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Abstract
We present fast Neural Machine Trans-
lation models for 17 diverse languages,
developed using Sequence-level Knowl-
edge Distillation. Our selected languages
span multiple language families and
scripts, including low-resource languages.
The distilled models achieve comparable
performance while being 10x times faster
than transformer-base and 35x times faster
than transformer-big architectures. Our
experiments reveal that teacher model
quality and capacity strongly influence
the distillation success, as well as the
language script. We also explore the
effectiveness of multilingual students.
We release publicly our code and mod-
els in our Github repository: https:
//github.com/hplt-project/
bitextor-mt-models.

1 Introduction

Neural Machine Translation (NMT) has seen sig-
nificant advancements with the advent of Large
Language Models (LLMs; Zhu et al., 2024). Al-
though LLMs often perform exceptionally well
on high-resource languages, their performance
on low-resource languages lags behind (Stap and
Araabi, 2023; Kocmi et al., 2023; Robinson et al.,
2023). Nevertheless, recent advancements suggest
that this gap may be narrowing (Enis and Hopkins,
2024).

Despite their high quality performance, LLMs
come with substantial computational costs, requir-
ing significant amount of traning data, high-end
hardware and extensive energy consumption (Rae
et al., 2021). These limitations make LLMs un-
suitable for many real-world scenarios where re-
sources are constrained, such as on-device trans-
lation, low-latency requirements, or environments
with privacy concerns.
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Figure 1: Conceptual overview of interpolated
Sequence-Level Knowledge Distillation.

The traditional sequence-to-sequence (seq2seq)
Transformer architecture (Vaswani et al., 2017),
though not as versatile as LLMs, offers consid-
erable advantages in terms of computational ef-
ficiency. These models can be optimized to run
faster, consume less memory, and require fewer
resources, making them a practical solution for
many NMT applications (Kim et al., 2019; Aji and
Heafield, 2020).

In this work, we leverage Knowledge Distilla-
tion (KD) (Hinton et al., 2015; Kim and Rush,
2016) to train compact seq2seq NMT models. KD
allows the transfer of knowledge from a large,
high-performing teacher model to a smaller, more
efficient student model.

We present fast NMT models for 17 diverse lan-
guages with English as the target language. The
selected languages vary widely in terms of script,
language family, and resource availability, includ-
ing low-resource languages like North Azerbaijani
and high-resource languages like Hindi.

In our experiments, we address the following
Research Questions (RQ): RQ1: How does the ca-
pacity gap affect the distillation quality?, RQ2: To
what extent does script influence the transfer of
knowledge? and RQ3: Can we train multilingual
students effectively?.
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2 Related Work

We use Sequence-level KD (Seq-KD, Kim and
Rush, 2016), which has which has proven to be
effective to do KD for NMT (Gumma et al., 2023;
Team et al., 2024). In Seq-KD, the teacher model
is used to forward-translate all the sentences in
the training data to create a distilled dataset. In
the interpolated Seq-KD variant, the teacher gen-
erates K-candidate translations, selecting the one
with the highest smoothed sentence BLEU (Chen
and Cherry, 2014) with the reference. Then, the
student model is trained on the synthetically gen-
erated data. Figure 1 illustrates this procedure. In
this way, the lightweight student retains much of
the teacher’s performance while being optimized
for speed and efficiency.

Several studies explore how to build compact
NMT models. With the motivation of testing the
time-efficiency of NMT systems, a shared task on
NMT efficiency was organized for several years
within the Workshop on Neural Generation and
Translation (Hayashi et al., 2019; Heafield et al.,
2020, 2021). Research has focused on various as-
pects, including compressing multilingual systems
(Tan et al., 2018), investigating different architec-
tures for student models (Bogoychev et al., 2020),
and understanding the effectiveness of KD (Zhou
et al., 2020). One widely adopted approach is
the thin and deep architecture (Gala et al., 2023;
Gumma et al., 2023), characterized by a deep en-
coder and a shallow decoder (Mohammadshahi
et al., 2022; Kasai et al., 2020), which has become
a standard for compressing NMT models. We fol-
low that approach in this work.

3 Methodology

Next, we describe the selected languages, datasets,
tools, and teacher and student architectures used
for our experiments.

Languages The 17 selected languages are listed
in Table 1. To highlight their diversity, we provide
the language family (spanning 13 distinct families)
and the script, representing seven different scripts:
Arabic (Arab), Latin (Latn), Hebrew (Hebr), De-
vangari (Deva), Japanese (Jpan), Cyrillic (Cyrl),
Hangul (Hang). We also include the taxonomy
class proposed by Joshi et al. (2020) to classify
languages according to their available resources.
It ranges from 1 (resources for that language are
limited) to 5 (rich-resource languages).

Language Family Class Data (M)

Arabic (arb Arab) Semitic 5 10.44
Basque (eus Latn) Isolate 4 6.40
Catalan (cat Latn) Romance 4 29.23
Galician (glg Latn) Romance 3 7.78
Hebrew (heb Hebr) Semitic 3 28.90
Hindi (hin Deva) Indo-Iranian 4 13.62
Japanese (jpn Jpan) Japonic 5 15.81
Kazakh (kaz Cyrl) Turkic 3 21.28
Korean (kor Hang) Koreanic 4 7.56
Latvian (lvs Latn) Baltic 3 24.73
Lithuanian (lit Latn) Baltic 3 34.70
Slovak (slk Latn) Slavic 3 53.66
Swahili (swh Latn) Bantu 2 6.27
Malay (zsm Latn) Austronesian 3 42.65
N. Azerbaijani (azj Latn) Turkic 1 44.46
N. Uzbek (uzn Latn) Turkic 3 17.55
Vietnamese (vie Latn) Austro-Asiatic 4 2.83

Table 1: Overview of the selected languages, in-
cluding their script, language family, class as de-
fined by Joshi et al. (2020) and training data (in
millions of sentences).

Datasets We use the Tatoeba Challenge dataset,
a compilation of all datasets available in OPUS
(Tiedemann et al., 2024), de-duplicated and shuf-
fled. Other datasets include: MaCoCu (Bañón
et al., 2022, 2023) for Catalan; CLUVI (Uni-
versidade de Vigo, 2012) for Galician; SAWA
(De Pauw et al., 2009) and Gourmet (Sánchez-
Martı́nez et al., 2020) for Swahili. We use a com-
bination of OpusCleaner (Bogoychev et al., 2023)
and OpusFilter (Aulamo et al., 2020) for cleaning
the corpora. We list the clean training data sizes
for each language pair in Table 1. For development
and evaluation, we use Flores-200 (Goyal et al.,
2022).

Tools We train our models with interpolated
Seq-KD with three different tools: we follow
recipes from the Bergamot project1, the Firefox
Translations training pipeline2 and its extended
multilingual version, OpusDistillery (de Gibert
et al., 2025). All tools perform a forward trans-
lation of the training data to create the distilled
dataset, generating an 8-best list of candidate
translations, as illustrated in Figure 1. Using
the distilled dataset, we train a new, shared 32k
subword vocabulary with SentencePiece (Kudo
and Richardson, 2018), alignments with fast align
(Dyer et al., 2013) and lexical shortlists for faster

1https://github.com/browsermt/
students/tree/master/train-student

2https://github.com/mozilla/
firefox-translations-training
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decoding with extract lex3. Then, we train the
student with guided alignment using the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018). Fi-
nally, we quantize the student models using an 8-
bit integer representation, which significantly re-
duces memory usage while maintaining transla-
tion quality.

OPUS-MT teacher models All teachers are
OPUS-MT transformers (tf). We use one single
teacher for each student model. Five teachers are
tf-base (∼70M parameters) while the remaining
are tf-big (∼209M params). We show the size
of each teacher in Table 3. We train our own tf-
big teachers for Galician and Swahili. For the
other languages, we use the OPUS-MT dashboard
(Tiedemann and De Gibert, 2023) to choose the
best available teacher.

Tiny student models Our student models adopt
the tiny architecture proposed by Bogoychev et al.
(2020), consisting of a transformer encoder with
6 layers and a lightweight RNN-based decoder
with the Simpler Simple Recurrent Unit (SSRU,
Kim et al., 2019) with 2 layers. In a pilot study,
we initially trained both small and tiny student
models, with a detailed comparison of their archi-
tectures provided in Table 2. Results from this
study showed that the translation quality loss in
tiny models was minimal compared to the small
models. Consequently, we opted to focus exclu-
sively on the tiny models, which offer substantial
inference speedups. After training, we quantize
the model. On average, the tiny architecture
is 10x times faster than tf-base and 35x times
faster than tf-big architectures.

We train bilingual student models for all lan-
guage pairs except for the Baltic and Turkic fami-
lies, for which we train multilingual many-to-one
students.

Evaluation We use COMET4 (Rei et al., 2020)
and spBLEU (Goyal et al., 2022) for evalua-
tion. COMET is a neural metric that demonstrates
the highest correlation with human judgments in
translation quality assessment. It covers all tested
languages. Additionally, we use SacreBleu (Post,
2018) to compute spBLEU, which refers to the
BLEU (Papineni et al., 2002) metric on the tok-
enized text with SentencePiece.

3https://github.com/marian-nmt/
extract-lex

4We use the model Unbabel/wmt22-comet-da.

Teachers Students
big base small tiny

Nenc 6 6 6 6
Ndec 6 6 2 2
demb 1024 512 512 256
dff 4096 2048 2048 1536
h 16 8 8 8

Params (M) 213 65 39 17
Size (MB) 798 277 42 17
Speed (tok/s) 814.8 2758.5 18649.5 28854.7

Table 2: Comparison of tf architectures used for
teachers (big, base) and students (small, tiny).
The table lists the number of encoder and decoder
layers (Nenc and Ndec), embedding dimensions
(demb), feed-forward dimensions (dff ), number of
attention heads (h), parameters in millions, model
size in MB, and decoding speed in tokens per sec-
ond. Speed values are averaged across all models
on 32 CPU cores.

4 Results

Tables 3 and 4 summarize the results of our distil-
lation experiments in COMET scores for bilingual
and multilingual settings, respectively. We report
spBLEU scores in Tables 5 and 6 in the Appendix.

On average, the students exhibit a drop of 2.9
COMET points compared to their teachers. In
general, we observe that our students maintain
competitive performance, with high scores for sev-
eral languages, including Catalan, Galician, He-
brew, Slovak, and Malay. These results indicate
that, despite the reduction in model size and com-
plexity, these students still capture a significant
portion of the teacher’s knowledge. However,
for languages like Arabic, Korean and Japanese,
the scores drop significantly. For Japanese, Ta-
ble 5 reveals that the teacher model performs the
worst among all selected languages, with a sp-
BLEU score of 19.2. This suggests that a low-
performing teacher is not capable of knowledge
transfer. Therefore, we exclude Japanese from
our analysis in the next section.

We expect that our students do not outperform
their teachers, due to the capacity limitations of the
students when compared to their larger teachers,
known as the capacity gap problem (Jafari et al.,
2021). However, our Catalan student achieves a
COMET score 1.1 point higher than its teacher,
correlating with a 90% human agreement that it
outputs better translations (Kocmi et al., 2024).
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Language ara cat eus glg heb hin jpn kor slk swh vie zsm

Teacher
Params (M) 76.4 69.4 235.4 209.1 238.1 75.9 77.5 209.2 235.5 209.1 63.9 237.1
Performance 83.7 84.3 83.8 87.6 86.2 81.9 80.3 85.3 85.1 82.9 79.2 85.6

Student
Compression 4.5 4.1 13.9 12.4 14.1 4.5 4.6 12.4 13.9 12.4 3.8 14.0
Performance 76.7 85.4 80.6 84.4 85.2 81.8 62.8 78.9 85.2 79.3 79.8 85.6

∆ -7.0 +1.1 -3.3 -3.2 -1.0 -0.1 -17.6 -6.4 +0.1 -3.6 +0.6 +0.1

Table 3: COMET score results of our bilingual distillation experiments. For the teacher models, we
report parameters in millions and performance. We provide results for the students, as well as their
compression ratio. ∆ shows the difference in COMET scores with the teacher.

Family Baltic Turkic
Language lit lvs azn kaz uzj

Teacher
Params (M) 236.9 236.9 238.8 238.8 238.8

Performance 83.5 84.0 82.0 81.7 81.7

Student
Compression 14.02 14.02 14.13 14.13 14.13
Performance 82.7 83.7 80.2 78.5 78.9

∆ -0.8 -0.3 -1.8 -3.2 -2.7

Table 4: COMET score results of our multilingual
distillation experiments.

We also find an improved score for Vietnamese,
Slovak and Malay, though these improvements
were less significant.

5 Discussion

In this section, we address the research questions
(RQs) posed in the introduction based on the re-
sults of our distillation experiments.

RQ1: How does the capacity gap between the
teacher and student models affect the distillation
quality? The capacity gap between the teacher and
student models is a critical factor in distillation
quality. We find that larger teachers (tf-big) lead to
a more significant performance drop, with an aver-
age COMET reduction of 2.2 compared to tf-base
teachers, which exhibit an average of 1.1 COMET.
This directly correlates with the capacity gap
problem: the smaller the gap in model size, the
better the distillation. The compression ratios for
tf-big teachers are 3.2 times larger, underscoring
the complexity of transferring knowledge from a
high-capacity teacher to a smaller student.

RQ2: To what extent does script influence the
transfer of knowledge? We compare Latin vs.
non-Latin scripts because English (the target lan-
guage in all models) is in the Latin script. Stu-
dents trained for Latin script languages have an
average of 1.2 COMET, while non-Latin script
languages have a similar average of 3.5 COMET.
This difference indicates that script plays a role

in the transfer of knowledge during distillation.
With a fixed vocabulary size, a shared script be-
tween source and target lets SentencePiece build
longer, more semantically rich subwords. In con-
trast, non-Latin script languages yield shorter sub-
words, making knowledge transfer more difficult
and reducing translation quality.

RQ3: Can we train multilingual students effec-
tively? The student models for the language fami-
lies in Table 4 maintain relatively high scores. For
example, Lithuanian and Latvian demonstrate that
multilingual training can compensate for some of
the limitations of model compression, particularly
for closely related languages. The Turkic fam-
ily has a combination of scripts that may hinder
knowledge transfer. Even with the reduced size
of the tiny model, we are able to fit multiple lan-
guages into a single student.

6 Conclusions and Future Work

In this paper, we introduced fast MT models for
17 diverse languages, leveraging interpolated Seq-
KD to compress large teacher models into more ef-
ficient students. Our experiments reveal that low-
performing teachers struggle to transfer knowl-
edge effectively. We also demonstrate that the ca-
pacity gap between teacher and student models, as
well as language script, significantly affect distil-
lation performance. Additionally, our results high-
light the effectiveness of multilingual distillation
for related languages.

For future work, we plan to develop student
models for additional languages. We also aim to
expand our approach by distilling from a broader
range of teacher models available on the Hugging-
Face Hub5 and to further investigate cross-script
knowledge transfer.

5https://huggingface.co/
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A spBLEU results

Language ara cat eus glg heb hin jpn kor slk swh vie zsm

Teacher
Params (M) 76.4 69.4 235.4 209.1 238.1 75.9 77.5 209.2 235.5 209.1 63.9 237.1
Performance 37.6 45.1 33.6 44.5 46.5 32.1 19.2 30.1 43.2 41.0 28.7 44.4

Student
Compression 4.5 4.1 13.9 12.4 14.1 4.5 4.6 12.4 13.9 12.4 3.8 14.0
Performance 29.7 43.3 26.7 39.5 41.2 29.8 7.4 22.2 38.4 35.4 29.9 41.4

∆ -7.9 -1.8 -6.9 -5.0 -5.3 -2.3 -11.8 -7.9 -4.8 -5.6 +1.2 -3.0

Table 5: spBLEU score results of our bilingual distillation experiments. For the teacher models, we
report parameters in millions and performance. We provide results for the students, as well as their
compression ratio. ∆ shows the difference in spBLEU scores with the teacher.

Family Baltic Turkic
Language lit lvs azn kaz uzj

Teacher
Params (M) 236.9 236.9 238.8 238.8 238.8

Performance 34.0 36.2 24.2 30.0 32.0

Student
Compression 14.02 14.02 14.13 14.13 14.13
Performance 31.3 32.9 20.2 24.3 26.1

∆ -2.9 -3.3 -4.0 -5.7 -5.9

Table 6: spBLEU score results of our multilingual distillation experiments.
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