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Abstract

We present a systematic evaluation of mul-
tilingual capabilities of open large lan-
guage models (LLMs), specifically focus-
ing on five Finno-Ugric (FiU) languages.
Our investigation covers multiple prompt-
ing strategies across several benchmarks
and reveals that Llama 2 7B and Llama
2 13B perform weakly on most FiU lan-
guages. In contrast, Llama 3.1 models
show impressive improvements, even for
extremely low-resource languages such
as Voro and Komi, indicating success-
ful cross-lingual knowledge transfer in-
side the models. Finally, we show that
stronger base models outperform weaker,
language-adapted models, thus emphasiz-
ing the importance of the choice of the
base model for successful language adap-
tation.

1 Introduction

Large language models (LLMs) have recently
made significant advances in multilingual settings.
For instance, GPT-4 achieves 80.9% accuracy for
Latvian and 76.5% for Icelandic on the 3-shot
MMLU benchmark (OpenAl et al., 2024). For
some time, strong multilingual capabilities were
mainly limited to proprietary models, such as
ChatGPT! and Claude?, whose weights, train-
ing details, and inference processes are kept pri-
vate. These models outperformed open LLMs>
like Llama 2 models (Touvron et al., 2023), on
non-English tasks. However, open-weight LLMs
have recently begun to close this gap (Dubey et al.,
2024; Jiang et al., 2024), even though the officially

'https://openai.com/index/chatgpt/

“https://www.anthropic.com/claude

3Models that have publicly accessible weights available
for use, modification, and research.

supported languages of these models remain lim-
ited and the primary focus is on those with signif-
icantly more data available than for Finno-Ugric
(FiU) languages.

On the other hand, it has been observed that
even models optimized solely for English, such as
the Llama 2 family models (Touvron et al., 2023),
demonstrate some understanding of a wide range
of languages beyond their intended use (Holter-
mann et al., 2024). In experiments conducted by
Holtermann et al. (2024), the Llama 2 7B chat
model correctly answered 14% and 40% of basic
open-ended questions in Estonian and Finnish, re-
spectively, even though only 0.03% of the Llama 2
training data was in Finnish and less than 0.005%
in Estonian (Touvron et al., 2023).

This work evaluates the multilingual capabili-
ties of open LLMs on five FiU languages: Finnish,
Estonian, Livonian, Voro, and Komi. Among
these, Finnish and Estonian are the most well-
resourced, making it easier to adapt existing LLMs
for these languages through continued pretrain-
ing (Kuulmets et al., 2024; Luukkonen et al.,
2023). In contrast, Voro, Livonian, and Komi
are extremely low-resource languages, making
language-specific adaptation considerably more
challenging.

The aim of this work is to clarify the capabilities
of open LLMs in understanding FiU languages.
While it is evident that open LLLMs can understand
these languages to some degree (Holtermann et al.,
2024), their proficiency and comparative perfor-
mance across models remain largely unexplored.
We focus on Llama models, which have demon-
strated state-of-the-art performance and compet-
itiveness with proprietary models (Dubey et al.,
2024; Touvron et al., 2023) and have been widely
used in non-English adaption (Kuulmets et al.,
2024; Etxaniz et al., 2024; Lin et al., 2024; Fu-
jii et al., 2024; Dima et al., 2024; Basile et al.,
2023). Another reason for focusing on Llama
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models is that the newer Llama 3.1 models are
natively multilingual, potentially improving per-
formance on unsupported languages as well. For
further insights, we compare Llama models with
Mistral NeMo (Jiang et al., 2024), another natively
multilingual open model shown to be competitive
with Llama 3.1 model of the same size.

We evaluate only base models rather than chat-
optimized models, as most knowledge is acquired
during pretraining (Zhou et al., 2023; Lin et al.,
2023). In other words, a stronger base model of-
fers greater potential for developing a strong chat
model. Consequently, the performance of base
models on different FiU languages can serve as a
relative estimate of the chat model’s quality.

The evaluation is conducted using several exist-
ing benchmarks that include one or more Finno-
Ugric languages. We examine both the zero-shot
and few-shot capabilities of these models. Ad-
ditionally, we explore whether chain-of-thought
prompting, which involves first translating the in-
put to English, could improve results on Finno-
Ugric languages. In summary, we seek to answer
the following research questions:

1. How well can open LLMs solve tasks in
Finno-Ugric languages?

What is the expected improvement from few-
shot prompting over zero-shot prompting in
solving tasks in Finno-Ugric languages?

. Can chain-of-thought prompting, where the
model first translates the input into English,
improve the performance of open LLMs on
Finno-Ugric languages?

2 Related Work

2.1 Multilingual LLMs

While state-of-the-art LLMs are typically trained
on English-centric data, they exhibit some mul-
tilingual capabilities (Brown et al., 2020; Holter-
mann et al., 2024), even for languages with min-
imal representation in the training data (Holter-
mann et al., 2024; Touvron et al., 2023). This sug-
gests that knowledge transfer from high-resource
languages to low-resource languages must occur
at least to some extent within the model. These
multilingual capabilities can be further enhanced
through continued pretraining in the target lan-
guages, even with just a few billion tokens of data
(Pires et al., 2023; Cui et al., 2024; Kuulmets et al.,
2024; Etxaniz et al., 2024).
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Recent open LLMs such as Llama 3.1 (Dubey
et al., 2024), Mistral NeMo (Jiang et al., 2024),
and Tower (Alves et al., 2024) are specifically
optimized for multilingual performance. For ex-
ample, Llama 3.1 models officially support seven
non-English languages (Dubey et al., 2024), Mis-
tral NeMo is particularly strong in ten languages
other than English (Jiang et al., 2024), and Tower
is trained on a multilingual dataset consisting of
ten languages, including English. According to
Dubey et al. (2024), the strong performance in
non-English languages is achieved by increasing
the proportion of multilingual data in the pretrain-
ing dataset and incorporating high-quality target
language instructions into the instruction-tuning
data.

However, neither Mistral NeMo nor Llama 3.1
models officially support Finno-Ugric languages.
The amount of Finno-Ugric data in their pretrain-
ing corpora is unknown but is likely very limited.
For example, Purason et al. (2024) presented ex-
periments on adapting LLMs to FiU languages,
but gathered only 2.6 million characters of pre-
training data for Livonian, 14 million for Voro,
and 579 million for Komi.

2.2 In-context Learning

In-context learning (ICL) (Brown et al., 2020) is a
method where a pretrained language model learns
to generate the desired output for a given task from
the context of the prompt, without any gradient up-
dates. One of the most common applications of
ICL is few-shot prompting, where a few example
question-answer pairs are provided in the prompt
to guide the model in solving the task.

2.2.1 Chain-of-thought Prompting

Chain-of-thought (CoT) prompting (Wei et al.,
2023) is a prompting technique that improves
upon few-shot prompting. With CoT, the exam-
ple demonstrations provided in the prompt include
a series of intermediate reasoning steps that con-
clude with an answer as opposed to being just
question-and-answer pairs. While initially pro-
posed to improve English reasoning in LLMs, Shi
et al. (2022) showed that CoT prompting turns
English-centric PaLM and GPT-3 into multilin-
gual reasoners, achieving strong results even in
languages whose proportion in the training data is
as small as 0.01%. Notably, they achieve an accu-
racy of 91% on the Estonian subset of the multilin-
gual commonsense reasoning benchmark XCOPA



/[ model input (few-shot prompting) ]\

Given a passage and a question, select the
correct answer from the given choices.

P: Om kimmaés tett, et iispadva Hummogu-
Prantsusmaalt Lyoni lahkist suust l6vvetil
16pnul métsikul pardsil oll’ kilen inemiisile
surmava tsirgugripi tivi HSN1. Prantsusmaa
om Euruupa Liido séitsmes riik, kia viirusdga
hadan om; Prantsusmaa tuld paalt Austriat,
S'aksamaad, Sloveeniat, Bulgaariat, Kreekat
ja ltaaliat. H5N1 arvatavaq ettetuldmisdq
Horvaatian ja Taanin ol-6i kinn(itlst 16tdniq.
Q: Mitmdst Ouruupa Liido riigist H5N1 viirust
om lévvet?

A. Viiest; B. Kuvvost; C. Saitsmest; D.
Katsast

Answer: C

P: Giancarlo Fisichella kaot' uma auto ile
kontrolli ja 16pot’ voikis6itmisd arq pia paalt
alostust. Tima miiskunnaliigdq Fernando
Alonso juhtd vdikisoitmist indmblise aost, a
tuu I6ppi O6kva paalt boksipiatist, arvadaq
halvastd kinnitedli haa edets6ori perast.
Michael Schumacher 16p6t’ voistlusd pia paalt
Alonsot palloddst miitdaséitmiisist tulnuidé
vedrostuso hati perast.

Q: Mille Schumacher véikisdidu 16pot'?

A.Ta kaot' uma auto Ule kontrolli; B. Ka pand'
Alonsoga kokko; C. Fisichella lahk' ts66ri &rq;
D. Auto vedrostus6 man oll' hada

Answer:

-
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Given a passage and a question, select the correct answer from the given choices.
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P: Om kimmas tett, et iispadva Hummogu-Prantsusmaalt Lyoni lahkust suust I6vvetil 16pnul métsikul pardsil oll’ kilen inemiisile
surmava tsirgugripi tivi HSN1. Prantsusmaa om Euruupa Liido saitsmes riik, kia viirusga hadan om; Prantsusmaa tuld paalt
Austriat, S'aksamaad, Sloveeniat, Bulgaariat, Kreekat ja Itaaliat. HSN1 arvatavaq ettetulomiséq Horvaatian ja Taanin ol6-Gi
kinnatist 16Udniq.

Q: Mitmdst Ouruupa Liido riigist H5SN1 viirust om I6vvet?

A. Viiest; B. Kuvvost; C. Saitsmest; D. Katsast

Answer: Let's think step by step.

The passage "<passage in v6ro>" can be translated from Véro to English as "The strain of bird flu lethal to humans, H5N1, has
been confirmed to have infected a dead wild duck, found on Monday, in marshland near Lyon in the east of France. France is
the seventh country in the European Union to suffer this virus; following Austria, Germany, Slovenia, Bulgaria, Greece and Italy.
Suspected cases of H5N1 in Croatia and Denmark remain unconfirmed.”

The question "<question in véro>" can be translated from Véro to English as "In how many countries in the European Union has
the H5N1 virus been identified?" and the options translate as follows: "A. Five", "B. Six", "C. Seven", "D. Eight". According to
text the correct answer in English is "C. Seven". Therefore, the answer in Voro is "C. Saitsmest".

P: Giancarlo Fisichella kaot' uma auto tile kontrolli ja 16p6t’ voikisGitmisd arq pia paalt alostust. Tima miiskunnaliigdq Fernando
Alonso juht6 voikisoitmist indamblse aost, a tuu 16ppi kva paalt boksipiatiist, arvadaq halvasté kinnitedl haa edetsoori perast.
Michael Schumacher I6p6t’ voistluso pia paalt Alonsot palloddst mitdaséitmiisist tulnuidd vedrostuso hati peréast.

Q: Mille Schumacher véikisdidu 16p6t'?

A. Ta kaot' uma auto ile kontrolli; B. Ka pand' Alonsoga kokko; C. Fisichella lahk' ts66ri arg; D. Auto vedrostusd man oll' hada

lewer: /

Let's think step by step.
The sentence “<passage in véro>" can be translated from Véro to English as “Giancarlo Fisichella lost control of his car and
ended the race very soon after the start. His teammate Fernando Alonso was in the lead for most of the race, but ended it right
after his pit-stop, probably because a badly tucked right front wheel. Michael Schumacher ended his race not long after Alonso,
because of the suspension damage in the numerous battles during the race.”.

The question "<question in véro>" can be translated from Véro to English as “What caused Schumacher to end his race early?”
and the options translate as follows: "A. He lost control of his car", "B. A collision with Alonso", "C. Wheel damage caused by
Fisichella", "D. Damage to the car’s suspension". According to text the correct answer in English is “D. Damage to the car’s

[ model output ]

model output

B i

suspension”. Therefore, the answer in Voro is "D. Auto vedrostusd man oll' hada”.

Figure 1: Model input and expected output for few-shot prompting (left) and for CoT prompting where
the intermediate step involves translating the input from the source language (V&ro) to English. The

example is taken from the Belebele benchmark.

(Ponti et al., 2020) (average accuracy 89.9%) with
PalLM. Their observation that there is no strong
correlation between performance and language
frequency in the training corpora leads them to
suggest that, to some extent, language models
can transfer knowledge from high-resource to low-
resource languages, and that this ability is mainly
facilitated by scale.

2.3 English as Pivot Improves Multilingual
Capabilities of LLMs

One of the findings of Shi et al. (2022) is that
CoT prompting with intermediate reasoning steps
in English outperforms native CoT prompting with
steps in the target language. Huang et al. (2023)
show that conversational models such as ChatGPT
and Llama-2 also benefit from using English as a
pivot language — asking the model to first retell
the request in English improves performance on
non-English tasks. Notably, this strategy elim-
inates the need for few-shot examples, meaning
that the ability to translate between English and
the target language must have been learned dur-
ing (pre)training rather than from parallel exam-
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ples provided in the context. Zhang et al. (2024)
instruction-tune pretrained LLMs to first process
instructions in the pivot language English and then
produce responses in the target language.

The phenomenon has been explicitly studied by
Zhang et al. (2023), who show that ChatGPT be-
haves similarly to subordinate bilinguals whose
representation of knowledge is strongly biased to-
ward English and, as a consequence, translates
all non-English inputs to English. Wendler et al.
(2024) investigate the latent representations of to-
ken embeddings of LLaMA 2 and find that in the
middle layers, these are closer to English tokens,
and only in the final layers shift towards target
language tokens. They interpret this result as the
“concept space” being closer to English.

3 Datasets

The selection of benchmark tasks is determined
by the availability of datasets for our target lan-
guages. In total, we evaluate the models on five
tasks using nine datasets. These datasets primarily
originate from cross-lingual benchmarks that in-
clude multiple languages. For our experiments, we



task datasets

est fin  vro kpv liv

machine translation

FLORES-200 (NLLB Team, 2022),

SMUGRI-FLORES (Yankovskaya et al., 2023)

multiple choice QA

Belebele (Bandarkar et al., 2024),

Belebele-smugri (Purason et al., 2024)

text classification

SIB-200 (Adelani et al., 2024),

SIB-smugri (Purason et al., 2024)

extractive QA EstQA (Kaéver, 2021),

TyDiQA (Clark et al., 2020)

commonsense reasoning

XCOPA (Ponti et al., 2020)

v v v v v
v v v v v
v v v v v
v v

v

Table 1: Tasks and datasets used for benchmarking the models.

use only the subsets that correspond to the selected
target languages. A summary of the datasets, tasks
and their language coverage is provided in Table 1.

Machine Translation (MT) Our evaluation in-
cludes translation tasks from low-resource FiU
languages to English. For this purpose, we use the
FLORES-200 benchmark (NLLB Team, 2022),
which includes Estonian and Finnish, and the
FLORES-SMUGRI dataset (Yankovskaya et al.,
2023), which translates the first 250 sentences
from FLORES-200 to ten low-resource FiU lan-
guages, including Komi, V&ro, and Livonian. To
ensure consistency, we use only the first 250 sen-
tences of FLORES-200 for Estonian and Finnish
as well.

Multiple choice QA This task involves select-
ing the correct answer from a set of options,
given a passage, a question, and possible answer
choices. We use the Belebele dataset (Bandarkar
et al., 2024), which augments paragraphs from
the FLORES-200 benchmark with corresponding
questions and answer choices. Among its 122 lan-
guages, Belebele includes Estonian and Finnish.
Purason et al. (2024) further extend the dataset to
cover Voro, Livonian, and Komi, resulting in a to-
tal of 127 examples per language. For consistency,
we use the same number of examples for Estonian
and Finnish.

Topic classification We use the massively mul-
tilingual text classification benchmark SIB-200
(Adelani et al.,, 2024), which bases on the
FLORES-200 benchmark and comprises 125 ex-
amples per language. This benchmark involves
classifying sentences from FLORES-200 into
seven categories. Purason et al. (2024) extend it
to include Voro, Livonian, and Komi.

Extractive QA It is a task in which the objec-
tive is to identify a snippet from a given passage
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that answers a given question. There exists an Es-
tonian dataset for this task, EstQA (Kéaver, 2021)
which includes 603 test examples, each poten-
tially featuring multiple golden answers. In our
evaluation, however, we consider only the first
answer for each example. Finnish is included
into the multilingual dataset TyDiQA (Clark et al.,
2020) covering eight typologically diverse lan-
guages. Both of these datasets are translation-
free, meaning they are created directly in the target
language rather than translated from English. In
our experiments, we use Finnish samples from the
secondary-task subset of TyDiQA, where
the task format is similar to EstQA. This subset
contains 782 Finnish test examples.

Commonsense reasoning Reasoning skills
have been observed to be less trivially transfer-
able across languages than question-answering
abilities (Kuulmets et al., 2024; Zhu et al., 2024,
Huang et al., 2023). To avoid creating a mis-
leading impression of the models’ capabilities, it
is essential to include reasoning datasets in our
evaluation benchmarks. To the best of our knowl-
edge, only one such benchmark incorporates a
Finno-Ugric language: XCOPA (Ponti et al.,
2020), which includes Estonian. XCOPA requires
models to identify which of two answer choices
most plausibly represents the cause or effect of
a given premise. The test dataset comprises 500
examples.

4 Methodology

For tasks that do not require open-ended text
generation (e.g., Belebele, SIB, XCOPA), perfor-
mance is evaluated by calculating the log likeli-
hood of each possible answer choice and selecting
the most likely one as the prediction. In contrast,
tasks requiring open-ended text generation, such
as FLORES, extractive QA, we use greedy decod-
ing to generate predictions.



We report the results both in zero-shot and few-
shot setting where we add either 1, 3 or 5 input-
output pairs to the prompt to provide the model
with task-specific guidance. Additionally, we in-
vestigate the impact of CoT prompting, which
guides the model to generate intermediate reason-
ing steps before producing the final answer. Draw-
ing inspiration from Shi et al. (2022), the inter-
mediate steps require translating the input into
English, identifying the answer in English, and
translating it back to the target language. CoT
prompting can also be used both in zero-shot* and
few-shot settings. In the zero-shot setting, the
prompt ends with ”Let’s think step-by-step” (Ko-
jima et al., 2022), while in the few-shot setting,
this is followed by explicit reasoning steps. Fig-
ure 1 illustrates model input and output in one-shot
setting with and without CoT.

We use regexes to extract answers from the gen-
erated text in tasks requiring decoding. Although
this approach may occasionally produce false neg-
atives, the models generally adhere well to the out-
put format in few-shot settings. We implement all
evaluation strategies with 1lm-eval-harness
framework (Gao et al., 2024) and make the task
configurations publicly available.

5 Results
5.1 Main Results

Table 2 shows 5-shot results (without CoT) across
all tasks and models. In general, Llama 2 7B and
Llama 2 13B perform significantly worse on the
observed FiU languages than the Llama 3.1 fam-
ily models. The exception is Finnish, on which
the Llama 2 models are notably better than on
the other FiU languages. This may be due to the
larger amount of Finnish data in the Llama 2 train-
ing dataset (Touvron et al., 2023) when compared
to data in other FiU languages. However, both
Llama-2 7B and Llama 2 13B still appear weak
on Finnish when compared to other models.
Llama-2 70B shows notable improvements over
Llama 2 7B and Llama 2 13B on Estonian and
Finnish across all tasks. The results for Bele-
bele and SIB also indicate improvement for Véro,
though the improvement in machine translation
(FLORES) is less pronounced. Additionally, SIB
appears to be generally too easy of a benchmark
for the models, as Llama 2 7B already achieves

“We leave zero-shot CoT for future research.
>https://github.com/TartuNLP/smugri-lm-eval-configs
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86% accuracy for Finnish. For other languages,
the benchmark saturates with Llama 2 70B. For
this reason, we exclude SIB from further analysis.
Finally, we observe that Llama 2 models are the
weakest on Komi and Livonian.

L2-7B L2-13B L2-70B L3.1-8B L3.1-70B

SIB
liv 64.8 61.6 83.2 74.4 77.6
kpv 68.0 59.2 83.2 77.6 87.2
VIO 64.8 59.2 85.6 86.4 86.4
est 69.6 68.0 88.8 89.6 89.6
fin 85.6 81.6 91.2 87.2 89.6
Belebele
liv 26.23 35.25 36.89 37.70 42.62
kpv = 27.87 31.15 34.43 52.46 73.77
vro | 27.05 32.79 44.26 50.82 73.77
est 28.69 36.07 66.39 68.03 88.52
fin 44.26 54.92 86.89 74.59 91.80
XCOPA
est 49.2 51.8 67.6 69.2 92.6
FLORES (FiU — En)
liv 6.8 9.3 12.0 10.5 16.1
kpv 54 6.0 7.3 10.3 21.9
VIO 7.8 9.1 129 16.7 30.3
est 126 178 269 [ 353 QUNNAL0Y
fin 29.6 31.9 34.6 32.0 37.1
Extractive QA
exact match
est 21.89 34.33 49.25 50.75 52.74
fin 51.66 48.34 53.45 58.31 47.06
Fl
est 35.35 51.39 66.72 70.87 73.76
fin 70.63 70.36 74.65 75.44 72.98
BERTScore F1 (Zhang* et al., 2020)
est 76.88 82.95 88.86 91.76 93.02
fin 88.50 87.95 89.60 90.63 88.67

Table 2: 5-shot results on all tasks. Accuracy is
reported for SIB, Belebele and XCOPA. BLEU is
reported for FLORES. BERTScore F1 was calcu-
lated using bert-base-multilingual-cased.

We notice that on Estonian and Finnish, Llama
2 70B is competitive with Llama 3.1 8B despite
the latter being nearly nine times smaller, although
Llama-3.1 8B appears to slightly underperform on
Finnish, as indicated by the results of Belebele and
FLORES.

When comparing Llama-3.1 8B to Llama-3.1
70B, the larger model clearly outperforms the
smaller one on Belebele, FLORES, and XCOPA.
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Figure 2: Effect of few-shot examples in 0, 1, 3 and 5-shot setting.

For Estonian and Finnish, the Llama-3.1 70B
achieves nearly 90% accuracy on Belebele and
XCOPA, along with very strong BLEU scores on
the FLORES dataset. The improvements are also
significant for extremely low-resource languages
Voro, Komi and Livonian.

5.2 The Effect of Few-Shot Examples

We analyze the impact of few-shot examples on
the models’ ability to solve tasks in FiU languages.
We limit this analysis to three models: Llama 2
70B, Llama 3.1 8B, and Llama 3.1 70B due to
their superior performance.

Figure 2 illustrates the results. For Belebele and
QA tasks, one-shot prompting generally improves
performance compared to zero-shot prompting.
However, the gains from adding three or five ex-
amples vary significantly across tasks and lan-
guages. Notably, the improvements from few-
shot examples are particularly inconsistent on the
Finnish QA task with Llama-3.1 70B.

In contrast, on FLORES benchmark, the im-
provements are more consistent as the number
of examples increases. Notably, Llama-3.1 70B
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shows substantial gains when translating from
Voro, Livonian, and Komi to English, with im-
provements of 6.6 BLEU points for Véro, 6.6 for
Livonian, and 8.1 for Komi when using five exam-
ples compared to zero-shot prompting.

To conclude, few-shot prompting can yield no-
table gains in some cases—such as a 17% im-
provement for Estonian on Belebele with three ex-
amples and using Llama 2 70B as the base model.
However, these gains are inconsistent and smaller
compared to the improvements achieved by using
a stronger base model. For instance, the zero-
shot performance for Estonian on Belebele with
Llama 3.1 70B surpasses the 3-shot performance
of Llama 2 70B. This highlights the greater poten-
tial of stronger base models over prompt engineer-
ing the weaker models.

5.3 The Effect of CoT Prompting

We analyze the impact of CoT prompting across
three tasks: Belebele, QA, and XCOPA. Due to
the significant increase in the input length with
additional examples, we only compare one-shot
prompting with one-shot CoT prompting for Bele-
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Figure 3: Comparison of CoT prompting and few-shot prompting on Belebele (left, 1-shot), QA (middle,
1-shot) and XCOPA (right, 1-, 3- and 5-shot). The bars shows the scores with few-shot prompting.
Horizontal line (-) indicates the score with few-shot CoT prompting with the same number of shots.

bele and QA. For XCOPA we consider 1-, 3-, and
5-shot scenarios.

Figure 4 shows the results. In Belebele task,
Llama 2 13B, Llama 2 70B and Llama 3.1 8B ben-
efit from CoT prompting in case of Estonian and
Finnish. With the same models the effect of CoT
prompting to Voro, Livonian and Komi is mostly
negative. Llama 2 7B shows negative or minimal
positive gains on all languages. Thi can be ex-
plained with the weak translation skills of Llama
2 7B. On the other hand, Llama 3.1 70B has very
strong translation skills, yet CoT prompting yields
smaller positive improvement than weaker mod-
els. This suggests the strong cross-lingual capa-
bilities of Llama 3.1 70B that mitigate the need
for CoT prompting.

For the QA task, CoT prompting consistently
results in lower performance. This could be at-
tributed to the nature of the extractive QA task,
which requires the output to precisely match the
correct text snippet. The intermediate transla-
tion steps involved in CoT prompting may lead to
slight alterations in the morphological form of the
answer, causing a mismatch with the expected out-
put.

In XCOPA, we see mostly positive improve-
ments from CoT prompting, with even Llama 2
13B benefiting, while Llama 2 7B does not. The
average improvement across all shots for Llama 2
70B and Llama 3.1 8B is 14%. However, the ben-
efit of CoT prompting decreases significantly for
Llama 3.1 70B, following the trend observed in
the Belebele task.

These observations naturally raise the question
of whether there is a correlation between a model’s
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translation capability and its ability to benefit from
CoT prompting. To answer that question, we
plot the 1-shot BLEU scores of FiU — English
translation direction against the gains from 1-shot
CoT prompting over 1-shot prompting (Figure 4).
As shown in the plot, there is no strong correla-
tion between machine translation quality and CoT
gains. Interestingly, CoT prompting can provide
improvements over few-shot prompting, even for
models with weak translation capabilities. How-
ever, it also appears that CoT prompting is more
likely to degrade performance than enhance it.
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Figure 4: 1-shot BLEU scores for FiU — English
translation (x-axis) compared with gains from 1-
shot CoT prompting over 1-shot prompting (y-
axis). Each dot represents a specific Llama model
on a specific task and language. Tasks include
Belebele, QA, and XCOPA.

Our findings align with Sprague et al. (2024),
whose experiments and extensive meta-analysis of
existing studies show that CoT provides signifi-
cant benefits on tasks involving math and logic but
offers much smaller gains for other types of tasks.



Belebele FLORES XCOPA QA

L2 Lam L3.1 L2 Lam L3.1 L2 Lam L3.1 L2 Lam L3.1
liv 2623 2377  37.70 6.76 770 10.50 - -
vIo 27.05 3197  50.82 7.83 1623  16.72 - -
kpv  27.87 2459 5246 5.36 3.64  10.32 - - - - - -
est 28.69  36.89  68.03 12.65 3429 3528 4920 6820 69.00 3535 63.76 70.87
fin 4426 2787 7459  29.63 1836 31.97 - - - 7063 5632 7544
avg 30.82  29.02  56.72 12.44  16.04 2096 4920 6820 69.00 5299 60.04 73.16

Table 3: Comparison of five-shot results of Llama 2 7B, Llammas-base and Llama 3.1 8B. F1 score is

reported for QA.

6 Comparison With Other Models
6.1 Mistral NeMo

We compare Llama 3.1 8B with its competitor, the
12B-parameter model Mistral NeMo (Jiang et al.,
2024), across all tasks except SIB. Both models
are evaluated in zero-shot and five-shot settings
to assess their ability to perform with and with-
out examples. Results for the zero-shot setting are
shown in Table 4, while the five-shot results are
presented in Table 5. Note that zero-shot results
for the QA task are not reported, as this task is typ-
ically evaluated in a few-shot setting due to signif-
icantly lower performance in zero-shot scenarios.

Belebele FLORES XCOPA

L3.1 MN L3.1 MN L3.1 MN
liv 33.61 35.25 491 5.85
vIo 48.36 50.82 12.19 8.18
kpv 38.52 36.89 8.18 3.45 - -
est 62.30 74.59 31.00 33.04 56.80 56.40
fin 68.03 74.59 28.54 30.39
avg 50.16 54.43 16.96 16.18 56.80 56.40

Table 4: Comparison of zero-shot results of
Llama-3.1 8B and Mistral NeMo.

Belebele FLORES XCOPA QA

L3.1 MN L3.1 MN L3.1 MN  L3.1 MN
liv 3770 37.70 10.50 10.10
vro 50.82 50.00 16.72 12.55
kpv 5246 3443 1032 6.01 - - - -
est 68.03 83.61 3528 3228 6920 71.60 70.87 71.86
fin 7459 78.69 3197 33.24 7544 71.39
avg  56.72 56.89 20.96 18.83 6920 71.60 73.16 74.63

Table 5: Comparison of five-shot results of Llama-
3.1 8B and Mistral NeMo. F1 score is reported for

QA.

The results show that Mistral NeMo and Llama
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3.1 8B perform similarly on FiU languages in the
zero-shot setting, though Mistral NeMo is over 4%
better on the Belebele task. In the five-shot setting,
Mistral NeMo outperforms Llama 3.1 8B on three
out of four tasks, except for machine translation,
where Llama 3.1 8B demonstrates a stronger abil-
ity to learn from examples. Overall, Mistral NeMo
excels in Finnish and Estonian, while Llama 3.1
8B appears slightly stronger in extremely low-
resource FiU languages. Notably, Llama 3.1 8B
consistently outperforms Mistral NeMo in Komi,
which, unlike the other languages, uses the Cyril-
lic script.

Belebele FLORES XCOPA

L2 Lam L3.1 L2 Lam L3.1 L2 Lam L3.1
liv 2459 3852 3361 474 462 491
vro 2377 33.61 4836 461 992 12.19 -
kpv 2623 29.51 3852 2838 144 8.18 - - -
est 2295 3934 6230 853 2890 31.0 48.80 56.60 56.60
fin 3279 3443 68.03 27.16 11.57 28.54 -
avg 26.07 3508 50.16 9.59 11.29 16.96 48.80 56.60 56.60

Table 6: Comparison of zero-shot results of Llama
2 7B, Llammas-base and Llama 3.1 8B.

6.2 Llammas

We compare Llama 2 7B with Llammas (Kuul-
mets et al., 2024), which is an adaptation of Llama
2 7B to Estonian with additional pretraining of 5B
tokens of Estonian-centric data. We also include
comparative size Llama 2.1 8B in this comparison.
The results are presented in Table 6 and Table 3.
Unsurprisingly, Llammas outperforms Llama 2
7B on Estonian by a significant margin; however,
its performance on Finnish, in general, decreases
substantially. As indicated in the tables presented
in Section 5.1, Llama 2 7B already demonstrates
some capability in solving tasks in Finnish, unlike



in other FiU languages. This suggests that contin-
ued pretraining on Estonian notably damages this
capability.

Llammas consistently outperforms Llama 2 7B
on Voro, which is not surprising given the lin-
guistic similarities between Voro and Estonian.
The comparison between Livonian and Komi is
less clear in determining which model performs
better. However, Llama 3.1 8B surpasses both
models by a large margin, except on the Belebele
task in Livonian. Notably, Llama 3.1 8B outper-
forms Llammas even on Estonian, demonstrating
that language-specific adaptation of a weaker base
model cannot compete with a stronger, unadapted
base model.

7 Conclusion

We evaluated the Llama 2 and multilingual Llama
3.1 family models on five Finno-Ugric languages
with varying amounts of available resources. Our
results show that Llama 2 7B and 13B perform
poorly on most languages, except for Finnish,
where they achieve moderate results. In con-
trast, the Llama 3.1 family models demonstrate
impressive performance, even for extremely low-
resource languages like Voro and Komi.

The comparison of zero-shot and few-shot
prompting indicates that few-shot prompting is
beneficial across all languages. However, increas-
ing the number of examples does not always lead
to better performance. Similarly, few-shot CoT
prompting brings substantial benefits for tasks
like commonsense reasoning but negatively affects
others, such as QA. Notably, the strongest model,
Llama 3.1 70B, benefits less from CoT prompting
on tasks where it helps weaker models, suggest-
ing that strong cross-lingual capabilities reduce re-
liance on CoT prompting.

Outstanding results in MT, XCOPA, and Bele-
bele for Estonian and Finnish highlight the need
for stronger benchmarks to better assess the ca-
pabilities and limitations of these models. The
surprisingly strong results from Llama 3.1 70B
on Komi and Voro, despite extremely lim-
ited resources, demonstrate effective cross-lingual
knowledge transfer and reduce the dependence on
large target-language datasets for reasonable per-
formance.

Finally, our comparison with Mistral NeMo
suggests that the latter outperforms Llama 3.1 8B
in Estonian and Finnish. Furthermore, our analy-
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sis of Llama models versus Llammas shows that a
stronger, general-purpose base model consistently
outperforms a weaker base model adapted to a spe-
cific language, emphasizing the critical role of the
base model in successful language adaptation.
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