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Abstract

Data quality is crucial for training Large
Language Models (LLMs). Traditional
heuristic filters often miss low-quality text
or mistakenly remove valuable content.
In this paper, we introduce an LLM-
based line-level filtering method to en-
hance training data quality. We use GPT-
4o mini to label a 20,000-document sam-
ple from FineWeb at the line level, al-
lowing the model to create descriptive la-
bels for low-quality lines. These labels are
grouped into nine main categories, and we
train a DeBERTa-v3 classifier to scale the
filtering to a 10B-token subset of FineWeb.
To test the impact of our filtering, we train
GPT-2 models on both the original and
the filtered datasets. The results show that
models trained on the filtered data achieve
higher accuracy on the HellaSwag bench-
mark and reach their performance targets
faster, even with up to 25% less data.
This demonstrates that LLM-based line-
level filtering can significantly improve
data quality and training efficiency for
LLMs. We release our quality-annotated
dataset, FinerWeb-10BT, and the codebase
to support further work in this area.

1 Introduction

In recent years, the size of large language models
(LLMs) and their training datasets has expanded
tremendously, as companies and researchers strive
to build increasingly capable models. In fact, if
current trends continue, we may run out of human-
generated text data within a decade (Villalobos
et al., 2024). This has led to a growing interest
in data quality over quantity: rather than only ex-
panding datasets, researchers are exploring ways
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to achieve high performance with smaller, cleaner
datasets. Recent studies suggest that removing
low-quality text from training data can improve
model performance, even when the overall size of
the dataset is reduced (Longpre et al., 2023).

Furthermore, training state-of-the-art (SOTA)
language models requires significant computa-
tional resources, which are expensive and, depend-
ing on the power source, can contribute to climate
change. For example, the carbon emissions from
training GPT-3 have been estimated at 552 tCO2e
(Patterson et al., 2021), while Meta reports that
training the 405 billion parameter Llama 3.1 emit-
ted 8,930 tCO2e (Meta-Llama, 2024). Smaller, but
higher quality datasets will speed up training and,
thus, high-quality data are necessary to train not
only better models but also greener ones.

While several publicly available datasets are
used for training LLMs, many recent datasets are
still cleaned using simple heuristic filters, which
often leave substantial amounts of low-quality text
while potentially discarding clean text. Machine-
learning techniques offer a promising alternative,
as they enable models to identify patterns re-
lated to data quality. However, labeling data to
train such models is a tedious and time-consuming
process. In this paper, we address these issues
by investigating the following research questions
(RQs):

RQ1: How well can an LLM identify low-quality
content missed by heuristic filters?

RQ2: Does LLM-based quality filtering of train-
ing datasets improve model performance?

To examine these questions, we analyze
FineWeb, a dataset that claims to provide “the
finest text data at scale” (Penedo et al., 2024).
Using GPT-4o mini (OpenAI, 2024a), we label a
20,000-document sample from FineWeb, classify-
ing each line as either Clean or belonging to one
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of several low-quality categories, such as copy-
right notice, programming code, or formatting el-
ements. Instead of defining a label taxonomy our-
selves, we allow the model to generate its own la-
bels as needed, resulting in 547 unique low-quality
labels. After refining these labels, we group them
into nine broader categories for easier classifica-
tion. Next, we train a DeBERTa-v3 (He et al.,
2021) classifier using the labeled data to scale the
filtering process. This classifier allows us to au-
tomatically detect low-quality content in a larger
10B-token sample of FineWeb. Finally, we evalu-
ate the impact of LLM-based filtering by training
GPT-2 models (Radford et al., 2019) on both the
filtered and unfiltered datasets.

We release our quality-annotated
dataset, FinerWeb-10BT, available at
https://huggingface.co/datasets/TurkuNLP/finerweb-
10bt. The code to replicate our
experiments is also provided at
https://github.com/TurkuNLP/finerweb-10bt.

2 Background

A recent survey by Albalak et al. (2024) discusses
the many steps involved in selecting data for train-
ing LLMs, including language filtering, dedupli-
cation, removal of toxic or explicit content, and
heuristic-based data quality filtering. Our focus
here is on the latter two—data filtering and heuris-
tic approaches—using an LLM-driven approach
to refine data quality more precisely. As Albalak
et al. (2024) note, there is no universal standard
for “high-quality” data. In this work, we define
it as human-written, continuous English text from
the main content of a website, reflecting natural
language use across diverse contexts and domains.
Examples include core text from interviews, fo-
rum posts, news articles, blogs, and recipes. In
contrast, low-quality content includes recurring el-
ements like navigational menus, copyright notices,
programming code, and metadata.

Given that LLMs require vast amounts of text
data for training, the Internet has become a pri-
mary source for these data. Since 2008, Common-
Crawl has collected a corpus of approximately
10 petabytes of web content (Baack, 2024). De-
spite its size, CommonCrawl is neither a com-
plete nor fully representative sample of the In-
ternet, but it serves as a foundational source for
building refined datasets used in LLM training.
Here, we focus on three major datasets sourced

from CommonCrawl: C4 (Raffel et al., 2023),
RefinedWeb (Penedo et al., 2023), and FineWeb.
These datasets use different preprocessing tech-
niques to filter out unwanted material, each with
its strengths and weaknesses. We discuss these
datasets because their preprocessing methods are
well-documented, which allows us to make mean-
ingful comparisons.

All three datasets extract plaintext from HTML
documents. C4 uses the WET files provided by
CommonCrawl, which come with pre-extracted
plaintext, whereas RefinedWeb and FineWeb use
trafilatura1 to extract text directly from HTML.
Although trafilatura and similar tools remove
much of the unwanted noise, further preprocess-
ing is often required. For instance, Penedo et al.
(2023) note that “many documents remain inter-
laced with undesirable lines” despite using trafi-
latura. Deduplication and language filtering are
also important aspects of document cleaning but
we do not focus on them in this paper, as they are
specialized techniques not directly related to line-
level text quality.

Existing filtering methods can be grouped into
three levels based on their precision: document
level, line level, and character level. By far the
most common method is document level filtering,
which removes entire documents based on simple
rules. Examples include filtering documents with
phrases like “lorem ipsum”, documents with fewer
than three sentences, or documents with excessive
repetition. Line level filtering targets specific lines
within documents, removing lines that contain
terms like “javascript”, consist solely of numbers,
or fall below a certain length threshold. Character
level filtering is less common and is only applied
in one of the three datasets: in C4, citation mark-
ers commonly found in Wikipedia, such as “[1]”
and “[citation needed]”, are removed.

Document level heuristic filtering is efficient for
quickly removing large volumes of low-quality
data, but it can result in the loss of substantial
high-quality text. In contrast, line and character
level filtering provide more precision by targeting
specific content but they require significantly more
computational resources at scale. Simple heuris-
tics, such as removing lines that contain the word
“javascript” can be hit or miss, sometimes discard-
ing valuable data along with the low-quality con-
tent. Given the vast size of datasets like Com-

1https://trafilatura.readthedocs.io/en/latest/
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monCrawl, creating a simple filtering system that
only removes undesirable content without impact-
ing valuable data is nearly impossible. The fil-
ters that are used are also often dataset and lan-
guage specific. For example, FineWeb applies a
heuristic that removes documents where “the frac-
tion of lines shorter than 30 characters is >= 0.67”
(Penedo et al., 2024, p. 7), but this threshold was
determined through extensive manual testing and
is specific to that dataset.

An ideal quality filter would work across lan-
guages and datasets, avoiding trial-and-error by
focusing on actual text quality rather than prox-
ies like line length or keywords. It should also
be efficient, removing only low-quality content
while keeping valuable data intact. LLMs bring
us closer to this goal: rather than using heuris-
tics, they assess text quality directly, enabling
granular filtering, even within mostly clean docu-
ments. Since LLMs are effective at producing flu-
ent and readable text, they are likely well suited to
identifying high-quality text across different lan-
guages and datasets. However, it should be noted
that while SOTA LLMs are fluent in English and
other high-resource languages, their performance
in low-resource languages is consistently worse
(Li et al., 2024). In this study, we only analyze
English documents, and care should be taken be-
fore generalizing the results to other languages or
multilingual datasets.

The use of LLMs for quality filtering is a rel-
atively new approach, and best practices are still
emerging. For instance, Dubey et al. (2024) utilize
Llama 2 to assess the quality of web documents
for training Llama 3, but details of their method-
ology are vague. The recent trend of withholding
full training datasets for SOTA models has made
it difficult to understand the extent to which LLMs
are currently used in data preprocessing (Nguyen
et al., 2024; Maini et al., 2024). Other efforts, such
as those by Wettig et al. (2024), involve ranking
documents based on quality using GPT-3.5, evalu-
ating factors such as style, educational value, and
factuality. Similarly, Llama 3 was used to create
the FineWedEdu dataset by evaluating educational
content quality, and Gunasekar et al. (2023) em-
ploy GPT-4 to annotate code datasets based on ed-
ucational value.

Our approach differs from prior work by fo-
cusing on general-purpose data quality improve-
ments rather than curating specialized datasets.

We aim to broadly enhance training data quality
through LLM-driven filtering that removes low-
quality lines with minimal manual intervention.
This allows us to assess how automated filtering
can improve training data and, ultimately, model
performance in foundation model training.

3 Methods

Our data source is FineWeb (Penedo et al.,
2024), a 15-trillion-token collection of English
text sourced from CommonCrawl and prepro-
cessed with standard heuristics. The preprocess-
ing includes steps such as length thresholds, string
matching, language and URL filtering, and dedu-
plication. Despite these measures, the authors of
FineWeb acknowledge that the dataset could ben-
efit from further refinement. For more details
on the preprocessing steps, see the original pa-
per (Penedo et al., 2024). In our study, we use
a 10B-token (1̃5 million documents) sample from
FineWeb, FineWeb-10BT2.

Our preprocessing pipeline consists of several
steps. First, we use GPT-4o mini (OpenAI, 2024a)
to label a sample of 20,000 documents from
FineWeb at the line level. The model is tasked
with generating descriptive labels for each line,
categorizing them as either high-quality (Clean) or
into low-quality categories. This labeling process
is data-driven, allowing the model to create a dy-
namic labeling scheme rather than relying on pre-
defined categories. Previous research has shown
that LLMs can be used to annotate data and create
label taxonomies (Wan et al., 2024).

Next, we use OpenAI’s o1-preview model
(OpenAI, 2024c) to group the numerous labels
generated by GPT-4o mini into a smaller, more
manageable set. This forms the basis of a clas-
sification system, which we use to train a small
encoder-based classifier. This classifier scales
the labeling process by assigning quality scores
throughout the FineWeb-10BT dataset, enabling
line-level filtering of low-quality content.

To evaluate our filtering, we train GPT-2 mod-
els (Radford et al., 2019) on both the cleaned and
original versions of FineWeb-10BT. We compare
model performances using the HellaSwag bench-
mark (Zellers et al., 2019), a widely used test for
commonsense reasoning in language models. This
allows us to assess whether the filtering improves

2https://huggingface.co/datasets/HuggingFaceFW/
fineweb/viewer/sample-10BT
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training data quality and model performance.
Given the complexity of Internet text data

(Laippala et al., 2023), defining low-quality cat-
egories in advance is challenging. Our data-driven
approach, by contrast, allows the LLM to dynam-
ically create labels based on the content it en-
counters, rather than relying on fixed categories.
We believe this approach enables a more flexi-
ble and detailed analysis of low-quality content in
FineWeb compared to rule-based methods or pre-
defined categorizations.

4 Experiments and results

4.1 Labeling FineWeb using GPT-4o mini

We begin by labeling a 20,000-document sam-
ple from FineWeb-10BT using the GPT-4o mini
model. The model is prompted to classify each
line as either Clean (high quality and suitable for
training large language models) or assign a de-
scriptive label if the line contains low-quality con-
tent, such as HTML tags or random symbols. Ini-
tially, the model generates its own descriptive la-
bels, which are then added to a list for subsequent
classification. As the model processes more doc-
uments, it selects labels from the existing list or
creates new ones if necessary. To avoid bias from
label order, the list is shuffled after each iteration.

We split the documents into batches of up to 15
consecutive lines. The model receives a prompt,
a list of labels, and a batch of lines. Since the
lines are consecutive, each one is evaluated in con-
text, providing the model with more information
for accurate labeling. For documents containing
a single line longer than 200 characters, the line
is split into segments of no more than 200 char-
acters, using sentence-ending punctuation as the
split point. This prevents output errors, which we
observed when processing excessively long lines
during preliminary tests. Segmenting these lines
also enables more precise analysis.

This process results in quality labels for
328,472 lines. Of these, 274,343 lines (83%) are
labeled as Clean. For low-quality lines, the model
generates 547 unique descriptive labels. However,
we find that many of these labels are assigned
to one line only; in fact, 142 labels appear only
once. Upon inspection, we notice many of the
lines could be considered high-quality and, thus,
to streamline the label set, we map all these infre-
quent labels to Clean. For the remaining labels,
we take a sample of lines and manually verify that

they represent genuinely low-quality content. If
the majority of lines for a particular label are of
high quality, we remap that label to Clean. After
this refinement, the number of descriptive labels is
reduced to 382, with 45,205 lines (14%) classified
as low-quality. Conversely, 86% of the dataset is
now labeled Clean.

To visualize the distribution of these classes, we
generate a 2D UMAP projection (McInnes et al.,
2018) of the 50 most frequent label embeddings,
created using the Stella-en-400M-v5 model (Stel-
laEncoder, 2024) (see also Section 4.3 below).
The UMAP projection reduces the original 1024-
dimensional embeddings to 2D, as shown in Fig-
ure 1, with each dot scaled to represent the relative
frequency of each class.
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Figure 1: UMAP plot of embeddings of the 50
most frequent LLM-generated label names, cre-
ated using the Stella-en-400M-v5 model.

Inspecting the plot, we observe that certain
types of low-quality content tend to occupy dis-
tinct regions in the space. For instance, legal texts
appear in the top-left, adult and toxic content in the
top center-right, and bibliographic references near
the bottom. Contact information, such as times,
dates, and phone numbers, is loosely grouped on
the left, while technical content, like programming
code, appears in the center. These patterns suggest
that the LLM-generated labels capture meaningful
line quality distinctions and form a useful basis for
our final class set.

4.2 Grouping the labels

The next step in our pipeline is to group the
382 detailed labels into a more concise set of
broader, more manageable categories, which sim-
plifies training the encoder classifier. We use Ope-
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nAI’s o1-preview, a newly released “reasoning”
model (OpenAI, 2024b), to organize the labels.
We instruct the model to create clear, distinct cat-
egories that assign each label to only one group.
The goal is to produce a set of classes that the clas-
sifier can learn and differentiate easily.

Category Lines %

Clean 283,267 86.24

Formatting, Style & Errors 13,150 4.00

Bibliographical & Citation References 8,768 2.67

Promotional & Spam Content 7,339 2.23

Contact & Identification Information 3,898 1.19

Navigation & Interface Elements 3,327 1.01

Technical Specifications & Metadata 3,298 1.00

Legal & Administrative Content 2,992 0.91

Offensive or Inappropriate Content 2,433 0.74

Total 328,472 100

Table 1: Label categories and the number of lines
in each category.

After manually inspecting the output, we find
that the groupings are mostly accurate, though
some manual corrections are necessary. For ex-
ample, the model occasionally fails to assign all la-
bels or places some labels into multiple categories.
After fixing these issues, we finalize a classifica-
tion scheme with 9 broader categories, as shown
in Table 1.

To verify that the labels match human intuition,
we conduct a manual inter-annotator agreement
(IAA) evaluation on a random sample of 50 docu-
ments (726 lines). Two human annotators, famil-
iar with the 9-label class set, assess whether they
agree or disagree with the LLM-generated labels.
In cases of disagreement, they provide corrected
labels. We compute Cohen’s Kappa scores com-
paring human ratings with the LLM’s for both the
full label set and a simplified binary classification
(Clean vs. Non-clean).

A1 A2 Avg.

All labels 0.79 0.60 0.70

Clean vs. Non-clean 0.78 0.67 0.73

Table 2: Cohen’s Kappa scores for human annota-
tors (A1 and A2) vs. the GPT-4o mini generated
labels (LLM).

As shown in Table 2, Cohen’s Kappa for the full

label set is 0.788 for Annotator 1 (A1) and 0.604
for Annotator 2 (A2), with an average of 0.70, in-
dicating moderate to substantial agreement. For
the binary classification, Kappa scores improve
slightly, with A1 at 0.78 and A2 at 0.67, averaging
0.73. This suggests that while agreement varies,
the LLM-based classification generally produces
acceptable labels for the FineWeb texts.

These results address RQ1, which examines
how well an LLM can identify low-quality con-
tent that heuristic filters miss. The LLM’s classifi-
cations align well with those of human annotators,
showing that it succees to detect low-quality lines
overlooked by earlier heuristic methods applied to
FineWeb data. While there is some variability in
the IAA scores, the overall performance supports
our LLM-driven approach.

4.3 Training a classifier

To scale our labeling process for the FineWeb-
10BT dataset, we use encoder-based models,
which are faster, more cost-effective, and often
better suited to classification than large gener-
ative LLMs. We experiment with four mod-
els: DeBERTa-v3 (base and large variants) (He
et al., 2021), Stella-en-400M-v5 (currently the top
model of its size for English text clustering on the
MTEB leaderboard (Muennighoff et al., 2023)3),
and XLM-RoBERTa-base (Conneau et al., 2019).
The first three models are English-only, while
XLM-RoBERTa is multilingual.

For line-by-line classification, we first extract
individual lines from the documents, treating each
as a separate example. The data is then shuf-
fled and split into training (70%), development
(10%), and test (20%) sets using stratification. We
add a classification head to each model to gen-
erate probabilities across the 9 classes for each
line and fine-tune both the classification head and
base model. Preliminary tests showed that this ap-
proach yielded better results than training only the
classification head with a frozen base model.

For training, we use bfloat16 precision, a learn-
ing rate of 1e-5, and a batch size of 16. Early stop-
ping is applied with a patience of 5 based on evalu-
ation loss, with a maximum of 5 epochs; however,
models typically converge after the first epoch.
We also apply label smoothing (0.1) to the cross-
entropy loss to improve generalization. Training
is done on a single A100 GPU.

3https://huggingface.co/spaces/mteb/leaderboard
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µ F1 M F1 Clean

P R F1

DeBERTa-v3-base 0.81 0.66 0.88 0.91 0.90
DeBERTa-v3-large 0.81 0.65 0.87 0.92 0.89
Stella-en-400M-v5 0.81 0.67 0.87 0.92 0.89
XLM-RoBERTa-base 0.80 0.63 0.86 0.92 0.89

Table 3: Comparison of Classifiers on Multiclass
Classification using the held-out test set. µ F1:
Micro F1, M F1: Macro F1, P: Precision, R: Re-
call, F1: F1 score for the Clean class.

Table 3 presents the evaluation results of the
models on the test set. We report micro and macro
F1 scores for all classes, along with precision, re-
call, and F1 for the Clean class. The results show
that the models perform similarly, with micro F1
scores ranging between 0.80 and 0.81, and macro
F1 scores between 0.63 and 0.67. For the Clean
class, precision ranges from 0.86 to 0.88, recall
from 0.91 to 0.92, and F1 between 0.89 and 0.90.
These metrics indicate strong performance in dis-
tinguishing between high- and low-quality con-
tent, though the lower macro F1 score suggests
some classes are less easily distinguishable. Ad-
ditionally, newer or larger models do not signifi-
cantly improve performance. Thus, for subsequent
analyses, we select the DeBERTa-v3-base model.
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Figure 2: Confusion matrix of predictions from
our line quality classifier on the test set.

To further examine the performance of the clas-
sifier and spot common misclassifications, we
evaluate its predictions on the held-out test set us-
ing DeBERTa-v3-base and display the results in a
confusion matrix (Figure 2). Most misclassifica-
tions fall into the Clean class, indicating strong
separation between the other classes. The least

distinct class is Offensive or Inappropriate Con-
tent, likely due to the inherent difficulty in defin-
ing clear boundaries for offensive material in LLM
training datasets. In contrast, Bibliographical and
Citation References stands out as the most distinct
class, likely due to its easily recognizable format-
ting and content.

We note that it is preferable for the classifier to
err on the side of labeling low-quality lines Clean
(as shown in the confusion matrix and evalua-
tion scores) rather than mistakenly tagging high-
quality lines as low-quality. This bias helps re-
duce the risk of discarding valuable data from the
dataset.

4.4 Cleaning FineWeb

Given our classifier’s promising evaluation results,
we now label the 10B-token subset of FineWeb
using our DeBERTa-v3-base classifier. For this
task, we simplify to binary classification by focus-
ing only on the probability of the Clean class ver-
sus all other classes combined, where probabilities
closer to 1 indicate high-quality content.

Although the classifier performs well, the Clean
class makes up 86% of the data, which may cause
the model to produce overconfident predictions for
this class. To correct for this imbalance, we ap-
ply Platt scaling (Platt et al., 1999) to adjust the
predicted probabilities, aiming for a more accu-
rate reflection of the true probability distribution
and more reliable thresholding. Specifically, we
train a Platt logistic regression model on the held-
out test set and apply it on top of the classifier
when predicting quality scores for the FineWeb-
10BT dataset.

We predict the quality labels for the FineWeb-
10BT dataset in shards of 100,000 documents.
Within each shard, we process batches of 128
lines, grouping lines by length to speed up pro-
cessing. We then add a “quality_score” key to
each document, with each item scored from 0 to
1 to four decimal places.

Figure 3 shows a histogram of the quality scores
for a 1-million-line sample from FineWeb-10BT,
with calibrated probabilities binned in 10% inter-
vals on a logarithmic scale. The distribution is
bimodal, with most lines receiving high-quality
scores. About 75% of lines score above 0.90,
while 8% score below 0.50. Most of the data is
concentrated in the highest quality bin (90–100%),
with a smaller cluster confidently assigned very
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Figure 3: Quality probabilities for a 1M-line sam-
ple from FineWeb-10BT, binned in 10% intervals
(log scale). A total of 8% of lines fall below the
0.50 quality threshold, and 25% fall below the
0.90 threshold.

low scores, indicating that the classifier effectively
separates high-quality from low-quality lines.

Table 4 shows examples of lines with the high-
est and lowest quality scores according to our
classifier. The highest-scoring lines are coherent,
context-rich sentences, while the lowest-scoring
lines contain metadata, copyright symbols, tags,
and formatting artifacts, demonstrating that the
method performs as intended.

4.5 Evaluation with GPT-2 and HellaSwag

Finally, we evaluate our data cleaning process by
pre-training small GPT-2 models (124M parame-
ters) on three versions of the dataset: (1) the orig-
inal 10B-token sample from FineWeb, (2) a fil-
tered version with a 0.50 quality score threshold,
reducing the dataset by 8%, and (3) a version with
a 0.90 quality score threshold, reducing data by
25%. The training code is adapted from Khajavi
(2024), with modifications specific to our experi-
mental setup.

The models are trained for 18,994 steps (a sin-
gle epoch on the full FineWeb-10BT dataset) us-
ing four A100 GPUs. Every 200 steps, we eval-
uate model performance on the HellaSwag bench-
mark (Zellers et al., 2019), which is widely used to
assess the ability of language models to complete
sentences in commonsense reasoning contexts. To
account for inherent randomness, we repeat the
training on all datasets five times each, with each
run lasting approximately 5 hours and 30 minutes.

Figure 4 shows the evaluation results, which

Line Score

Lines with highest quality scores

She hopes taking part in the 5K will encourage
others to become or stay active.

0.9674

I’d love it if you’d visit and give me your
impressions and/or suggestions.

0.9659

We aim to make the ceremony an enjoyable
celebration.

0.9657

prayerfully seek peace for our partners in
Nigeria.

0.9655

I loved the way this shirt looked and thought it
would be cool to wear it.

0.9655

Lines with lowest quality scores

|Also published as||US20040168193| 0.0057

|Tags:||Anglesey, Beach, General, Landscape,
Landscape / travel, Lighthouse, Llanddwyn,
Sea, Sunrise, Wales, Water|

0.0056

|FOR IMMEDIATE RELEASE||PRESS
RELEASE #MR12-003881|

0.0055

|©Sunwest Bank|||||Equal Housing
Lender|||||Member FDIC|

0.0051

- ©- copyright & copy; or & #169; or & #xA9; 0.0050

Table 4: Examples of highest and lowest quality
lines from a 1M-line FineWeb-10BT sample, with
their probabilities of being Clean.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Iteration

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

A
cc

ur
ac

y

FineWeb-10BT
FinerWeb-10BT (-8%, 0.5 quality threshold)
FinerWeb-10BT (-25%, 0.9 quality threshold)
OpenAI GPT-2 checkpoint

Figure 4: Average HellaSwag accuracy over 5 runs
for three models: the original FineWeb-10BT and
two cleaned versions with quality thresholds of
0.50 (8% data reduction) and 0.90 (25% data re-
duction). Dot markers indicate epoch ends for
each dataset run. GPT-2 (124M) checkpoint ac-
curacy is shown for reference.

indicate a clear positive impact from our data
cleaning process. Models trained on the cleaner
FinerWeb-10BT datasets—both the 8% and 25%
reduced versions—consistently outperform those
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trained on the original FineWeb-10BT data. By
the end of 18,994 training steps, both cleaned ver-
sions show an average HellaSwag evaluation score
that is 0.1 points higher than that of the original
dataset. This improvement is robust, as shown
by the shaded areas around the lines, represent-
ing standard deviations that suggest the effect is
unlikely due to random variation across runs.

Additionally, both cleaned models achieve
slightly higher HellaSwag accuracy than the orig-
inal FineWeb-10BT model at their respective
epoch ends, as indicated by the colored dots in the
plot. Remarkably, both models reach the original
dataset’s highest score approximately 6k steps ear-
lier, a 32% reduction in training time. This means
a reduction of roughly 1 hour and 45 minutes,
based on our 5 hour 30 minute run time per train-
ing round. Interestingly, the 25% reduced dataset
shows a slight edge over the 8% cleaned data, al-
though the difference is minimal; both clean mod-
els ultimately reach an average HellaSwag score of
0.31 within the same number of steps. This sug-
gests that a more aggressive data cleaning strategy
could be worth exploring in future work. In sum-
mary, our data cleaning process produces models
that (1) reach target accuracy faster and (2) achieve
higher accuracy within the same training time, ad-
dressing our RQ2.

5 Discussion

The labels generated by GPT-4o mini reveal both
the quantity and types of low-quality lines that re-
main in FineWeb. The largest categories include
lines with grammatical errors, poor formatting,
and incomplete sentences, along with recurring
items like time stamps, legal jargon, and promo-
tional content. While these elements do not nec-
essarily reduce dataset quality (a good language
model should recognize items like copyright no-
tices or phone numbers), our evaluation shows that
reducing their prevalence improves both accuracy
and training efficiency. These findings suggest that
more precise control over the types and propor-
tions of low-quality data included could further
benefit model performance. Even when simplified
to binary classification, our LLM-driven approach
clearly outperforms heuristic methods in enhanc-
ing dataset quality.

Specifically, our evaluation on GPT-2 using
HellaSwag shows that with less but cleaner data,
the model achieves comparable or even slightly

better accuracy. While GPT-2 is small relative to
SOTA models, our results provide strong evidence
that LLM-based data filtering can reduce training
time and save energy. Although we tested our
method on a small, English-only dataset, this data-
driven approach to quality filtering is easily adapt-
able to other datasets and languages, although low-
resource language may suffer from worse LLM
performance.

Using an LLM as a judge of text quality intro-
duces some bias, as the model’s training data and
design choices influence the resulting labels. For
example, mature SOTA LLMs have strong in-built
safety features that prevent them from generating
harmful or offensive content. In our case, we ob-
serve that GPT-4o mini sometimes labels mild ex-
pletives, such as “shut up”, as toxic, reflecting an
overly sensitive filter for offensive language. As
described in Sections 4.1 and 4.2 we made some
manual adjustments to the LLM labeling to ac-
count for such biases. Also, the line between low-
quality and high-quality is naturally vague, which
introduces noise into the data. In future work, we
plan to experiment with different models and ad-
just our prompts to further improve this filtering
approach.

6 Conclusion

In this paper, we propose a novel approach to im-
proving the quality of large-scale language model
training datasets through fine-grained, line-level
filtering with large language models (LLMs). We
first used GPT-4o mini to label a sample from
the FineWeb dataset, generating detailed labels
that captured low-quality content often overlooked
by heuristic filters, addressing our first research
question (RQ1). These labels were grouped into
broader categories using OpenAI’s o1-preview
model, followed by training a DeBERTa-v3 clas-
sifier to scale the filtering across FineWeb-10BT.
Our experiments demonstrate that this LLM-
driven filtering pipeline improves model perfor-
mance (addressing RQ2), as GPT-2 models trained
on the filtered dataset achieved higher HellaSwag
accuracy with up to 25% less data than those
trained on the original FineWeb-10BT dataset.

These findings suggest that traditional heuristic
filters may not be sufficient and that more sophis-
ticated data preprocessing methods are necessary,
especially as we face challenges like data scarcity
and environmental concerns. Our approach con-
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tributes to the emerging field of LLM-based data
preprocessing, offering a promising avenue for
improving training efficiency and model perfor-
mance.

In future work, we plan to refine our pipeline by
broadening the labeling scheme to provide a more
comprehensive description of document contents.
We will also experiment with more nuanced fil-
tering approaches, moving beyond simple score-
based thresholds, and compare against baselines
such as random data reduction to further validate
our filtering method. We also plan to test Llama-
style models and other architectures to see how our
findings scale to newer LLMs. Further evaluations
and statistical testing will help strengthen the reli-
ability of our results. Finally, we plan to extend
our method to other datasets and languages.
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