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Abstract

Modern ASR systems require massive
amounts of training data. While ASR
training data for most languages are scarce
and expensive to transcribe, a practical
solution is to collect huge amounts of
raw untranscribed speech and pre-train
the ASR model in a self-supervised man-
ner. Unfortunately, for many low-resource
minority languages, even untranscribed
speech data are scarce. In this paper, we
propose a solution for the Northern Sámi
language with 22,400 hours of speech ex-
tracted from the Finnish radio and tele-
vision archives. We evaluated the model
performance with different decoding al-
gorithms and examined the models’ in-
ternal behavior with interpretation-based
techniques.

1 Introduction

Self-Supervised Learning (SSL) has caused a
paradigm shift in Automatic Speech Recognition
(ASR), enabling the development of highly ac-
curate End-to-End models even with a limited
amount of data. Low-resource languages also
benefited from this advancement, as models pre-
trained on other languages proved to be a good

foundation for the development of ASR models
using small supervised corpora (Bogdanoski et al.,
2023; Gilles et al., 2023). Northern Sámi, a lan-
guage spoken by only about 20,000 people has
also seen rapid advancements in speech technol-
ogy (Hiovain-Asikainen and De la Rosa, 2023;
Getman et al., 2024a).

While fine-tuning speech foundation models
such as wav2vec 2.0 (Baevski et al., 2020) can
now be considered standard procedure, choos-
ing the right pre-trained system is still very crit-
ical. Several works have reported that monolin-
gual pre-training tends to produce the best foun-
dation (Evain et al., 2021; Lehečka et al., 2024;
Parcollet et al., 2024), which could be impossible
without access to large speech-only corpora. Al-
ternatively, continuing the pre-training of an exist-
ing model could adapt it to new languages (Javed
et al., 2022). In this work, we build speech founda-
tion models for Northern Sámi with about 22,400
hours of speech from radio broadcasts, which puts
them on par with most publicly available monolin-
gual speech foundation models for high-resource
languages (Evain et al., 2021; Wang et al., 2021;
Javed et al., 2022; Malmsten et al., 2022; Getman
et al., 2024b; Parcollet et al., 2024; Sawada et al.,
2024).

In the past, various training methods have been
explored for wav2vec 2.0. Still, its inference is
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most commonly done via a greedy decoding al-
gorithm. Here, we explore whether a more ad-
vanced technique called prefix beam search (Han-
nun et al., 2014) could lead to better results. The
main issue with the standard greedy algorithm
stems from the blank symbol, which usually re-
ceives a considerable portion of the probability
mass (Jung et al., 2022), thus leading to spiky out-
puts and many deletion errors. To avoid this un-
wanted effect, prefix beam search merges multiple
paths that would result in the same output, less-
ening the suppression effect of the blank output.
While this technique was originally proposed to
be used with recurrent models, its variants have
been successfully utilized with large SSL mod-
els (Jung et al., 2022) and encoder-decoder-based
architectures (Zhao et al., 2024) too, albeit those
works also employ an external LM during the de-
coding procedure. In contrast, we only utilize pre-
fix beam search to decode the wav2vec 2.0 model
without any LM parts, as low-resource languages
often lack in terms of text data too, which prevents
the development of a good LM.

Besides the training and decoding algorithms,
we also take a closer look at our models’ mistakes
and propose a new interpretation-based solution to
learn more about the reasons for the misrecogni-
tion. One of our main observations revealed sys-
tematic, repeating mistakes, which we hypothe-
sized were due to the dominance of the Internal
LM developed by the model during the finetuning
phase (Zeyer et al., 2021a). To validate this hy-
pothesis, we utilized the Integrated Gradients (IG)
technique (Sundararajan et al., 2017) to investigate
whether the model behaves differently when it pre-
dicts various characters. Our experiments revealed
that several characters which caused the problems
were predominantly outputted by using mainly the
long-term information embeddings while ignoring
the current acoustic information. Furthermore, we
have found that the model dedicated considerably
more neurons towards detecting the rare Sámi-
specific characters compared to the common Latin
characters.

In summary, in this paper, we made the follow-
ing contributions:

• Developed the first Northern Sámi speech
foundation models 1.

1https://huggingface.co/collections/GetmanY1/wav2vec2-
sami-22k-66ead12fe465d6302b63d11b

• Compared the greedy decoding algorithm
with the prefix beam search algorithm with-
out any LM component.

• Proposed a model interpretation technique to
investigate why the model makes certain mis-
takes.

2 Methods

2.1 Continued Pre-Training
While standard pre-training of wav2vec 2.0 im-
plies random initialization of the model weights,
another training option is utilizing weights of an
existing foundation model from a closely related
language(s). Getman et al. (2024a) has demon-
strated that continued pre-training on a small, 100-
hour dataset can improve the downstream out-of-
domain ASR performance. In this work, we take a
step further and analyze whether this technique is
useful even when a sufficient amount of unlabeled
in-domain data is available.

Continued pre-training differs from pre-training
from scratch only during the model initialization
phase; otherwise, it follows the same standard
training pipeline. A side effect of this approach
is catastrophic forgetting (McCloskey and Cohen,
1989), which hinders the models’ performance on
language(s) they have been originally pre-trained
on (Qian et al., 2024). However, one of the goals
of this work is to develop monolingual foundations
for a low-resource minority language rather than
expand the mono- and multilingual models’ capa-
bilities to a new language.

2.2 Prefix Beam Search
End-to-end ASR models like wav2vec 2.0 are
often trained with the Connectionist temporal
classification (CTC) algorithm in the finetuning
phase (Graves et al., 2006). While CTC offers
a convenient way of training, the resulting mod-
els are well-known to suffer from various prob-
lems; namely, the blank label introduced by CTC
usually obtains very high probabilities dominating
the sequence of outputted symbols, and non-blank
outputs display a peaky behavior (Zeyer et al.,
2021b). These problems together mean that CTC-
trained models often have high deletion errors, as
the blank label could easily suppress the emission
of actual characters, especially when the model is
uncertain.

Prefix Beamsearch (Hannun et al., 2014) of-
fers an alternative to the standard greedy decod-
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ing algorithm by considering multiple paths that
would result in the same output and combining the
probabilities of these paths to gain a more accu-
rate estimate of character emission probabilities.
For example, if we consider a short window of 4
timesteps in which the model should recognize the
character "a", then the greedy decoding would re-
quire that the output unit linked to "a" would get
the maximum probability at least in one frame. In
many cases, this assumption is not true. Thus, the
character is deleted if the probability of the blank
(H) is high. In the beam search algorithm, all pos-
sible combinations of H and "a" are considered,
and the probabilities of these paths (e.g. HHaH,
or HaaH, or HHaa, etc.) are added together, of-
ten surpassing the probability of purely H output,
preventing the character deletion problem.

The algorithm was originally proposed for re-
current models, and RNN-T architectures, but here
we demonstrate that it is applicable even with
wav2vec 2.0 models, without any LM. In practice,
we fix all the LM probabilities as 1 and feed the
logit values of wav2vec 2.0 after a softmax layer
to the decoding algorithm.

2.3 IG-based error analysis

For a long time, large foundation models, like
any other deep neural network, were considered
a black box. With the advancement made in
the field of model explainability (Schwalbe and
Finzel, 2021), it is now possible to peak inside
these huge models and investigate their internal
functions. In this work, we selected the tech-
nique called Integrated Gradients (IG) (Sundarara-
jan et al., 2017) to learn more about the inter-
nal representations of our systems. IG belongs to
the family of gradient-based posthoc interpretation
tools, meaning that no modifications of the train-
ing algorithm or the model architecture are needed
to gain insight. In essence, IG estimates the gra-
dients of the relevant output units with respect to
certain hidden neurons, and these values are called
attributions. In Grósz et al. (2023), it was demon-
strated that IG can be used to filter out the irrele-
vant neurons of various foundation models, with-
out any significant performance loss. Inspired by
these findings, here we employed IG to unveil how
our models predict certain characters.

Our primary goal was to understand when
the model makes decisions mainly based on
acoustic information, and when the Internal LM

(ILM) (Zeyer et al., 2021a) becomes dominant.
Several techniques have already been proposed
to estimate the ILM developed during supervised
training. In Zeyer et al. (2021a); Chen et al.
(2023), the authors suggest masking out the en-
coder (acoustic) output to find the ILM scores or
employing the so-called density ratio method. Un-
fortunately, these techniques are not applicable in
our case as our model does not have a decoder part,
and it is not autoregressive, thus we developed an
alternative IG-based solution.

In our experiments, we choose to focus on
two specific layers of the wav2vec 2.0 model;
namely the feature embeddings of the CNN com-
ponent, which can be considered as acoustic fea-
tures, and the convolutional positional embedding
layer’s output, where temporal information is in-
troduced to the model. Using IG, we estimated the
attributions of each neuron in these two layers per
output units. Here we used the predicted (most
probable) output at each timestep to estimate the
attributions. Next, to approximate the importance
of each layer, we calculated the sum of the ab-
solute attributions of neurons inside the two lay-
ers. Our motivation for using the absolute values
was simple; we did not want to lose valuable in-
formation if some neurons had both large negative
and positive attributions at different times. Lastly,
once the overall attribution of the two layers’ was
known, the attribution ratio was calculated by di-
viding the positional embedding layer’s attribution
by the feature embedding layer’s. In this context,
an attribution ratio of 1 means that the positional
embedding layer has the exact same information
as the feature embeddings (i.e. it has no extra in-
fluence on the outputs), while a ratio of 2 means
that the new temporal information introduced by
the positional embedding layer is equally impor-
tant compared to the acoustic one. Naturally, a ra-
tio above 2 implies that the temporal information
is valued more than the acoustic features, which is
a sign of the ILM dictating the final output.

3 Data

For pre-training the Sámi models, we extracted
35,614 hours of radio broadcasts of Yle Saa-
men Radio. The broadcasts have been originally
recorded by the Radio and Television Archive
(RTVA) since 2009 and provided for research
by the Finnish National Audiovisual Institute
(KAVI).
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Since the raw dataset also contained a consider-
able amount of non-speech events, including mu-
sic and silence, we pre-processed it with a neural
voice activity detector (VAD) (Bredin, 2023). Af-
ter that, continuous speech segments longer than
30 seconds were split into shorter utterances. The
final size of pre-training data was 22,415 hours,
meaning that nearly 37% of the audio was recog-
nized as non-speech.

For the ASR fine-tuning, we used the Sámi
Parliament data 2 featuring about 20 hours of
transcribed speech. For testing the ASR models,
1 hour of out-of-domain read-aloud and sponta-
neous speech of varying audio quality was used.

4 Experiments

We pre-trained the foundation models with the
Fairseq toolkit (Ott et al., 2019). Pre-training was
done on 512 GPUs of the LUMI supercomputer 3

for 125,000 steps (approx. 115 epochs) for the
Base models (95M parameters) and 167,000 steps
(approx. 100 epochs) for the Large ones (317M
parameters). The models were then fine-tuned
on the Sámi Parliament data for 60 epochs with
Huggingface Transformers (Wolf et al., 2020). In
continued pre-training, we adapted models orig-
inally pre-trained on European Parliament ple-
nary session recordings (Wang et al., 2021). The
Base model was a monolingual Finnish founda-
tion, while the Large one also included speech
from two other Uralic languages (Hungarian and
Estonian).

We evaluated the models with the standard ASR
performance metrics such as word and character
error rate (WER and CER) and compared them to
existing ASR solutions, including Whisper (Rad-
ford et al., 2023) fine-tuned on 34 hours of sponta-
neous Northern Sámi (Hiovain-Asikainen and De
la Rosa, 2023) and XLS-R (Babu et al., 2022) first
fine-tuned on high-resource Finnish data and then
adapted to Northern Sámi with the Sámi Parlia-
ment data (Getman et al., 2024a).

Table 1 summarizes the ASR results. Compared
to the previously developed solutions, the Base-
sized models provided lower WER but higher
CER. In contrast, when switching to the Large
models, more considerable improvements can be
observed.

Next, we performed statistical significance tests

2https://sametinget.kommunetv.no/archive
3https://www.lumi-supercomputer.eu/

on both the word and character levels using the
Matched Pair Sentence Segment approach. To run
the tests, we employed the SCTK toolkit 4. Look-
ing at the models with continued pre-training,
models of both sizes gave significantly (p ď
0.001) lower CER compared to pre-training from
scratch, but only the Large one significantly (p ď
0.05) outperformed its counterpart pre-trained
from scratch on the word level.

Switching from greedy decoding to prefix beam
search further improved the CER. On the word
level, however, a significant improvement can be
observed only for the Large model pre-trained
from scratch, while it insignificantly changed the
error rate in either direction for the rest of the
models. A more detailed analysis of the results
revealed that the prefix beam search always in-
creased the number of substitutions and insertions
but decreased the number of deletions compared
to greedy decoding.

Overall, the best results were obtained by con-
tinued pre-training of the Large model. It gave a
noticeable improvement on a character level over
pre-training on the same data from scratch (14%
relative CER reduction), which may suggest that
continued pre-training allowed the model to ben-
efit from acoustic patterns learned from other lan-
guages and combine them with the newly learned
acoustic information of the target language. On
the other hand, minor changes in the WER and the
distribution of error rates in Figure 1 may indicate
that the gained language knowledge was still not
sufficient enough to properly recognize complete
words.

5 Analysis of the results

To better understand how our best model (Large-
22K CPT + Prefix Beam Search) works, and why
it makes certain mistakes, we first inspected the
character-level confusion matrix on the test data,
see Figure 2. Overall, most characters could be
recognized with relatively good accuracy, and only
a few rare characters like å, ä, x, ö have extremely
low recognition rates. While these mistakes can be
explained by the lack of training data, we also no-
ticed other systematic problems on the word level.
One such issue was related to the word "na" (in
English: "well"), which was quite common in the
training data. Interestingly, in the test set other
similar words, like "ni" and "no" were almost al-

4https://github.com/usnistgov/SCTK
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System WER, % CER, %
XLS-R EFT (Getman et al., 2024a) 47.70 15.15
Whisper (Hiovain-Asikainen and De la Rosa, 2023) 43.15 14.05

Base-22K 43.07 16.50
Base-22K + Prefix Beam Search 43.12 16.20˚˚˚

Base-22K CPT 43.04 15.76
Base-22K CPT + Prefix Beam Search 42.74 15.51˚˚˚

Large-22K 33.32 12.76
Large-22K + Prefix Beam Search 32.94˚˚ 12.51˚˚˚

Large-22K CPT 32.28 10.83
Large-22K CPT + Prefix Beam Search 32.29 10.76˚˚

Table 1: WER and CER on the 1-hour out-domain test set. EFT = extended fine-tuning; CPT = continued
pre-training. Statistically significant improvements of the prefix beam search over the greedy decoding
are marked ***p ď 0.001, **p ď 0.01

Figure 1: The distribution of the WER and CER
per utterance of our best model (Large-22K CPT
+ Prefix Beam Search) on the test set. Utterances
with more than 100% error rates were pooled to-
gether for the visualization.

ways replaced by the word "na", which implied
that the model developed a strong internal LM,
which forced it to predict the character "a" after
the letter "n", especially at the beginning of the
sentence, when the model has limited context.

To validate this hypothesis about the internal
LM, we employed our proposed solution to bet-
ter understand why our best wav2vec 2.0 made
certain mistakes. Our first observation was that
the overall attribution ratio on the whole set was
above 1.3, proving that the temporal information
introduced by the positional embedding layer was
indeed utilized by the model, but acoustic features

Figure 2: The character confusion matrix of
our best model (Large-22K CPT + Prefix Beam
Search) on the test set.

were valued considerably more. Furthermore, we
saw that the blank and the word boundary sym-
bols have the lowest ratios, signaling that they
were predicted mostly based on acoustic informa-
tion. Looking at the actual characters, we saw
that the average ratio was approximately 2, sug-
gesting that, on average, the temporal information
introduced in the positional embedding layer was
as useful as the acoustic features extracted by the
CNN component.
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(a) Continued pre-training.

(b) Pre-training from scratch.

Figure 3: The attribution ratios between the posi-
tional and features embeddings per character.

After a closer look at the ratios per character
(see Figure 3a), we identified two groups; in the
first one, the ratio was below 2, suggesting that
these were predicted mainly using acoustic fea-
tures. This group includes characters such as "h",
"i", "n", etc. On the other hand, we can see sev-
eral characters, including "a", which were primar-
ily predicted by the influence of the internal LM.
These results imply that for some characters the
acoustic component of the model was not good
enough, and it would benefit from seeing addi-
tional training material with more diverse textual
content in order to force the model to rely more on
the acoustic information.

Next, we investigated the counterpart of the best
model, trained from scratch (Large-22K), see Fig-
ure 3b. This model demonstrated a quite dif-
ferent behavior: all tokens except the blank la-

bel had an attribution ratio above 2, meaning that
the system’s output was determined mostly by the
temporal information added by the positional em-
beddings. The average attribution ratio for non-
blank characters was 2.7, signaling that the acous-
tic component had a considerably smaller attribu-
tion towards the output than the internal LM. Con-
sidering that the model was pre-trained only with
a relatively small dataset, we can conclude that
the acoustic component produced by the continued
pre-training is more appropriate and extracts more
relevant information. The purely Northern Sámi
model’s overreliance on temporal information in-
dicates that it most probably obtained most of
its knowledge by simply memorizing parts of the
training transcripts during the fine-tuning phase,
as large models are prone to do so (Huang et al.,
2022; Wang et al., 2024). Validating this theory
is out of the scope of this paper, but remains an
important future task.

Lastly, we also investigated individual neurons
in the two selected layers. Here, we aimed to find
out which character needed the most actively con-
tributing neurons. We looked at each neuron’s at-
tribution values per character. First, we calculated
the average and standard deviation of the attribu-
tions in each layer. Our first observation at this
stage was that the majority of the neurons had an
attribution close to the mean (which was approx-
imately 0 in all cases), and only a few neurons
displayed large attributions similar to the findings
of (Grósz et al., 2023). Based on these observa-
tions, we decided to separate the neurons into two
groups; the highly contributing ones, whose accu-
mulated attribution was farther than one standard
deviation from the mean, and the rest categorized
as low-contributing.

Figure 4 illustrates the amount of highly at-
tributing neurons in each investigated layer of the
best model. The first observation is that common
characters like "r", "b" and "k" required only a few
dedicated neurons, while special Sámi characters
like "·" and "æ" were predicted based on a large
number of neurons. In general, many latin char-
acters required less than a 100 highly contributing
neurons, while many Sámi charaters needed more
units. This implies that the acoustic features of the
CPT model were quite good for most Latin char-
acters that were well represented in the original
pre-training corpus, while some ("d", "c" and "t")
required more units, perhaps due to non-standard
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Figure 4: Number of highly attributing neurons in
the best model. Acoustic neurons refer to units in
the feature embedding layer, while Temporal ones
can be found in the positional embedding layer.

pronunciation. Additionally, we can see that the
model dedicated a larger portion of neurons to the
Sámi specific outputs, implying that despite the
language adaptation via CPT and finetuning, it still
has difficulties recognizing them well.

6 Limitations

While experimental results suggest that prefix
beam search is beneficial on the character level,
its WERs proved to be quite similar to the greedy
decoding algorithm’s. As the lower CER suggests
better quality output, testing its readability by hu-
mans and comparing it to the greedy alternative
remains an important future task. Additionally,
we should mention that here, we utilized the prefix
search without any modifications, but it might ben-
efit from adjustments in terms of hyperparameters
and vocabulary usage of wav2vec 2.0, especially
regarding the word separator symbol.

While our model interpretation experiments
have revealed interesting facts about the internal
functions of the models, they should be rigorously
tested and validated. On the one hand, interpreta-
tion techniques are known to be fragile (Ghorbani
et al., 2019). Thus, our experiments should be re-
peated with other attribution estimation methods
to ensure that our observations hold. Furthermore,
we made several simplifications in this work, in-
cluding the decision to accumulate the attributions
over time, thus ignoring their changes in differ-
ent contexts. In the future, we intend to investi-
gate how the attributions’ trajectories change over
time and in different contexts to gain a deeper un-
derstanding of when temporal information is val-
ued more than acoustic information. Lastly, all
of our findings should be validated by the use of

a reliable ILM estimation method. Unfortunately,
currently, no such technique is available for non-
autoregressive models.

7 Conclusions

In this work, we presented the first speech foun-
dation models for Northern Sámi. In addition to
standard greedy decoding, we tested prefix beam
search, which showed a slight improvement in
terms of CER by reducing the number of deletions.
Although continued pre-training of a multilingual
foundation did not bring a considerable improve-
ment in downstream ASR performance compared
to pre-training from scratch, deeper IG-based anal-
ysis demonstrated differences in the internal be-
havior of these two models and revealed that the
one pre-trained from scratch was heavily influ-
enced by the temporal information (internal LM),
while its counterpart with continued pre-training
relied more on its acoustic component when pre-
dicting certain characters.
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