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Abstract

This paper examines the effect of pre-
processing techniques on spoken dialect
classification using raw audio data. We
focus on modifying Root Mean Square
(RMS) amplitude, DC-offset, articulation
rate (AR), pitch, and Harmonics-to-Noise
Ratio (HNR) to assess their impact on
model performance. Our analysis deter-
mines whether these features are impor-
tant, irrelevant, or misleading for the clas-
sification task. To evaluate these effects,
we use a pipeline that tests the significance
of each acoustic feature through distortion
and normalization techniques.
While preprocessing did not directly im-
prove classification accuracy, our findings
reveal three key insights: deep learning
models for dialect classification are gener-
ally robust to variations in the tested au-
dio features, suggesting that normaliza-
tion may not be necessary. We identify
articulation rate as a critical factor, di-
rectly affecting the amount of information
in audio chunks. Additionally, we demon-
strate that intonation, specifically the pitch
range, plays a vital role in dialect recogni-
tion.

1 Introduction

In the realm of deep learning, preprocessing plays
a crucial role in optimizing model performance.
While many studies focus on text, like (Uysal
and Gunal, 2014), others concentrate on Environ-
mental Sound Classification (ESC) or Automatic
Speech Recognition (ASR) (Pfau et al., 2000). For
instance, Bansal and Garg (2022) are exploring ex-
isting papers on preprocessing for ESC. Addition-
ally, some studies focus on using spectrograms for
audio processing (Chaiyot et al., 2021). Moreover,

some research has attempted to enhance speech
recordings for dialect identification, leading to im-
proved subjective quality (Kakouros et al., 2020).
However, these studies did not evaluate whether
such preprocessing techniques actually improve
the performance in downstream tasks.
Furthermore, despite studies such as (Lounnas
et al., 2022), which incorporate noise reduction
as a preprocessing step for dialect identification,
a comprehensive study on the key aspects of
audio preprocessing for dialect identification re-
mains lacking. Often, only individual aspects of
preprocessing are considered, as seen in (Pfau
et al., 2000), where vocal tract length normaliza-
tion (VTLN) and speech rate normalization (SRN)
are examined.
Large-scale systems such as Whisper (Radford
et al., 2023) and Meta’s Massively Multilingual
Speech (MMS) project (Pratap et al., 2024) high-
light the power of extensive and diverse datasets
in advancing ASR and language identification.
Whisper, trained on 680,000 hours of multilingual
and multitask supervised data, achieves improved
robustness to accents, background noise, and tech-
nical language, demonstrating the impact of its
large dataset. Similarly, Meta’s MMS project tack-
les the lack of ASR systems for many languages
by using religious texts, translated into numer-
ous languages, to build a diverse training dataset.
These projects showcase the importance of large
datasets for robustness and inclusivity. In con-
trast, this study addresses the challenges of work-
ing with smaller, constrained datasets.
Notably, no paper has been found that investigates
the effects of preprocessing raw audio on language
or dialect classification. This gap is particularly
significant in the context of deep learning-based
dialect identification (DID), where understanding
the fundamental aspects of audio preprocessing
tailored specifically for dialect classification re-
mains under-explored. This issue resonates with

159



findings in music information retrieval research,
where deep learning efforts often prioritize opti-
mizing hyperparameters that define network struc-
ture, while the audio preprocessing stage is often
not optimized (Choi et al., 2018).
This study aims to bridge this gap by investigat-
ing how preprocessing adjustments affect the per-
formance of dialect classification models trained
on German audio data. We concentrate on the
raw waveform and underscore the importance of
different audio features in dialect classification.
Specifically, we aim to determine whether adapt-
ing audio inputs improves model performance and
whether certain features are misleading for the
model, causing it to learn irrelevant patterns. Ad-
ditionally, we explore if deep learning models in-
herently learn to ignore such variations or if per-
formance even worsens, indicating that these fea-
tures are important for dialect recognition in Ger-
man.
Our contributions are threefold:

• We demonstrate that deep learning models
for dialect classification are immune to varia-
tions in the tested audio features, suggesting
that normalizations are not necessary.

• We reveal that the amount of information in
an audio chunk is related to the Articulation
Rate, impacting model performance.

• We show that intonation, specifically the
pitch range within an audio chunk, is impor-
tant for dialect recognition.

To achieve these contributions, we employ a
pipeline that analyzes the significance of various
acoustic features, representing a novel approach in
the field.
By focusing on these aspects, our work not only
fills a significant gap in the existing literature
but also provides valuable insights for future re-
search and applications in dialect classification us-
ing deep learning.

2 Used Acoustic Features

Used Acoustic Features are Root Mean Square
(RMS) amplitude, DC-offset, Articulation Rate
(AR), Pitch, and Harmonics-to-Noise Ratio
(HNR).
RMS amplitude of a digital audio signal repre-
sents its perceived loudness and is simultaneously
the mean absolute value of the signal. While RMS
measures the average power of a signal, intensity
in decibels (dB) quantifies the power relative to a

reference level, typically the threshold of human
hearing, on a logarithmic scale. As these met-
rics are correlated, only RMS is considered in this
study.
RMS amplitude reflects both the speaker’s vocal
effort and external factors such as the recording
equipment and the recording environment, includ-
ing background noise and microphone distance.
DC-offset (also known as DC-bias), determined
by the average amplitude of a segment of the sig-
nal, indicates a deviation from the symmetrical na-
ture of a normal voice signal. In a typical sym-
metric sine signal, the high peak equals the low
peak, resulting in an average value near zero over
time. However, when a DC offset is present, the
symmetry is disrupted, and the average value de-
viates from zero1. Despite being imperceptible, it
reduces the available dynamic range, limiting the
signals amplitude variation. DC-offset is primarily
influenced by the recording equipment rather than
the speaker.
Articulation Rate (AR) measures syllables per
second during speech, excluding pauses, whereas
Speech Rate (SR) includes pauses in its calcula-
tion. In this study, AR is emphasized over SR, as
the audio data has been preprocessed to exclude
pauses and non-articulatory elements. Also Otto
(2012) states that variations in articulation speed
between speakers may be more indicative of indi-
vidual speaking styles than differences in overall
speech tempo. The AR regarding to regional dis-
tribution has been minimally investigated thus far.
Hahn and Siebenhaar (2016) found that there are
differences in AR, but also suggest that this may
correlate with other processes such as the elision
of segments. They conclude that there must be
different sound duration ratios in the different re-
gions.
Pitch, often referred to synonymously as F0,
stands for the fundamental frequency of a sound
wave. F0 refers to the physical oscillation, while
pitch denotes the perceived tonal height of the
sound. In tools such as Praat (Boersma and
Weenink, 2021), the pitch refers to F0. Pitch nor-
malization, akin to Vocal Tract Length Normal-
ization (VTLN), aims to mitigate speaker-specific
variations in speech signals attributed to differ-
ences in vocal tract lengths, which are influenced
by physiological factors such as sex. In explor-

1https://solicall.com/
dc-offset-and-audio-filtering/
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ing the connection between pitch and dialects, it’s
noteworthy that the typical fundamental frequency
doesn’t always align directly with dialect varia-
tions. Instead, phenomena such as variations in
voice quality due to dialectal influences can affect
pitch.
The Harmonics-to-Noise Ratio (HNR) quantifies
the relationship between periodic components and
noise in a signal. It measures acoustic periodicity
by comparing the energy of harmonics to that of
noise, with the result expressed in decibels (dB),
indicating the dominance of periodic components
over noise: an HNR of 20 dB signifies 99% of en-
ergy in periodic components and 1% in noise, cal-
culated as 10 ∗ log10(99/1). An HNR of 0 dB in-
dicates equal energy distribution between harmon-
ics and noise2. In speech analysis, HNR is favored
over Signal-to-noise ratio (SNR) for its ability to
capture voiced sounds periodicity. HNR primar-
ily reflects characteristics of the speaker’s voice,
such as vocal cord vibration regularity and voice
quality, but can also be affected by the recording
equipment and environmental noise.

3 Experimental Setup

3.1 Used Corpus

This study utilizes automatically segmented au-
dio files (Fischbach, 2024) sourced from the “Re-
gionalsprache.de” (REDE) corpus (Schmidt et al.,
2020ff.). The REDE corpus, which consists exclu-
sively of recordings from male speakers, includes
recordings from three age groups: young (18-
23 years), middle-aged (45–55 years), and older
(65+ years) speakers, captured across five differ-
ent recording situations3.
However, for the purposes of this study, only data
from the older generation (65+ years) is analyzed.
They are chosen due to their presumed higher di-
alect competence and to save computing time us-
ing only one generation. Furthermore, we only uti-
lize the so-called dialectal “Wenker Sentences”4

from the corpus. In this recording situation, an in-
terviewer reads 40 sentences in Standard German,
and the dialectal speakers translate these sentences

2https://www.fon.hum.uva.nl/praat/
manual/Harmonicity.html

3Additional information about the recording situations,
the recording locations and the project itself can be found on
https://rede-infothek.dsa.info/

4https://www.uni-marburg.de/en/fb09/
dsa/research-documentation-center/
wenkersaetze

into their local dialect. In total there are around 18
hours of audio data from the older generation and
this recording situation, consisting of audios fea-
turing only the dialectal speakers.
For classification we analyze a total of 20 different
German dialects, classified according to Wiesinger
(1983) without the transition areas between di-
alects. Dialects with insufficient variance (less
than 3 speakers per dialect) are not further con-
sidered.

3.2 Classification Pipeline
The described pipeline is available and visualized
on GitHub5. Initially, all audio files are prepro-
cessed to standardize their format by converting
them to mono, adjusting the bit-depth to 16 bits,
and setting the sampling rate to 16 kHz, in line
with the specifications of Google’s TRILLsson
models (Shor and Venugopalan, 2022), which is
used for embedding extraction. The audio files are
then divided into 10-second chunks for the extrac-
tion of these embeddings. Prior tests have shown
this duration to be optimal. Shorter chunks yielded
significantly poorer results, likely due to insuf-
ficient contextual information, whereas longer
chunks offered no further gains, as the additional
information in extended audio segments made 10
seconds sufficient. The resulting embeddings are
processed through a small convolutional neural
network (CNN) consisting of three dense layers
with LeakyReLU activations and dropout layers
to prevent overfitting. The network is trained us-
ing the Adam optimizer (Kingma and Ba, 2015).
For model validation and testing, ⌈#SD

10 ⌉ speak-
ers are randomly selected from each dialect, where
#SD represents the total number of speakers in
the respective dialect. To account for variability
in results due to different speaker selections, we
employ a Monte Carlo cross-validation approach,
repeating the data splitting and model evaluation
process 250 times with new random speaker selec-
tions in each run. This number of iterations was
chosen based on prior tests demonstrating its ef-
fectiveness in detecting significant differences be-
tween experiments. The mean of the weighted
F1-score across runs is calculated, and the Mann-
Whitney U test (Mann and Whitney, 1947) is
used to assess the statistical significance of per-
formance differences between runs.

5https://github.com/WoLFi22/
DialectClassificationPipeline
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Figure 1: Visualization of the procedure.

3.3 Procedure

The entire procedure is summarized in the pipeline
diagram shown in Figure 1, which outlines the
steps involved in evaluating the significance of dif-
ferent features for dialect classification. Initially,
we conduct analyses to determine significant dif-
ferences in the distribution of feature values be-
tween two groups of audio chunks: those with a
high misclassification rate (misclassified in 95%-
100% of 250 runs, referred to as ”wrongly classi-
fied”) and those that are frequently classified cor-
rectly (correctly classified in 65%-100% of 250
runs, referred to as ”correctly classified”). These
thresholds are chosen to ensure a balanced rep-
resentation of both incorrect and correct chunks.
This can be inferred from the diagram in Figure
2. The diagram illustrates how many chunks are
classified correctly and incorrectly at which per-
centage threshold, and the ratio of the number of
incorrect to correct chunks.
Model performance is evaluated using the
weighted F1-score to account for the imbalanced
class distribution. If a significant difference is
found between the distributions of features (such
as pitch) for incorrectly and correctly classified
chunks — determined using the Mann-Whitney U
test, where a p-value < 0.05 indicates a signifi-
cant difference — all chunks are normalized ac-
cording to that specific feature. If the difference
is not significant, the chunks are deliberately dis-
torted to assess whether this manipulation affects
the model’s performance. This approach helps to
identify whether a particular feature is important,
irrelevant, or even misleading for the deep learning
model in classifying (German) dialects. The ratio-
nale behind these assessments, such as why fea-
ture distortion resulting in decreased model perfor-
mance indicates the feature’s importance, is sum-
marized in Table 1.

Figure 2: Ratio and number of wrongly and cor-
rectly classified chunks with percentage threshold
values.

3.4 Feature Extraction

The features are computed using Praat (Boersma
and Weenink, 2021) via the Parselmouth Python
interface (Jadoul et al., 2018), which facilitates
Praat script execution in Python, as detailed
below:
RMS Amplitude Extraction: The RMS
value is computed using Praat’s Get
root-mean-square function.
DC-Offset Extraction: The DC-offset is calcu-
lated as the mean value of the audio chunk.
AR Extraction: We employ a multi-step process
to extract the articulation rate. Initially, all audio
chunks are peak-normalized to standardize inten-
sity levels, enhancing the accuracy of the syllable
recognition algorithm. Following normalization,
we use a Praat script from the Praat Vocal Toolkit
(Corretge, 2012-2024), which identifies syllable
nuclei while discarding non-voiced peaks, to mark
syllables in the audio segments. This Praat script
is described by De Jong and Wempe (2009). The
articulation rate is then extracted as the ratio of
the number of syllables to the phonation time.
Peak normalization before AR extraction is
needed, to address the incorrect detection of
pauses in audio chunks where none should exist.
As illustrated in Figure 3 a), many pauses were
falsely identified in places where speech is present
due to fluctuations in intensity, highlighting the
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Feature Distortion Feature Normalization
- = + - = +
Distortion
degrades
performance
as the model
relies on the
original distri-
bution.

The Feature is
irrelevant; dis-
tortion has no
effect.

Distortion
removes
misleading
information,
improving
performance.

Normalization
removes
useful dis-
tinctions,
degrading
performance.

Differences in
distribution
are irrelevant;
no effect.

Normalization
reduces noise
or bias,
improving
performance.

Table 1: Effects of Feature Distortion and Normalization on model performance (+ improved, - degraded,
= unchanged), indicating the role of the Feature in the model, as in Figure 1.

(a) Original chunk with syllable detection and annotated
pauses.

(b) Same chunk after peak normalization with syllable detec-
tion and annotated pauses.

Figure 3: Audio chunk and its detected sylla-
bles/pauses.

algorithm’s sensitivity to sound levels. Peak
normalization improves syllable recognition by
stabilizing these fluctuations, which is particularly
beneficial for speech rate (SR) detection, as it is
more affected by misclassified pauses compared
to AR, but it also improves AR performance.
Figure 3 b) shows the same audio chunk after
peak normalization was applied before running
the syllable recognition algorithm. Although
some incorrect pauses remain, the results are
significantly more accurate. Across all chunks,
this process reduced the standard deviation of the
ratio of speaking duration to audio length (which
ideally should be close to 1 for our dataset, as
there should be no or only very short pauses),
bringing more values closer to 1 and minimizing
extreme deviations.
Additionally, our use of 10-second chunks ensures
a stable extraction of AR, aligning with findings
from Arantes and Lima (2017), where they state
that both SR and AR stabilize after approximately
9 seconds.

Pitch Mean and Pitch Standard Deviation
Extraction: We calculate both the mean pitch
and the standard deviation of the pitch restricting
the analysis to a range of 80 Hz to 170 Hz. Pitch
values are extracted using the To Pitch function in
Praat, followed by the computation of either the
mean or the standard deviation.
The pitch range of 80-170 Hz is selected, because
Praat’s default settings for pitch extraction often
result in high pitches values (up to 240 Hz) and
large fluctuations (up to 100 Hz within a chunk),
leading to a high standard deviation (±44.74 Hz).
This issue is likely due to flaws in the underlying
algorithm (Boersma et al., 1993). Adjusting
the pitch range to match the typical frequency
range for the speaker’s sex (and age) can mitigate
this problem and ensures more accurate pitch
detection.
The default pitch range in Praat is set between
75 Hz and 600 Hz. This range can be narrowed
to 80-170 Hz, which corresponds to the normal
pitch range for male speakers. For instance, a
study involving 2472 German-speaking men aged
40–79 years found that the mean fundamental
frequency of the conversational speaking voice
was 111.9 Hz, with specific averages of 112.9 Hz
(±17.5) for ages 60–69 and 120.6 Hz (±19.8) for
ages 70–79 (Berg et al., 2017). Another study
reported a mean pitch of 120 Hz (±18 Hz) for
the German male reading voice (Andreeva et al.,
2014). Our adjusted pitch range of 80–170 Hz is
therefore well-supported by these findings.
With the new settings, the largest deviation within
a chunk decreased by nearly one-third to 34.13
Hz, and the standard deviation was reduced by
more than half to 19.09 Hz. Figure 4 visualizes
the results of pitch extraction using the two
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Figure 4: Extracted Pitch with Praat for different
pitch ceilings: 75-600 Hz (blue) and 80-170 Hz
(green).

ranges: the extracted pitch using standard settings
(75-600 Hz) is shown in blue and in green with
adjusted settings (80-170 Hz). It is evident that
the blue pitch values are often too high, while the
green ones are much more stable. By narrowing
the pitch range, the algorithm is constrained to
estimate the pitch within these plausible bounds,
thereby providing results closer to the true pitch.
HNR Extraction: The HNR gets extracted using
Praat’s To Harmonicity (cc) function.

4 Results

Table 2 summarizes the feature importance analy-
sis. The p-val column displays the p-values from
Mann-Whitney U tests, comparing feature values
between correctly and wrongly classified chunks;
a p-value below 0.05 indicates a statistically sig-
nificant difference. The Norm./Dist. column indi-
cates whether the audio chunks were normalized
or disturbed, with the Method column detailing the
specific processing method. The new Perf. column
presents the mean weighted F1-Score of the model
with altered audio chunks, compared to the origi-
nal score of 0.228. The Perf. p-val column con-
tains the p-value from the Mann-Whitney U test
comparing the model’s performance with original
versus altered chunks, indicating the feature’s im-
pact on performance, as shown in the Feat. Imp.
column.

4.1 RMS

In the analysis of Root Mean Square (RMS) am-
plitude, statistically significant distinct distribu-
tions can be observed between wrongly and cor-
rectly classified chunks with a lower mean RMS
for wrongly classified chunks. So RMS gets nor-
malized for each chunk to assess the impact of
RMS values on classification results. Peak nor-
malization, which adjusts audio signals relative to
their loudest point and has been set so that the
highest peak reaches -0.2, and loudness normal-
ization, which aims to standardize perceived loud-

ness, are explored. Where for loudness normaliza-
tion there is a risk of clipping if the target value is
set to high. Both normalization methods resulted
in an overall increase in loudness, as depicted in
Figure 5 a), with loudness normalization demon-
strating a notably reduced standard deviation due
to its uniform adjustment to a target loudness level
of -14dB.
Neither of the two methods yields a significant dif-
ference in classification performance. In both nor-
malization methods, approximately the same er-
rors are observed in assigning chunks to dialects
as without normalization.
This finding supports the theory that the initially
different distribution of correctly and incorrectly
classified chunks was coincidental. Further tests
have shown that speakers with almost the same
misclassification rate from the same dialect can
have very different RMS, likely due to varying
recording conditions and consequently different
RMS levels. Therefore, the differences in the dis-
tributions of correctly and incorrectly classified
chunks are likely due to variations in the classifi-
cation performance of individual speakers, rather
than differences in RMS levels. Therefore, it is
reasonable to conclude that the volume of individ-
ual chunks does not influence the model’s perfor-
mance, rendering this feature irrelevant.

4.2 DC-Offset
There is a significant difference in distributions of
wrongly and correctly classified chunks. To ad-
dress this, a normalization technique called Mean
Centering is employed by subtracting the mean of
each chunk, effectively minimizing the DC-Offset.
However, this normalization yields no difference
in classification performance.
Yet, since even the largest offset in our data is min-
imal (-0.0007), it should be tested again whether a
disturbance of the DC-Offset leads to a deterio-
ration in classification performance. Each chunk
gets a randomized disturbance within the range of
[-0.1, 0.1], which also can be seen in Figure 5 b)
at the bottom. However, this perturbation fails to
yield any discernible difference in model perfor-
mance, suggesting that the DC-offset holds little
relevance to classification performance, as long as
it is in normal ranges.
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Feature p-val Norm./Dist. Method new Perf. Perf. p-val Feat. Imp.

RMS 0.000 Norm.
RMS von -14dB 0.287 0.104 =
Peak of -0.2 0.283 0.306 =

DC-Offset 0.000
Norm. Mean Centering 0.280 0.635 =
Dist. [-0.1, 0.1] 0.283 0.321 =

AR 0.936
Dist. [2.5, 6] Syll./Sec. 0.259 0.000 -
Norm. 4.3 Syll./Sec. 0.277 0.870 =

Pitch mean 0.235 Dist. [90, 160] Hz 0.276 0.626 =

Pitch std 0.012 Norm.
Half orig. Std. 0.236 0.001 -
Monotonized 0.241 0.000 -
Std. of 18 0.269 0.087 =

HNR 0.000 Norm.
Praat 0.283 0.127 =
Noisereduce 0.270 0.419 =

Table 2: Summary of feature importance analysis, including p-values from Mann-Whitney U tests com-
paring feature values between correctly and incorrectly classified chunks (p-val), processing methods
applied to normalize or disturb features (Norm./Dist. and Method), mean weighted F1-Score with altered
audio chunks, p-values comparing model performance with original and altered audio chunks (Perf. p-
val), and the resulting feature importance (Feat. Imp.).

4.3 AR

The distributions of the wrongly and correctly
classified chunks are similar, so AR perturbation
is conducted to assess its impact on model perfor-
mance. AR values are intentionally disturbed be-
tween 2.5 and 6 syllables per second, derived from
extreme measurements from all chunks as can be
seen in the top box plot of Figure 5 c). Model
performance significantly declines with disturbed
AR chunks compared to normal conditions. To
ascertain whether this decline stems solely from
extreme differences between chunks or generally
from extreme AR values, additional tests are con-
ducted. These involve assessing the model’s be-
havior with only slow (AR of 3.0) or fast (AR
of 6.0) chunks. When the articulation rate is
reduced, resulting in slower audio, the chunks
are still formed with a fixed length of 10 sec-
onds. As a result, there are more chunks over-
all, but each chunk contains less information due
to the lower tempo. With higher AR, there are
fewer chunks, but each chunk contains more in-
formation. Chunks with lower AR lead to a
44% increase in length and degraded model per-
formance. Conversely, chunks with higher AR,
approximately 71.36% shorter than the original
recordings, are showing no significant difference.
Considering that longer chunks generally contain

more information, this could explain why the clas-
sification performance did not deteriorate or im-
prove with a faster AR, as the model’s perfor-
mance in earlier tests also did not benefit from
chunks longer than 10 seconds. Moreover, reduc-
ing the length of chunks with the higher AR up to
8 seconds does not yield a significant difference in
model performance. However, caution should be
exercised not to increase the AR too much. An-
other test using chunks of 7 seconds with double
the AR compared to the original mean, resulting in
an AR of 8.734, shows a significant deterioration.
These findings suggest that, to a certain extent,
manipulating AR to increase chunk speed can
be effective in shortening chunk length for re-
duced computational workload without compro-
mising classification performance. This approach
has the potential to conserve computational re-
sources during classification tasks. Nevertheless,
the tradeoff between increased AR and reduced
audio length is limited. If the speech speed is too
slow, longer chunks should instead be used to en-
sure sufficient information is captured. Therefore,
it is assumed that AR does not influence dialect
classification, but rather the amount of informa-
tion contained in each chunk. This also agrees
with De Jong and Wempe (2009) where they state
that speech recognizers perform relatively poorly
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when speech rate is very fast or very slow.
Nevertheless, we aim to normalize the AR, as sug-
gested by Pfau et al. (2000), where Speech Rate
Normalization resulted in a reduction of word er-
ror rate. To normalize the AR, all chunks are
speed-manipulated based on their original AR.
The median AR across all audio chunks is 4.36
and the mean is 4.37. Therefore, all audios should
have an articulation rate of approximately 4.3. To
achieve that, first, the factor between the current
and the desired AR is determined using factor =
ARold/ARnew, and then the original audio chunk
is speed-manipulated by this factor (factor < 1 re-
sults in the audio being faster). Through this ap-
proach, the AR is slightly reduced on average, re-
sulting in a slowdown of most audios, as can be
seen at the lower mean in Figure 5 c). Normal-
izing the AR had no impact on the classification
performance.

4.4 Pitch

Since there is no significant difference between
wrongly and correctly classified chunks where val-
ues are extracted with the adjusted pitch range,
further testing is conducted to determine if the
model’s performance would degrade when the
pitch is randomly altered. The pitch is varied be-
tween 90-160 Hz, a range considered normal for
male speaking voice and providing headroom in
both directions for pitch extraction with Praat. De-
spite this manipulation, no significant difference in
classification performance can be observed. These
findings indicate that pitch does not significantly
impact classification.
Additionally, we investigate how the model be-
haves when adjusting the pitch range by alter-
ing the standard deviation. The distribution of
pitch standard deviations between correctly and
incorrectly classified chunks differs significantly.
Specifically, the mean standard deviation of pitch
is higher for incorrectly classified chunks. To ad-
dress these differences, we normalize the pitch
range of each chunk. We test several approaches:
halving the pitch range, monotonizing the pitch,
and normalizing it to a standard deviation of 18
Hz. The model’s performance significantly dete-
riorate when the pitch range is halved or mono-
tonized, while normalization to 18 Hz standard de-
viation shows no impact on performance. These
results, depicted in Figure 5 e), suggest that pitch
variation is important for dialect classification, but

only its intonation (the variance in pitch) rather
than its exact magnitude.
The importance of pitch in language and dialect
classification is further highlighted by Vicenik and
Sundara (2013), where features such as minimum,
maximum, and mean pitch, as well as the number
and characteristics of pitch rises, were used to dis-
tinguish between German and American English
with an accuracy of 86%. Notably, these features
primarily captured pitch variance rather than ab-
solute values, emphasizing the significance of in-
tonation. The study also demonstrated that these
pitch features could differentiate between varieties
of English, such as American and Australian En-
glish, achieving an accuracy of 79%. Their study
also concludes that intonation plays a crucial role
in helping listeners distinguish between different
languages.

4.5 HNR
Statistically significant differences in the distribu-
tions of HNR values are observed between cor-
rectly and wrongly classified chunks, with the
mean HNR slightly higher for the latter. As il-
lustrated in Figure 5 f), the majority of our au-
dio chunks have a mean HNR value indicating ap-
proximately 90% harmonic content, though some
chunks exhibit lower HNR values with around
70% harmonic content. Due to the absence of
stationary background noises applying a constant
bandpass filter is not feasible. Furthermore, since
the recordings were downsampled to 16 kHz, any
noise above 8 kHz is already filtered out.
Attempts to reduce noise using Praat’s spectral
subtraction method, as defined by Boll (1979),
yields no significant changes in HNR or improve-
ments in classification performance. We also ap-
plied the noisereduce library (Sainburg et al.,
2020; Sainburg, 2019). Non-stationary noise re-
duction is applied due to the absence of specific
interfering noises, yet this also results in minimal
changes in HNR and no significant difference in
classification. This result is consistent with find-
ings from Lounnas et al. (2022), where noise re-
duction using noisereduce showed no notable
effect on classification performance when using
Convolutional Neural Networks (CNNs). Thus, it
can be concluded that non-stationary noises have
little to no influence on the performance of dialect
classification, as long as they do not obscure the
speech signal.
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(a) original RMS and after normalization.

(b) original Mean chunk, after normalization and
with random disturbance.

(c) original AR, with normalization, with random
disturbance and high AR (6.0) and low (3.0) AR.

(d) original Pitch and with random disturbance.

(e) original STD of Pitch, original STD reduced by
half, monotonized and normalized STD of Pitch to
18.

(f) original HNR, HNR reduced with Praat and
HNR reduced with noisereduce.

Figure 5: Boxplots for different Audio-chunk fea-
tures.

5 Discussion

The study’s results indicate that pitch variation did
not impact model performance among the used
group of older males, suggesting its potential ap-
plicability across different age groups. However,
it’s uncertain if pitch normalization would have the
same effect in a diverse group, where sex and age
may introduce more pitch variation. Future stud-
ies should explore the impact of pitch normaliza-
tion on mixed demographics and evaluate broader
techniques such as voice conversion techniques to
standardize all audio inputs.
Although the analysis focused on a German dialect
dataset, these insights could extend to other cor-
pora. Nonetheless, it is essential to conduct a thor-
ough evaluation of each dataset’s features to en-
sure that preprocessing techniques are well-suited
to its specific characteristics and contribute to the
classification tasks coherence and relevance.
The precise feature extraction values may vary de-
pending on the extraction methods and parame-
ters used. However, RMS and DC-offset measure-
ments should consistently yield the same results,
as these values can be accurately calculated. In
contrast, when extracting pitch features, parame-
ters such as the pitch floor and ceiling should be
adjusted according to the age and sex of the speak-
ers to obtain more accurate estimations of the true
pitch.
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