Conference on Software Engineering, ICSE
’23, page 5-16. IEEE Press.

396

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware Unified Pre-
trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 8696—-8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
and Shengyi Huang. 2020. TRL: Transformer Re-
inforcement Learning. Publication Title: GitHub
repository.

Martin Weyssow, Xin Zhou, Kisub Kim, David Lo,
and Houari Sahraoui. 2023. Exploring parameter-
efficient fine-tuning techniques for code generation
with large language models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 38—45, Online.
Association for Computational Linguistics.

Frank F. Xu, Uri Alon, Graham Neubig, and Vin-
cent Josua Hellendoorn. 2022. A systematic evalua-
tion of large language models of code. In Proceed-
ings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, MAPS 2022, page
1-10, New York, NY, USA. Association for Com-
puting Machinery.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th interna-
tional conference on mining software repositories
(MSR), pages 476-486. IEEE.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan
Firat. 2024. When Scaling Meets LLM Finetuning:
The Effect of Data, Model and Finetuning Method.
In The Tielfth International Conference on Learn-
ing Representations.

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppat-
tarachai, Leandro von Werra, Harm de Vries, Qian
Liu, and Niklas Muennighoff. 2024. Astraios:
Parameter-Efficient Instruction Tuning Code Large
Language Models. ArXiv:2401.00788 [cs].

Wentao Zou, Qi Li, Jidong Ge, Chuanyi Li,
Xiaoyu Shen, Liguo Huang, and Bin Luo.
2023. A Comprehensive Evaluation of Parameter-
Efficient Fine-Tuning on Software Engineering
Tasks. ArXiv:2312.15614 [cs].

http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
http://arxiv.org/abs/2203.13474
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/IMCOM60618.2024.10418267
https://doi.org/10.1109/IMCOM60618.2024.10418267
https://doi.org/10.1109/IMCOM60618.2024.10418267
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2405.14394
https://doi.org/10.1109/ICSE48619.2023.00013
https://doi.org/10.1109/ICSE48619.2023.00013
https://doi.org/10.1109/ICSE48619.2023.00013
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://github.com/huggingface/trl
https://github.com/huggingface/trl
http://arxiv.org/abs/2308.10462
http://arxiv.org/abs/2308.10462
http://arxiv.org/abs/2308.10462
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://openreview.net/forum?id=5HCnKDeTws
https://openreview.net/forum?id=5HCnKDeTws
https://doi.org/10.48550/arXiv.2401.00788
https://doi.org/10.48550/arXiv.2401.00788
https://doi.org/10.48550/arXiv.2401.00788
http://arxiv.org/abs/2312.15614
http://arxiv.org/abs/2312.15614
http://arxiv.org/abs/2312.15614

