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Abstract
In this study, we evaluate methods to de-
termine the frequency of species via quan-
tity estimation from historical survey text.
To that end, we formulate classification
tasks and finally show that this problem
can be adequately framed as a regression
task using Best-Worst Scaling (BWS) with
Large Language Models (LLMs). We test
Ministral-8B, DeepSeek-V3, and GPT-4,
finding that the latter two have reason-
able agreement with humans and each
other. We conclude that this approach is
more cost-effective and similarly robust
compared to a fine-grained multi-class ap-
proach, allowing automated quantity esti-
mation across species.

1 Introduction

Long-term observation data plays a vital role in
shaping policies for preventing biodiversity loss
caused by habitat destruction, climate change,
pollution, or resource overexploitation (Dornelas
et al., 2013; Hoque and Sultana, 2024). However,
these efforts depend on the availability of reliable
and relevant historical data and robust analytical
methods, a significant challenge due to the hetero-
geneity of records representing such data.

The available biodiversity data varies widely
in resolution, ranging from detailed records (e.g.,
point occurrences, trait measurements) to aggre-
gated compilations (e.g., Floras, taxonomic mono-
graphs) (König et al., 2019). Many projects, such
as the Global Biodiversity Information Facility
(GBIF), focus largely on the disaggregated end of
the spectrum, particularly with presence/absence
data (Dorazio et al., 2011; Iknayan et al., 2014).
Furthermore, despite their utility, longitudinal data
is largely confined to records from after 1970 (van
Goethem and van Zanden, 2021), leaving signifi-
cant historical gaps.

Natural history collections and records from the
archives of societies present valuable opportuni-
ties to extend data further back in time (John-
son et al., 2011; Brönnimann et al., 2018). Such
sources are rich, but typically unstructured and
require sophisticated extraction tools to produce
meaningful quantitative information. Recent ad-
vances in NLP have shown promising poten-
tial for retrieval-based biodiversity detection from
(mostly scientific) literature (Kommineni et al.,
2024; Langer et al., 2024; Lücking et al., 2022).

This paper focuses on evaluating methods for
biodiversity quantification from semi-structured
historical survey texts. To achieve this, we test
tasks to distill meaningful metrics from textual in-
formation found in survey records. A particular
focus lies on the feasibility of Best-Worst Scal-
ing (BWS) with a Large Language Model (LLM)
as an annotator, which promises greater efficiency
and cost-effectiveness compared to manual anno-
tation (Bagdon et al., 2024). In the following, we
describe the data, outline the tasks and machine
learning methods, and finally present a case study.

2 Data

In 1845, the Bavarian Ministry of Finance issued
a survey to evaluate biodiversity in the Bavarian
Kingdom, a region that encompasses a variety of
different ecosystems and landscapes. To that end,
119 forestry offices were contacted to complete a
standardized questionnaire. Namely, trained local
foresters recorded in free text how frequently 44
selected vertebrate species occurred in the respec-
tive administrative territory, and in which habitats
and locations they could be found.

Figure 1 shows the facsimile of a digitized sur-
vey page. It features a header containing instruc-
tions and a number of records describing animal
species with their respective responses. These
historical survey documents are preserved by the
Bavarian State Archives (cf. Rehbein et al., 2024).
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Animal Text Binary BWS Multi-Classification

Ducks Bedecken Isar-Strom, wie Amper und Moosach in ganzen Schwärmen. 1 1.00 5 ABUNDANT
Cover Isar-stream, likewise Amper and Moosach in whole swarms.

Roe Deer Ist hier zu Hause, und beinahe in allen Waldtheilen zu finden. 1 0.88 4 COMMON
Is at home here and can be found in almost all parts of the forest.

European Adder Kommt wohl aber eben nicht häufig vor. 1 0.44 3 COMMON TO RARE
Does indeed appear but just not that often.

Lynx Höchst selten wechseln derlei Thiere von Tyrol herüber. 1 0.12 2 RARE
Very rarely do such animals cross over from Tyrol.

Wild Goose Kommt nur äußerst selten zur Winterszeit vor. 1 0.06 1 VERY RARE
Occurs only very rarely at winter time.

Owl Horstet dahier nicht und verstreicht sich auch nicht in diese Gegend. 0 0.00 0 ABSENT
Does not nest here and does not stray into this area.

Wolf Kommt nicht mehr vor. 0 0.00 -1 EXTINCT
No longer occurs.

Table 1: Data Examples with Annotation (our own translations)

The archival sources were digitized, transcribed
from the handwritten original and enriched with
metadata, including, among others, taxonomic
norm data according to the GBIF-database1 (Tele-
nius, 2011) and geographical references to forestry
offices. This data set is freely available on Zenodo
(Rehbein et al., 2024).

Figure 1: Facsimile of a survey page, Freysing
forestry office in the Upper Bavaria district.

In total, the data set contains 5,467 entries2

among which are also a number of empty (striked
out) or ‘see above’-type responses. The unique set
we used for our experiments contains 2,555 texts.
We find that the foresters’ replies vary consider-
ably in length where most texts contain 3 to 10 to-
kens and only a few texts more than 20 tokens. Ta-
ble 1 provides examples with annotation according
to the tasks detailed in the next section.

3 Tasks & Experiments

The main task in this paper is to assign a quan-
tity label to a text, indicating the frequency with
which an animal species occurs in a specific area.
This can be operationalized in various ways, either

1gbif.org
2Including species that were not explicity prompted.

through a classification task or through regression.
In both, it can be as difficult to obtain consistent
labels by asking humans to assign a value from a
rating scale (Schuman and Presser, 1996; Likert,
1932). Likewise, it is also difficult for researchers
to design rating scales, considering design deci-
sions such as scale point descriptions or granular-
ity may bias the annotators.

We evaluate three different task setups,3 as de-
tailed in Table 1: Binary ’Presence vs. Absence’
Classification, a 7-ary Multi-Class setup (Abun-
dant to Extinct), and continuous values scaled to
[0, 1]. For the first two tasks, we use manual
annotation, while continuous values are derived
through BWS with LLMs (Bagdon et al., 2024).

3.1 Binary Classification

The simplest form of animal occurrence quantifi-
cation is a binary distinction between the absence
(0) or presence (1) of a given species, an anno-
tation scheme as popular as it is problematic in
biodiversity estimation.4 In our annotation, the la-
bel PRESENT is given when a species is described
in the historical dataset as having been observed
in that particular locality at the time of the sur-
vey (thus excluding mentions of past occurrences,
i.e., extinctions). The annotation workflow con-
sists of iterative steps with discussions. Agree-
ment is nearly perfect. Overall, from the set of
2,555 unique texts, 1,992 (78%) fall into class
PRESENT, 563 (22%) into ABSENT.5

3Code: github.org/maelkolb/biodivquant
4Since ABSENCE may just stem from non-detection,

rather than real absence (Dorazio et al., 2011; Iknayan et al.,
2014; Kestemont et al., 2022).

5In the complete dataset, absence texts make up more than
half of all text descriptions, but often amount to empty or
‘strike-out’ responses. Thus, the task would be easier on the
full dataset, because many instances are trivial to predict.

62

gbif.org
github.org/maelkolb/biodivquant


To test the feasibility of the binary task, we cre-
ate training curves with different models, namely
BERT against Logistic Regression, SVM, and
Random Forest on Unigrams. We use 20% of the
data for testing, and take another 20% from the
training set for hyperparameter search at each cu-
mulative 100 text increment. Despite the 78% ma-
jority baseline, we find that the models perform
well and training requires only a few hundred texts
to reach an F1-macro score in the high 90s.

Figure 2: Training Curves of different models on
incremental training data (binary classification)

Upon feature weight interpretation of the Lo-
gistic Regression and LIME on BERT (Ribeiro
et al., 2016), we find that there is some bias in
the data: Classification decisions occur on tokens
that are not explicit quantifiers and easily substi-
tutable without changing the classification result
(e.g., common toponyms such as ‘Danube’). This
presents a case of spurious correlations—an in-
teresting future research direction, but a match-
ing (Wang and Culotta, 2020) or counterfactual
approach (Qian et al., 2021) appears challenging
for this heterogeneous data. Yet, we annotate the
best features with regard to their ‘spuriousness’
and find that classifiers are still robust without spu-
rious features. This annotation also gives us a list
of quantifiers which we utilize for transfer learn-
ing of a regression model (section 3.3).

3.2 Multi-Classification

Since the quantification of species frequency in
practice exceeds the binary differentiation be-
tween presence and absence of animals, a multi-
class approach provides more details. We use a
7-class system, categorizing texts based on the
schema as shown by the descriptors in Table 1,
ranging from ABUNDANT (5) to EXTINCT (-1).
We decided to annotate data of four species for our
case study (section 4): Roe deer, Eurasian Otter,
Eurasian Beaver, Western Capercaille, each within
the 119 forestry offices (with one annotator).

A second person annotates a random sample of
100 texts, resulting in a Cohen’s κ of 0.78, indi-
cating high agreement.

We then train a few models with a 5-fold cross
validation, and find that the language agnostic sen-
tence encoder model LaBSE (Feng et al., 2022)
performs better than monolingual BERT-models
and a Logistic Regression. We also test a zero shot
classification with GPT-4 and Deepseek-V3. See
appendix for the prompt.

Model F1 Micro F1 Macro

Logistic Regression 0.69 0.61
gbert-base 0.63 0.51
bert-base-german 0.73 0.63
LaBSE 0.77 0.68
GPT4 Zero Shot 0.70 0.56
DSV3 Zero Shot 0.66 0.66

Table 2: Multi-class model performance.

As seen in Table 2, this task is generally quite
challenging. We find that the main problem is
posed by the underrepresented classes, as shown
by the discrepancy between micro and macro
scores, indicating that more data would help,
which is, however, expensive to obtain. Zero shot
classification with GPT-4 in turn is biased towards
the RARE classes, such that COMMON categories
are harder to predict, while DeepSeek-V3 (DSV3)
shows a more balanced response.

3.3 Continuous Quantification
Finally, we experiment with operationalizing our
task as a regression problem with the aim of gen-
eralizing the quantification problem to less arbi-
trary categories and a possibly imbalanced data
set (Berggren et al., 2019). While a naı̈ve label-
ing of quantifiers showed promising results, it is a
challenge to create a comprehensive test set based
on heuristic annotation. Thus, we experiment with
Best-Worst Scaling, aided by LLMs.

3.3.1 Best-Worst Scaling with LLMs
Best-Worst Scaling (BWS) is a comparative judg-
ment technique that helps in ranking items by
identifying the best and worst elements within a
set. This approach is easier to accomplish than
manual labeling and there are fewer design deci-
sions to make. In a BWS setting, the amount of
annotations needed to rank a given number of text
instances depends on three variables, namely 1)
corpus size (total number of texts used), 2) set size
(number of texts in each comparison set), and 3)
number of comparison sets each text appears in.
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The number of comparisons divided by set size
is regarded as the variable N , where N = 2 gen-
erally yields good results in the literature (Kir-
itchenko and Mohammad, 2017). A reliable set
size is 4, since choosing the best and worst text in-
stance from a 4-tuple set essentially provides the
same number of comparisons as five out of six pos-
sible pairwise comparisons (ibid).

We take a random sample of 1,000 texts (ex-
cluding texts with ABSENCE annotation, thus
making the task harder, but giving us a more real-
istic distribution). With a set size of 4 and N = 2,
every text occurs in exactly 8 different sets and
we get 2,000 comparison sets (tuples). These are
then individually prompted to three LLMs: the
relatively small Ministral-8B,6 OpenAI’s GPT-4
(Achiam et al., 2023), and the DeepSeek-V3 open
source model (Liu et al., 2024).

Annotator1 Annotator2 B W B + W

LLM-
LLM

GPT4 DeepseekV3 0.73 0.69 0.56
Ministral8B DeepseekV3 0.54 0.54 0.36

GPT4 Ministral8B 0.57 0.50 0.38

Average 0.61 0.57 0.43

Human-
Human

AR DS 0.56 0.65 0.45
DS KB 0.56 0.62 0.40
MR AR 0.51 0.65 0.39
TP AO 0.73 0.55 0.48
MP MR 0.59 0.52 0.41

Average 0.59 0.60 0.43

Human-
LLM

AO Ministral8B 0.43 0.31 0.23
AR Ministral8B 0.47 0.58 0.38
DS Ministral8B 0.43 0.42 0.23
KB Ministral8B 0.53 0.61 0.46
MP Ministral8B 0.45 0.43 0.30
MR Ministral8B 0.55 0.48 0.38
TP Ministral8B 0.49 0.31 0.24

Average 0.48 0.45 0.32

Human-
LLM

AO GPT4 0.68 0.55 0.45
AR GPT4 0.49 0.57 0.34
DS GPT4 0.44 0.71 0.43
KB GPT4 0.47 0.68 0.41
MP GPT4 0.57 0.62 0.41
MR GPT4 0.49 0.63 0.41
TP GPT4 0.63 0.57 0.43

Average 0.54 0.62 0.41

Human-
LLM

AO DeepseekV3 0.61 0.59 0.45
AR DeepseekV3 0.55 0.68 0.41
DS DeepseekV3 0.62 0.63 0.46
KB DeepseekV3 0.57 0.62 0.41
MP DeepseekV3 0.69 0.53 0.41
MR DeepseekV3 0.59 0.68 0.46
TP DeepseekV3 0.58 0.58 0.41

Average 0.60 0.62 0.43

Table 3: Cohen’s κ Agreement between humans
and LLMs in Best-Worst-Annotation (B: Best, W:
Worst, B+W: Best + Worst). Two-letter short-
hands for humans.

Whereas Ministral-8B is run locally, we use
the OpenAI API to access GPT-4 and the fire-

6https://huggingface.co/mistralai/
Ministral-8B-Instruct-2410

works.ai API endpoint for DeepSeek-V3, since the
DeepSeek-webservices are limited at the time of
the experiment and hardware limitations hamper
local deployment. Prompts are in the appendix.

We ask seven native German post-graduates to
annotate one of two subsets of 50 tuples each with
a custom browser-based annotation interface. Ta-
ble 3 shows Cohen’s κ agreement across humans
and LLMs. We find that agreement among humans
is largely on par with agreement between humans
and the two larger LLMs, while the lower agree-
ment between Ministral-8B and humans, as well
as the other machine annotators, indicates a lim-
ited capability of this model for the task at hand.
It appears that it is easier to identify the worst in-
stance than the best, which is likely an artifact of
our data. Interestingly, agreement between GPT-
4 and DeepSeek-V3 is the highest overall, which
could lend itself either to a) the task being eas-
ier for the LLMs than for humans, or b) that the
models are overall fairly similar. We find no sig-
nificant difference (p = .118) between GPT-4 and
DeepSeek-V3 in Human-LLM comparison.

s(i) =
#best(i) − #worst(i)

#overall(i)
(1)

By counting how often each text was chosen as
the best, worst, or as one of two other texts, we cal-
culate a score s(i) as detailed in equation (1), re-
sulting in an interval scale [−1, 1], which we nor-
malize to a scale [0, 1]. This scales (and ranks) the
entire dataset, so it can be used for regression. It
should be noted that the scores come in increments
of 1

8 (determined by number of comparisons of in-
stance i), resulting in 17 discrete values. We find
a flat unimodal inverted U-shape in the score dis-
tribution without notable outliers.

3.3.2 Regression Models
We train a variety of different regression models
with 5-fold cross validation to optimize for the val-
ues generated by Best-Worst Scaling, as shown in
Table 4. We compare a Kernel Ridge Regression
(KRR) baseline against BERT-style-models with
regression head, and test a transfer learning setup,
for which we scale the 114 n-gram quantifiers as
extracted from the binary Logistic Regression with
another GPT-4 BWS, then match these scores to
the texts and tune a LaBSE model on the same
train/test split before using it for the final task.

Curiously, KRR with LaBSE embedding fea-
tures benefits substantially from hyperparameter
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Features/Training Strategy Model MAE R²
GPT4 DSV3 GPT4 DSV3

Unigrams KRR 0.159 0.158 0.514 0.515
Frozen LaBSE Embeddings KRR 0.118 0.117 0.678 0.686
Regression Head bert-base-german 0.149 0.158 0.516 0.490
Regression Head LaBSE 0.133 0.127 0.607 0.657
Reg. Head + Transfer LaBSE 0.107 0.117 0.730 0.710

Table 4: Comparison of different training strategies for regression based on BWS-Scaling.
GPT4: GPT-4 BWS annotation, DSV3: Deepseek-V3 BWS annotation

tuning, reaching superior results over LaBSE with
regression head. The Transfer Model on GPT4
BWS offers the best performance, with accept-
ably high explained variance (R2 = .73) and only
.11 Mean Absolute Error (MAE), which makes
this model useful for downstream prediction as in
the case study below. However, more data would
likely also help, since training curves show contin-
uous improvement.

4 Case Study

For a proof of concept, we map the predictions of
the regression model (LaBSE transfer regression
model based on GPT-4 BWS) to the multi-class
human annotation. Figure 3 shows a strong rela-
tionship between multi-class labels and regression
scores for the entire dataset (four species), but also
that the extinction class is not properly represented
in the regression, and furthermore that higher val-
ues are challenging to predict.

Figure 3: Multi-Class vs. Regression Distribution

Figure 4 shows specie-specific distributions for
Roe deer and Eurasian otter across all 119 offices,
indicating a fairly good alignment between the re-
gression result (top) and the multi-class annotation
(bottom). However, the mapping is not unambigu-
ous due to 1) shortcomings of the regression, such
as the inability to model extinction and difficulty
in predicting high values, and 2) imperfect align-
ment with class intervals, which are fuzzy with re-
gard to the continuous values. However, pending
further research, we find that our method performs
well and produces plausible results.

Figure 4: Density histogram of regressor predic-
tion (top) and multi-class (bottom) distribution
for Roe deer (SP 0015, red) and Eurasian otter
(SP 0005, grey).

5 Conclusion & Future Work

This study demonstrates that information of oc-
currence frequencies from semi-structured histor-
ical biodiversity survey texts can be adequately
modeled with Best-Worst Scaling through LLMs.
While a simple classification approach performs
well with minimal training data, a more complex
classification struggles with design decisions and
imbalanced data. BWS meets this by eliminating
rating scale design decisions. In addition, it is cog-
nitively and computationally less expensive, since
no manual annotation of training data is necessary,
while still offering similarly accurate results with
much finer granularity through regression.

The robustness of methods and models should
be further tested, not exclusive to biodiversity sur-
veys, lending itself to a number of tasks. Yet, sim-
ilar data to ours likely exists, e.g., on 19th cen-
tury Bavarian flora, Württembergische Oberamts-
beschreibungen (1824–1886), or data in biodiver-
sitylibrary.org, making our methods valuable.
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Limitations

The accuracy of the method depends heavily on
the capabilities of the specific LLM used. If a
model lacks domain-specific knowledge or has bi-
ases, it may impact results. Furthermore, without
a reliable dataset to benchmark against, it is diffi-
cult to assess the absolute accuracy of the BWS-
based regression approach, because we also test
on BWS values. While we measured agreement
on the BWS task with humans, it is impractical
to scale the entire dataset with both LLMs and hu-
mans, and thus our agreement calculation may suf-
fer from sampling bias.

The effectiveness of the approach on different
text sources or structured data remains uncertain.
Differences in linguistic styles, terminologies, and
data availability across domains may limit gener-
alization. The approach assumes that frequency-
related information in historical texts can be accu-
rately mapped to numerical frequency estimates.
If the original texts contain qualitative descriptions
rather than explicit quantifiers, this may introduce
errors. Also, older survey texts may reflect sam-
pling biases, observer subjectivity, or incomplete
data. If LLMs learn from these biases, the result-
ing quantity estimations may reinforce historical
inaccuracies rather than correct them.
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APPENDIX: PROMPTS

Multi-Classification Prompt
System-prompt: You are a German native expert in
text classification. Use the provided classification scheme
to classify German texts based on species frequency descrip-
tions.

User-prompt: You are a classification model. Classify
the given German text into one of the following categories:
- Abundant (5): Species is very frequently observed or
present.
- Common (4): Species is commonly found in the area.
- Common to Rare (3): Species is observed, but not very fre-
quently.
- Rare (2): Species is rarely seen in the area.
- Very Rare (1): Species is seen only in exceptional circum-
stances.
- Absent (0): Species is not observed in the area.
- Extinct (-1): Species no longer exists in the area.
Read the provided text and classify it according to this
scheme. Here is the text to classify:
Text

Best-Worst Scaling Prompt
System-prompt: You are an expert annotator specializ-
ing in Best-Worst Scaling of German texts based on quantity
information about animal occurrences.

User-prompt: (Texts 1 to 4 were substituted with the

actual texts of a tuple): Task: From the following German

texts about animal occurrence, identify:

Best: The text conveying the highest quantity (e.g., presence,

frequency, population size)

Worst: The text conveying the lowest quantity.

1. Text 1

2. Text 2

3. Text 3

4. Text 4

JSON format for your answer:

{ ”Best”: [Text Number],

”Worst”: [Text Number]}
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