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Abstract

This paper examines whether few-shot
techniques for Named Entity Recognition
(NER) utilising existing large language
models (LLMs) as their backbone can be
used to reliably annotate named entities
(NEs) in scientific texts on climate change
and biodiversity. A series of experiments
aim to assess whether LLMs can be in-
tegrated into an end-to-end pipeline that
could generate token- or sentence-level
NE annotations; the former being an ideal-
case scenario that allows for seamless in-
tegration of existing with new token-level
features in a single annotation pipeline.
Experiments are run on four LLMs, two
NER datasets, two input and output data
formats, and ten and nine prompt versions
per dataset. The results show that few-
shot methods are far from being a sil-
ver bullet for NER in highly specialised
domains, although improvement in LLM
performance is observed for some prompt
designs and some NE classes. Few-shot
methods would find better use in a human-
in-the-loop scenario, where an LLM’s out-
put is verified by a domain expert.

1 Introduction

Analysing the language of climate change is an
important step in following and understanding on-
going debates in this field. In a corpus linguistics
setting, an important precondition for performing
such an analysis is the access to corpora that have
been annotated with morpho-syntactic and seman-
tic features at the token level. Named entities
(NEs) belong to the latter category and constitute
an important part of linguistic analysis: Glaser
et al. (2022) underline that linguistic choices in
terms of decisions to explicitly name or leave out a
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certain entity or concept is an important notion in
analysing political speeches. This line of thinking
can easily apply to texts of various genres from the
climate change domain, too.

In many instances, available corpora for cor-
pus linguistics research, such as those hosted on
English-Corpora.org,' rarely offer token-level an-
notations that extend beyond lemma and part-of-
speech (POS) tags, and eventually syntactic de-
pendency tags. These corpora can be obtained
as pre-tokenized data; preserving existing token-
level features and enriching them with custom NE
annotations is contingent upon having (a) an an-
notation tool capable of processing tokenized in-
put, and (b) having sufficient data to train a custom
NER component within the tool. Depending on
the annotation tool, such training data must usu-
ally be annotated in the IOB or BIOES/BILOU
format®> or contain character span information
about the NE instance.

Challenge (a) is alleviated by the fact that (1)
some known annotation tools, such as stanza (Qi
et al., 2020) and trankit (Nguyen et al., 2021),
can accept pre-tokenized input, and (2) obtain-
ing high-quality morpho-syntactic features by re-
annotating the corpus is generally unproblem-
atic.> Challenge (b) is more complex, especially
concerning the annotation of specialised corpora.
In the context of adding climate-change-related
token-level NE annotations that would be rele-
vant to analysing the scientific climate change dis-
course, which could involve NE categories such
as greenhouse-gases or climate-datasets, the first
step would be to define a set of relevant categories,
and the second to obtain a high-quality annotated
corpus of sufficient size to train an NER compo-

"https://www.english-corpora.org/

2“IOB” stands for “inside, outside, beginning”, while
“BIOES/BILOU” stands for “beginning, inside, outside,
end/last, single (element)/unit (element)”

3This would not be an ideal solution if the goal is to pre-
serve the original token-level features.
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nent of a tool for linguistic annotation. Creating
richly annotated specialised corpora is thus a time-
and resource-intensive activity.

Meanwhile, large language models (LLMs)
have been seen as possible “destabilizers” of “in-
equalities of academic research”, as they might al-
low moderately-funded labs to perform analyses
that were previously accessible to well-funded in-
stitutes only (Tornberg, 2024, p.17). Motivated
by the positive results in LLM-powered few-shot
NER for specialised domains reported in Ashok
and Lipton (2023), this paper employs a number of
few-shot experiments to investigate whether this
“destabilization effect” also transfers onto the an-
notation of NEs in scientific literature on climate
change and biodiversity. Experiments undertaken
in the scope of this study should answer two ques-
tions: (Q1) Can LLMs be used as reliable “an-
notators” of named entities at the token and sen-
tence levels in the domains of climate change and
biodiversity? and (Q2) Does providing tokenized
input affect an LLM’s performance when identify-
ing named entities in these domains? Descriptive
information about the datasets used in the study
and extensive supplementary materials related to
the experiments and the results are available in a
dedicated GitHub repository.* Finally, an effort is
made to refrain from using anthropomorphic lan-
guage when disucssing LLMs (Inie et al., 2024),
as long as this does not hinder the description of
LLM-based systems, methodologies and function-
alities.

2 Related work

Jehangir et al. (2023) distinguish between three
types of NER techniques: a rule-based approach,
unsupervised learning, and supervised learning.
A rule-based approach entails the careful craft-
ing of domain-specific rules to extract and clas-
sify patterns representing NEs of interest. Unsu-
pervised learning is used in data-poor contexts,
but can yield results that are difficult to evalu-
ate. Supervised learning utilizes manually anno-
tated data to learn representations of relevant NE
categories. Corpus annotation libraries, such as
CoreNLP (Manning et al., 2014), spaCy, stanza,
and trankit, have incorporated supervised learning
in a modular pipeline design, allowing researchers
to train their own NER component provided that

‘nttps://github.com/volkanovska/
NER-annotation-with-LLMs
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they have sufficient data.

The advent of Transformer-based LMs has
put the limelight on transfer learning and fine-
tuning, methodologies that demonstrate robust re-
sults with fewer manually labelled training ex-
amples. In fine-tuning, the architecture of an
LM is modified in line with the task require-
ments: Wang et al. (2022) present a methodology
for learning an LM to understand language struc-
ture, and then test its performance on downstream
tasks including NER. Many of the tools developed
in this way, such as BiodivBERT (Abdelmageed
et al., 2023), are models that have been developed
for an NER task only and merging their output
with the morpho-syntactic token-level features ob-
tained from a linguistic annotation library is not
always a seamless process due to variations in to-
kenization approaches.’

The increased availability of open-source and
paid text-generation and question-answering mod-
els, alongside reports of pre-trained LLMs per-
forming well on NLP tasks in zero- and few-shot
settings in data-poor contexts (Brown et al., 2020),
have fuelled the interest in experimenting with
zero-shot and few-shot NER approaches. In most
instances, this means that NER is defined as a
question-answering task, where the LLM is ex-
pected to generate an answer based on a prompt
sent to the system. Epure and Hennequin (2022)
perform zero-shot and few-shot NER using GPT-
2. Before prompting the model, they ensure a low
ambiguity level between NE categories by merg-
ing possibly confusing NE labels into a single, un-
ambiguous label. They also simplify the task by
prompting the model to recognise one NE cate-
gory at a time. Wang et al. (2023) ensure that the
input sequence from which the model is expected
to extract NEs is semantically similar to the ex-
ample sequence in the prompt template by retriev-
ing the k nearest neighbour of the input sequence.
They also prompt the model to enclose the NE into
special tokens, which should allow for span re-
trieval. Ashok and Lipton (2023) have presented
an intuitive approach to NER, where they propose
a prompt template that can easily be customized
to any project using own NE categories and defi-
nitions. Their approach has been implemented in

SA “token” can be a unit at the word- or punctuation-,
character-, or sub-word level. Discussing tokenization ap-
proaches is beyond the scope of this study; however, it is
worth mentioning that LMs using transformer architecture
(Vaswani et al., 2017) mostly rely on sub-word units.
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spacy-llm’s NE annotation pipeline, where users
can define NE categories on the fly and annotate
their data with an LM of their choice.®

This study builds on existing work in the field
of few-shot NER and conducts experiments using
different prompt templates and a varying number
of task examples. It differs from previous methods
in (1) the format of the input given to the model
and the requested output, and (2) the use of highly-
specialised NER datasets, which, to the best of my
knowledge, have not been used in a few-shot NER
setting previously.

3 Data

Basic descriptive information about the two NER
datasets that are used in the experiments described
in Section 4 is provided below; a comprehensive
dataset description involving definitions of each
NE class, information about the distribution of NE
instances per category and per data split, descrip-
tive statistical sentence- and token-level informa-
tion, as well as the ten most and least frequent NE
instances per each NE class, are provided in the
dataset documentation available in the dedicated
GitHub repository referred to in Section 1.
Climate-Change-NER is a publicly-available
dataset’ for English-language NER in scientific
texts on climate change, developed in an IBM
Research AI%-led initiative, involving NASA®
(Bhattacharjee et al., 2024) among other organ-
isations. The dataset has 13 climate-specific
NE classes, which originate from complex
taxonomies used in climate-related literature.
These are: climate-assets, climate-datasets,
climate-greenhouse-gases, climate-hazards,
climate-impacts, climate-mitigations,
models, climate-nature, climate-observations,
climate-organisms, climate-organizations,
climate-problem-origins, and climate-properties.
Seed keywords, such as wildfire and floods, had
been used to collect a total of 534 abstracts from
the Semantic Scholar Academic Graph (Kinney
et al., 2023), which were then manually annotated
with the IOB tagging scheme, with the help of
a set of class-specific dictionaries (Pfitzmann,
2024). The train and test data splits, which are

climate-

Sspacy-llm is spaCy’s LLM-supporting package, available
athttps://github.com/explosion/spacy-11lm.

"https://huggingface.co/datasets/ibm/
Climate-Change—-NER

$International Business Machines Corporation

“National Aeronautics and Space Administration
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used in the experiments of this paper, contain 985
and 177 sentences and 3029 and 555 NE instances
respectively.

BiodivNER is a publicly-available dataset'? for
English-language NER in the biodiversity domain
(Abdelmageed et al., 2022). The dataset has 6
biodiversity-related NE classes: organism, phe-
nomena, matter, environment, quality, and loca-
tion. The annotated corpus comprises of abstracts,
tables, and metadata files collected by using a set
of keywords from Semedico,'! BEF-China,'? and
data.world'® and manually annotated with the IOB
tagging scheme. BiodivNER’s train and test data
splits contain 1828 and 229 sentences and 6709
and 1277 NE instances respectively.

4 Methodology

This section presents the steps taken to preprocess
the data, the prompt design, the LLMs used in
the experiments, the evaluation approach, and the
baseline against which the LLMs’ performance is
compared.

4.1 Data preprocessing

The NER data is used in two settings: (1) to train
a custom NER component in spaCy, and (2) to
design prompts for few-shot learning. Use case
(1) requires span information about each NE in-
stance, while for use case (2) each sentence needs
to be saved as a Python list, with each token in-
dex and token saved as sublists and as a string. To
achieve (1) and guarantee compatibility between
each dataset’s and spaCy’s tokenization, all sen-
tences were re-tokenized and only those that were
identical to the tokenized sentences in the original
datasets were taken into account. All re-tokenized
sentences for Climate-Change-NER were identi-
cal; from BiodivNER, 90 re-tokenized sentences
from the train file, and 11 from the development
and test file each were not identical.

4.2 Prompt design

To explore whether the task input-output for-
mat influences a model’s performance, the study
adopts a custom prompt design that differs from
the few-shot prompt design suggested by Ashok
and Lipton (2023) in the following features: (1)
the definition of each NE class is followed by

Yhttps://zenodo.org/records/6575865
A semantic search engine for the life sciences.
Phttps://bef-china.com/
Bhttps://data.world/
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several real-world instances of the respective NE
class; (2) the task examples (TEs) include sen-
tences presented either as a Python string or a
Python list of tokens and token indices, hereinafter
referred to as string-based and token-based input-
output, and an answer section containing the ex-
pected output from the model; (3) the format of
the task input sentence corresponds to the format
of the task examples described in (2) i.e. is ei-
ther a Python list or a string; (4) the LLM is not
prompted to emulate “reasoning” for its decision;
(5) only true NE instances are provided as ex-
amples of correct answers. The features (4) and
(5) were implemented after the preliminary tests
showed that they did not contribute to consistent
improvement in the results. Each prompt has three
sections: (a) a definitions-and-instances section,
where real-world instances of the NE class ac-
company its definition, (b) a task example section,
which includes an n number of examples of the
task the model is expected to complete, and (c)
a task section, where the model is “asked” to an-
notate a sentence and return its output in a spe-
cific format. Figure 1 provides an overview of the
prompt design.

DEFINITIONS and a)
INSTANCES (Tull or clusters)

INPUT FORMAT |

STRING TOKENS

b)

NE cluster

OouTPUT FORMAT

STRING

Figure 1: Blueprint for prompt design. The string-
based input-output format refers to the task of
identifying NEs at the sentence level, while a
token-based format involves identifying NEs at
the token level.

¥

F'YTH ON
LIST

[x]

)

Section (a) remains unchanged in each prompt
of the prompt versions described below. For Bio-
divNER, the definitions of the NE categories in-
cluded in section (a) have been obtained from the
description of the dataset creation and annotation
process, available in Abdelmageed et al. (2022).

27

The definitions of the NE classes contained in
Climate-Change-NER are available in the dataset
card on Hugging Face, referred to in the dataset
description in Section 3. Sections (b) and (c) are
created by applying two formats for the input-
output requirements as described in prompt fea-
tures (2) and (3), and by introducing three differ-
ent selection criteria for examples included in the
task-example (TE) pairs of section (b).14

Prompt version one: random k-examples A k£
number of random TEs is extracted from the train
data split, where k can be 3, 4, or 5 TE pairs, and
section (b) is populated with the selected TE pairs.
This prompt version, where a k number of ran-
domly chosen sentences is used in the TE section,
follows the prompt design adopted in the work of
Ashok and Lipton (2023).

Prompt version two: semantically similar k-
examples Motivated by the prompt design pre-
sented in Wang et al. (2023), each sentence of
the test split of both datasets is paired with five
sentences of the train data split, which have the
highest similarity score with the test sentence. Se-
mantic text similarity is calculated with the library
sentence-transformers!> (Reimers and Gurevych,
2019) and the model sentence-transformers/stsb-
distilroberta-base-v2. The idea is to investigate
whether LLMs’ performance can be improved by
including in the TE pairs sentences that have a de-
gree of similarity to the sentence the model is ex-
pected to process. Section (b) of the prompt is
populated with & number of semantically similar
TE pairs, where k can be 3, 4, or 5.

Prompt version three: clustered NE classes
To simplify the task at hand, clusters of NE
classes within each dataset are created on the ba-
sis of the classes’ perceived relatedness. The
idea behind this prompt design choice is to (1)
frame the models’ output into a narrower, topic-
related semantic field and (2) rather than col-
lapse NE categories that bear a perceived degree
of similarity, test if LLMs can differentiate be-
tween them. Four NE class clusters are cre-
ated for Climate-Change-NER and three for Bio-
divNER. Prompt sections (a) and (b) are pop-

14 A limitation of a maximum number of 60 tokens was in-
troduced for TE pairs from BiodivNER'’s training data, due to
the observation that the data contained tokenized sentences
whose length varied from 3 to 1053 tokens. Such a limi-
tation was not necessary for Climate-Change-NER training
samples, as the length of sentences varied between 32 and
115 tokens.

Bhttps://sbert.net/
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ulated with definitions and four randomly se-
lected TE pairs pertaining only to the cluster’s
classes. The NE clusters for Climate-Change-
NER are: (1) climate-hazards, climate-problem-
origins, climate-greenhouse-gases; (2) climate-
impacts, climate-assets, climate-nature, climate-
organisms; (3) climate-datasets, climate-models,
climate-observations, climate-properties, and (4)
climate-mitigations, climate-organisations. For
BiodivNER, the three clusters are: (1) environ-
ment, location; (2) organism, matter, and (3) phe-
nomena, quality.

Input-output format For string-based input,
the TEs include a string and the correct NE in-
stances and their categories in parenthesis. The
model is expected to generate the correct NE in-
stance and its category in parentheses, but not the
token indices pertaining to the tokens within the
span. For token-based input, the TEs include to-
kenized sentences containing a token and a token
index. The model is expected to identify the NE
instance, its category, and the start- and end-token
indices. Ideally, the token-based output should al-
low for simple integration of a model’s annotation
with existing token-level features.

Prompt version k=3 | k=4 | k=5
Random k 177 | 177 | 177
Similar £ 177 | 177 | 177

NE cluster 1 0 177 0

NE cluster 2 0 177 0

NE cluster 3 0 177 0

NE cluster 4 0 177 0
Prompts, per input type | 354 | 1062 | 354
Prompts, both input types | 708 | 2124 | 708

Table 1: Number of prompts for test sentences
of Climate-Change-NER for each prompt version
and input type (token/string based).

4.3 Language models

The choice of LLMs was guided by two factors:
previous successful deployment in similar tasks
and cost. Two models of OpenAI’s GPT family,
gpt-40-2024-05-13 (hereinafter: gpt-40) and gpt-
40-mini,'® were run using OpenAI’s APIL. Ope-
nAI’s models were chosen over other proprietary
models of similar performance and price range due

Yhttps://platform.openai.com/docs/
models
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Prompt version k=3 | k=4 | k=5
Random & 229 | 229 | 229
Similar £ 229 | 229 | 229

NE cluster 1 0 229 0

NE cluster 2 0 229 0

NE cluster 3 0 229 0
Prompts, per input type | 458 | 1145 | 458
Prompts, both input types | 916 | 2290 | 916

Table 2: Number of prompts for test sentences
of Climate-Change-NER for each prompt version
and input type (token/string based).

to their previous successful deployment in a sim-
ilar setting (Ashok and Lipton, 2023). The ex-
periments are also run on two open-source mod-
els: Meta-Llama-3.1-70B-Instruct (hereinafter:
Llama-70B) and Meta-Llama-3.1-405B-Instruct
(hereinafter: Llama-405B), both developed by
Meta and run through an API of Nebius Al Stu-
dio.!” The total cost of the experiments is reported
in Section 7.

4.4 Evaluation

Baseline The performance of the four models
on the BiodivNER dataset is compared against
the results of BiodivBERT (Abdelmageed et al.,
2023), an LM pre-trained and fine-tuned specifi-
cally for an NER task in the biodiversity domain,
with a reported F1 score of 0.87. For Climate-
Change-NER, the baseline is that of the model IN-
DUSBASE (Bhattacharjee et al., 2024), an LM pre-
trained and fine-tuned on relevant scientific data,
with a reported F1 score of 0.64.

Custom NER components within tools for
linguistic annotation To measure how the num-
ber of NE instances per category affects the per-
formance of a custom NER component within an
annotation tool, custom NER components were
trained on each dataset using spaCy and the model
en_core_web_lg'® as a base model. SpaCy’s NER
tagger achieves an F1 score of 0.73 on Bio-
divNER’s test data, and 0.43 on the Climate-
Change-NER'’s test data.

Token-based prompts Micro F1 score is calcu-
lated and reported in accordance with the standard
CoNLL metric (Sang and De Meulder, 2003), as
well as simple span-and-category matches (Chin-
chor and Sundheim, 1993). The former refer to

"https://studio.nebius.ai/.
Bhttps://spacy.io/models/en_core_web_lg
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a complete match in NE instance, label, and NE
span boundaries (start- and end-token), while the
latter takes into account only the NE instance and
label, but not token indices. Reporting simple
span-and-category matches serves as a point of
comparison with the results of the string-based
prompts.

String-based prompts For these prompts, the
goal is to identify NEs at the sentence level, the
F1 score is based on span-and-category matches,
with strict span boundaries. Partial span matches
are not considered true positives.

S Results and analysis

Tables 3 and 4 summarize the F1 scores for
experiments conducted on the test data split of
Climate-Change-NER and BiodivNER involving
the prompts described in Section 4.2. One iter-
ation was performed on each prompt set and on
each model. In the tables, k stands for the number
of TE pairs included in the prompt. Prior to calcu-
lating the results, each model’s output was cleaned
from misspelled or non-existing categories (e.g.
organsim instead of organism).

Tables 5 and 6 present the percentage of span-
and-category matches between a model’s pre-
dicted NEs and the gold standard. Span-and-
category matches measure instances where the
model correctly identifies the span of an NE in-
stance and the NE class. For token-based input
and output, this means that the token indices are
not taken into account when calculating the per-
centage of span-and-category matches, while for
string-based input and output, the model is not ex-
pected to generate token indices at all. Therefore,
these two tables allow one to gauge the degree to
which a model is affected by the input-output for-
mat.

5.1 Quantitative analysis

Even the best-performing all-class token-based
prompt & model combinations substantially lag
behind the baseline NER models for the datasets,
more so in the case of BiodivNER, where the base-
line F1 score is 0.87 and spaCy’s NER classi-
fier F1 score is 0.73. For Climate-Change-NER,
which has a baseline score of 0.64, the best-
performing all-class prompt & model combination
achieve an F1 score of 0.44, which is similar to
spaCy’s score of 0.43.

Model performance The average F1 scores
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for all prompts achieved by the tested LLMs is
within the 0.24 to 0.43 range for both datasets.
Per prompt type, the highest F1 score of 0.53 is
achieved by gpt-4o0 on the token-based NE class
cluster 1 of Climate-Change-NER and the lowest
F1 score of 0.16 by Llama-70B on the string-based
NE class cluster 4 of the same corpus. For token-
based prompts, gpt-4o has the highest average
score, followed by Llama-405B; gpt-4o-mini and
Llama-70B come third and achieve equal perfor-
mance. For string-based prompts, Llama-405B
performs slightly better on Climate-Change-NER,
followed by gpt-4o0 and the two smaller models;
for BiodivNER, it is a tie between gpt-4o0 and
Llama-405B.

In terms of overall model ranking, gpt-40 seems
to be the best performer, closely followed by
Llama-405B. Llama-70B comes third due to its
slightly better performance on the BiodivNER
dataset relative to gpt-4o-mini, the latter coming
in fourth.

Prompt performance As expected, prompt de-
sign can affect the quality of the output. In general,
including more TE pairs in the prompt yields bet-
ter results for both random and similar TEs, with a
few exceptions that were mostly noticed in the out-
put of Meta’s models for the random-k prompt ver-
sion in BiodivNER; the number of TEs also seems
to be more important than TEs’ similarity to the
task sentence. Task simplification by grouping NE
classes showed benefits only in NE class cluster
1 of Climate-Change-NER; in all other instances,
this step did not lead to better performance.

The impact of the input-output format is
measured by calculating the simple span-and-
category matches of the output with the gold
standard in the test data split. For token-based
prompts, this is the percentage of correctly pre-
dicted NEs when the token indices are not con-
sidered. Tables 5 and 6 show that the models
handle token-based input well - in fact, token-
based prompts achieve better average results on
both datasets. Llama-405B ranks first in this per-
formance measure on the Climate-Change-NER
dataset, while gpt-4o outperforms the other three
models on the BiodivNER dataset.

Per-class performance Given that token-based
prompts outperformed string-based prompts, an
analysis of per-class performance of token-
based prompts was done on the two datasets.
Per dataset, the best-performing and worst-



‘ Total gpt-do-mini gpt-80-2024-05-13 Meta-Llama-3,1-70B- |Meta-Llama-3,1-405B] Average, |Average, all

Prompt version k M Instruct Instruct allmodels| models

Tokens Strings Tokens Strings Tokens Strings Tokens Strings Tokens Strings
NE class cluster 1 4 85 0,39 0,39 0,53 0,5 0,33 0,25 0,47 0,41 0,43 0,39
NE class cluster 2 4 176 0,23 0,19 0,33 0,34 0,28 0,24 0,22 0,26 0,27 0,26
NE class cluster 3 4 226 0,33 0,29 0,43 0,23 0,38 0,23 0,42 0,31 0,39 0,27
NE class cluster 4 4 68 0,17 0,28 0,38 0,35 0,21 0,16 0,4 0,25 0,29 0,26
Random k examples 3 555 0,32 0,28 0,38 0,29 0,35 0,36 0,42 0,39 0,37 0,33
Random k examples 4 555 0,33 0,29 0,41 0,3 0,37 0,37 0,4 0,41 0,38 0,34
Random k examples 5 555 0,36 0,32 0,44 0,32 0,36 0,39 0,39 0,42 0,39 0,36
Similar k examples 3 555 0,33 0,33 0,38 0,38 0,36 0,4 0,38 0,43 0,36 0,39
Similar k examples 4 555 0,36 0,32 0,4 0,41 0,28 0,4 0,42 0,43 0,37 0,39
Similar k examples 5 555 0,36 0,38 0,42 0,43 0,3 0,4 0,39 0,44 0,37 0,41
Average F1 score (all prompts) 0,32 0,32 0,41 0,36 0,32 0,32 0,39 0,38 0,36 0,35

Table 3: Climate-Change-NER results: F1 scores for all versions of token- and string-based input-output

prompts.

Meta-Llama-3,1-70B- | Meta-Llama-3,1-405B] Average, all |Average, all

Total gpt-do-mini gpt-d0-2024-05-13 Instruct Instruct models models

Prompt version k |instances| Tokens Strings Tokens Strings Tokens Strings Tokens Strings Tokens Strings
NE class cluster 1 4 186 0,21 0,28 0,34 0,28 0,2 0,16 0,22 0,29 0,24 0,25
NE class cluster2 4 573 0,26 0,24 0,42 0,2 0,27 0,25 0,33 0,28 0,32 0,24
NE class cluster 3 4 518 0,21 0,25 0,35 0,22 0,24 0,23 0,23 0,28 0,26 0,25
Random kexamples 3 1277 0,23 0,26 0,32 0,29 0,28 0,27 0,31 0,33 0,29 0,29
Random k examples 4 1277 0,25 0,27 0,33 0,39 0,25 0,26 0,3 0,33 0,29 0,31
Random kexamples 5 1277 0,25 0,29 0,31 0,39 0,27 0,27 0,26 0,3 0,27 0,31
Similar kexamples 3 1277 0,34 0,36 0,4 0,46 0,34 0,33 0,35 0,37 0,36 0,38
Similar kexamples 4 1277 0,34 0,36 0,46 0,38 0,35 0,36 0,35 0,39 0,38 0,37
Similar kexamples 5 1277 0,35 0,38 0,37 0,38 0,38 0,36 0,38 0,4 0,37 0,38
Average F1 score (all prompts) 0,27 0,3 0,37 0,33 0,29 0,28 0,3 0,33 0,31 0,31

Table 4: BiodivNER results: F1 scores for all versions of token- and string-based input-output prompts.

performing classes for Climate-Change-NER are
climate-organizations (0.59)"° and climate-assets
(0.23) respectively. For BiodivNER, the best and
worst performing classes are organism (0.48) and
matter (0.18). Per model, for Climate-Change-
NER, gpt-4o0-mini and Llama-70B perform best on
climate-organizations (0.63 and 0.51), while gpt-
40 and Llama-405B on climate-greenhouse-gases
(0.62 and 0.74). For BiodivNER, all models per-
form best on the class organism (score range of
0.43 to 0.52) and worst on mater (0.15 to 0.19).

5.2 Qualitative analysis

The two worst-performing classes in the output of
the highest-F1 score models for all-class token-
based prompts were further investigated. For
Climate-Change-NER, this is the model gpt-4o
with a prompt containing 5 random TEs, while for
BiodivNER this is the same model with a prompt
containing 4 similar TEs.

Climate-Change-NER The two  worst-
performing classes are climate-assets and climate-
problem-origins. When annotating instances of
climate-assets, defined as “objects or services

19 Average F1 score from all prompts and all models.
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of value to humans that can get destroyed or
diminished by climate-hazards”, the model tends
to prefer the longest-span option: it annotates the
span pavement structure, instead of pavement,
bioclimatic skyscrapers instead of skyscrapers,
livestock industry instead of just livestock. The
model does not delineate well between climate-
assets, climate-nature, and climate-mitigations.
The model annotates as climate-problem-origins,
defined as “problems that describe why the
climate is changing”, instances such as global
warming, considered non-entity in the test split of
the gold dataset. It also fails to annotate emissions
as an entity of this class only when it is used in
the context of climate change. Sources of energy,
including hydropower, are also annotated with
this class.??

BiodivNER The two lowest-scoring classes in
this instance are matter (F1 of 0.18) and loca-
tion (0.25). Instances incorrectly annotated with
the class matter, defined as “chemical and bio-
logical compounds, and natural elements”, usu-
ally involve cases when the model only annotates

Tn the gold dataset, hydropower is annotated with the
class climate-mitigations.



Meta-Llama-3,1-70B- |Meta-Llama-3,1-405B{Average, all | Average, all

Total gpt-do-mini gpt-40-2024-05-13 Instruct Instruct models models

Prompt version k |instances | Tokens Strings Tokens Strings Tokens Strings Tokens Strings Tokens Strings
NE class cluster 1 4 85 0,61 0,38 0,75 0,54 0,68 0,51 0,74 0,47 0,7 0,48
NE class cluster 2 4 176 0,38 0,34 0,47 0,46 0,48 0,38 0,4 0,53 0,43 0,43
NE class cluster 3 4 226 0,46 0,31 0,42 0,2 0,49 0,31 0,49 0,37 0,47 0,3
NE class cluster 4 4 68 0,34 0,22 0,56 0,35 0,5 0,35 0,5 0,34 0,48 0,3
Random kexamples 3 555 0,35 0,29 0,36 0,3 0,34 0,35 0,45 0,39 0,38 0,33
Random k examples 4 555 0,39 0,31 0,4 0,31 0,38 0,37 0,44 0,43 0,4 0,36
Random kexamples 5 555 0,41 0,35 0,45 0,33 0,38 0,4 0,42 0,43 0,4 0,38
Similar kexamples 3 555 0,36 0,35 0,35 0,37 0,34 0,39 0,42 0,45 0,38 0,39
Similar kexamples 4 555 0,39 0,34 0,38 0,41 0,26 0,4 0,45 0,44 0,37 0,4
Similar kexamples 5 555 0,39 0,41 0,39 0,45 0,29 0,4 0,44 0,45 0,38 0,43
Average simple span score 0,41 0,33 0,45 0,37 0,41 0,39 0,48 0,43 0,44 0,38

Table 5: Climate-Change-NER: Span-and-category matches for token- and string-based input-output
prompts. The values are given as percentages of total instances.

Meta-Llama-3,1-70B- |Meta-Llama-3,1-405B{ Average, all |Average, all

Total gpt-do-mini gpt-40-2024-05-13 Instruct Instruct models models

Promptversion k |instances | Tokens Strings Tokens Strings Tokens Strings Tokens Strings Tokens Strings
NE class cluster 1 4 186 0,21 0,23 0,41 0,24 0,33 0,21 0,47 0,28 0,36 0,24
NE class cluster 2 4 573 0,26 0,22 0,57 0,31 0,29 0,24 0,43 0,26 0,39 0,26
NE class cluster 3 4 518 0,21 0,36 0,46 0,44 0,36 0,36 0,38 0,37 0,35 0,38
Random k examples 3 1277 0,23 0,28 0,34 0,38 0,31 0,27 0,31 0,34 0,3 0,32
Random k examples 4 1277 0,25 0,27 0,36 0,41 0,34 0,26 0,3 0,34 0,31 0,32
Random kexamples 5 1277 0,25 0,28 0,32 0,4 0,27 0,29 0,26 0,29 0,28 0,32
Similar kexamples 3 1277 0,34 0,36 0,39 0,46 0,37 0,32 0,28 0,35 0,35 0,38
Similar kexamples 4 1277 0,34 0,37 0,49 0,46 0,42 0,34 0,26 0,37 0,38 0,39
Similar kexamples 5 1277 0,35 0,38 0,34 0,46 0,39 0,34 0,37 0,38 0,36 0,39
Average simple span score 0,27 0,31 0,41 0,40 0,34 0,29 0,34 0,33 0,34 0,33

Table 6: BiodivNER: Span-and-category matches for token- and string-based input-output prompts. The

values are given as percentages of total instances.

a nested span, which can function as an NE in-
stance on its own and within a longer span (cap-
turing only woody debris instead of woody debris
item). The wrongly-annotated instances of loca-
tion, defined as a “geographic location, such as
China”, are interesting, as they reveal plausible
NE candidates that have not been included in the
gold dataset, such as Turkey, Papua New Guinea
and tropical South America.

6 Discussion and future work

The experiments reveal that few-shot NER meth-
ods are not a turnkey solution for highly-
specialised NE annotation at token- and sentence-
level, which answers Q1 and further highlights the
importance of reflecting on and reporting LLMs’
limitations on domain-specific tasks, especially at
a time of benchmark-centric research. Neverthe-
less, the results also reveal possible use cases for
LLMs in the context of NER, which include test-
ing the robustness of datasets and further simpli-
fying the task by focusing on isolated NE classes
and extensive task descriptions; both of these are
discussed in subsection 6.1.

31

Regarding the input-output format investi-
gated within Q2, the experiments show that LLMs
achieved slightly better performance on token-
based than on string-based input. A plausible ex-
planation for this might be that repeated NE in-
stances in a single sentence are more likely to
be identified with a token-based approach, as the
LLM processes each token individually. In fu-
ture iterations, it would be useful to investigate
whether the prompt for string-based processing
could benefit by including an instruction for the
LLM to extract repeated occurrences of the same
NE instance. Since LLMs’ performance could im-
prove with more context, it would be worthwhile
investigating whether redefining the string-based
prompt as a document-level NER task would yield
better performance. Finally, it was noticed that the
BiodivNER dataset contained many tokens that
were remnants of PDF parsing, which might also
have affected the LLMs’ output for string-based
prompts.

In many cases, there was an overlap in the
classes on which the LLMs performed well or
poorly. The experiment results seem to hint that



the complexity of the task could be rooted in the
LLMs not having been exposed to sufficient data
about the specialised domains. It would be inter-
esting to test this approach on a domain-specific
LLM developed for climate change question-
answering, such as models belonging to the Cli-
mateGPT family (Thulke et al., 2024). Unfortu-
nately, this was not realistic for this study due to
infrastructure constraints.

6.1 Possible use-cases

Testing robustness of datasets While LLMs
cannot be considered reliable “annotators” in an
end-to-end pipeline for corpus annotation, they
could be valuable assets in testing the definitions
and labels of an existing NER dataset. This is cor-
roborated by the fact that in BiodivNER, the mod-
els identified valid NE candidates of the category
location. This experimental setup would be an af-
fordable way of probing NE definitions and cate-
gories prior to embarking on manual annotation.
Such “probing” could also uncover class ambigui-
ties, where an instance could make a plausible NE
candidate of two or more classes.

Focusing on isolated NE classes While LLMs
were not capable of capturing NEs in the same
way a dedicated NE classifier would do, their per-
formance on certain categories, such as climate-
greenhouse-gases and climate-organisations, was
acceptable. It would be interesting to explore how
the models would perform in a single-class sce-
nario with a more extensive task description.

7 Ethical considerations

This study uses publicly available datasets. The
experiments do not require specialised infrastruc-
ture and can be reproduced using an API and the
prompts provided in the dedicated GitHub repos-
itory. The costs for all experiments, per language
model family are: ca. 40 EUR for OpenAI’s GPT4
models, and ca. 20 EUR for Llama’s 3.1 models.

Limitations

The experiments use text generation in an LLM-
as-a-service setup, which makes them vulnera-
ble to non-responsive APIs. Given that an LLM
may not yield the same result twice even when
prompted with the same text, it is impossible
to guarantee 100% reproducibility. Guardrails
against bias and offensive content are recom-
mended before real-world deployment. Informa-
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tion considered confidential or sensitive should not
be sent in API calls.
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