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Abstract

We release 70,509 high-quality social networks
extracted from multilingual fiction and nonfic-
tion narratives. We additionally provide meta-
data for ∼30,000 of these texts (73% nonfic-
tion and 27% fiction) written between 1800
and 1999 in 58 languages. This dataset pro-
vides information on historical social worlds
at an unprecedented scale, including data for
2,510,021 individuals in 2,805,482 pair-wise
relationships annotated for affinity and relation-
ship type. We achieve this scale by automating
previously manual methods of extracting social
networks; specifically, we adapt an existing an-
notation task as a language model prompt, en-
suring consistency at scale with the use of struc-
tured output. This dataset serves as a unique
resource for humanities and social science re-
search by providing data on cognitive models
of social realities.

1 Introduction

Literary scholars have long been interested in the
social worlds of novels. Novels depict social con-
figurations across time and space at varying lev-
els of abstraction, from the grand descriptions of
geopolitical intrigue in War and Peace to the per-
sonal relationships underpinning In Search of Lost
Time. While social networks cannot represent the
full detail and nuance of literary works, they pro-
vide a uniform format to identify large-scale pat-
terns. However, prior attempts at extracting social
networks from literary texts have been hindered
by a dependency on supervised machine learning
models limited in accuracy and scalability.

In this work, we present a dataset of high qual-
ity social networks extracted from 70,509 literary
texts, such as that shown in Figure 1. We extract
the networks, including affinities and relationship
types, using a novel method that passes a modified
prompt from Massey et al. (2015) to Gemini 1.5
Flash configured to output JSON. We validate this

Figure 1: The graph of relationships in Northanger
Abbey by Jane Austen created by our model. Note the
presence of the Tilney family at the bottom left of the
figure.

approach by demonstrating that it produces anno-
tations similar to the manual annotations provided
by Massey et al. (2015). In addition to networks,
we also provide extended metadata for a subset of
∼30,000 works, of which 22,015 are nonfiction
and 7,331 fiction.

This dataset will provide researchers with the op-
portunity to evaluate literary and social hypotheses
at scale. As an initial example, we show that non-
fiction networks consist of more communities and
are less clustered than fiction networks. This may
help explain why characters in non-fiction texts
travel more (Wilkens et al., 2024) as, intuitively, a
text consisting of fewer social communities may
feature fewer locations.1

2 Related Work

Literary social network extraction. Signifi-
cant previous research has addressed extracting

1We provide the full dataset here.
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social networks from literary texts. One tradi-
tional approach involves creating networks by hand
(Moretti, 2011; Smeets et al., 2021; Sugishita and
Masuda, 2023), but manual annotations are time
intensive and do not scale to large datasets. Alterna-
tive approaches look for character co-occurrences
in windowed units like sentences or chapters (Way,
2018; Evalyn et al., 2018; Fischer and Skorinkin,
2021). Identifying co-occurrences is computation-
ally lightweight, but their dependency on surface-
level features limits their accuracy and applicability.
Neural networks have also been used more widely
in recent years for this task (Nijila and Kala, 2018;
Kim and Klinger, 2019; Chen et al., 2020; Mellace
et al., 2020). Specifically, Piper et al. (2024) and
Zhao et al. (2024) both use generative models to ex-
tract literary social networks, but their approaches
are semi-supervised and thus not easily scaled, lim-
iting their studies to datasets in the low hundreds
of volumes.

Literary social networks in use. Literary social
networks are often used to study particular charac-
ter or character-relationship traits such as promi-
nence (Masías et al., 2017; Sudhahar and Cris-
tianini, 2013), cooperativeness (Chaturvedi et al.,
2016), relationship trajectory (Chaturvedi et al.,
2017; Mellace et al., 2020), and relationship va-
lence (Nijila and Kala, 2018; Kim and Klinger,
2019; Piper et al., 2024). Some studies also use so-
cial networks to ground characters in particular lo-
cations (Lee and Lee, 2017; Lee and Yeung, 2012).
Social networks are likewise useful for studying
aspects of plot, including conflict (Smeets et al.,
2021), narrative trajectory (Min and Park, 2016;
Moretti, 2011), textual genre (Agarwal et al., 2021;
Evalyn et al., 2018), and text veracity (Sugishita
and Masuda, 2023; Volker and Smeets, 2020). They
also provide data for studies comparing differences
within a corpus (Fischer and Skorinkin, 2021), over
time (Algee-Hewitt, 2017), and between different
social theories (Elson et al., 2010; Falk, 2016; Bon-
ato et al., 2016; Stiller and Hudson, 2005; Stiller
et al., 2003). However, these studies make use
of relatively small corpora, limiting the statistical
significance of their results.

3 Methods

Data. We draw volumes from the Project Guten-
berg (PG) corpus (Hart, 1971). PG is an online
collection of public domain literary volumes de-
veloped by volunteers. It currently contains over

75,000 works, and continues to grow. The size
and historical breadth of the corpus makes it pop-
ular with researchers working in literary analysis
(Brooke et al., 2015; Reagan et al., 2016; Piper,
2022) and corpus linguistics (Gerlach and Font-
Clos, 2020).

To create our dataset, we first download the full
corpus from PG, resulting in 72,875 volumes total-
ing 25GB of raw text.2 We then supplement the
limited metadata provided by PG (author and title)
by aligning texts with MultiHATHI, an extended
multilingual edition of the HathiTrust Digital Li-
brary catalog (Hamilton and Piper, 2023), contain-
ing metadata such as publication date, language,
and fiction/nonfiction status. We use title and au-
thor edit distance (Levenshtein, 1965) to find the
closest match for each PG text in MultiHATHI,
only considering matches where the MultiHATHI
title and author matches both exceed 80% similar-
ity. This process yields 33,919 well-documented
texts.

Model selection. We consider two qualities when
selecting a suitable large language model (LLM)
for generating social networks from arbitrary-
length texts. The first is maximum context length.
The longest work in our full corpus is 13,551,565
tokens (4,233,776 words) when tokenized with the
SentencePiece-based Gemma 2 tokenizer (Kudo
and Richardson, 2018; Team Gemma et al., 2024).
For comparison, the mean word count of all vol-
umes in our full corpus is 63,656 words (P95 =
170,601). Prompts of this magnitude can quickly
exhaust the capacity of recent “open weight” LLMs,
which most commonly offer context windows equal
to or less than 128,000 tokens, despite the growing
popularity of positional embedding modifications
like RoPE and YaRN (Peng et al., 2023; Su et al.,
2023; Jiang et al., 2023; Dubey et al., 2024).

Our second consideration is support for struc-
tured output. When we generate output for
∼70,000 documents from a stochastic language
model, there is no default guarantee that the
output will be consistent. Recent methods for
guaranteeing consistent output include grammar-
constrained decoding, where tokens are selec-
tively masked at sampling time according to some
context-free grammar (Gerganov, 2024; Microsoft,
2024; Rickard, 2024; Beurer-Kellner et al., 2024).
A competing method is structured output, where the
model emits JSON according to a JSON Schema

2Our copy was obtained on September 29, 2024.
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passed at inference time (Shorten et al., 2024).
Along with larger context windows, proprietary
models have made structured output a common
feature. From the pool of presently-available pro-
prietary LLMs satisfying both these conditions, we
select Google’s Gemini 1.5 Flash, which features
a context window of 1× 106 tokens and supports
structured output via JSON Schema (Team Gemini
et al., 2024).

Pipeline. To create an appropriate prompt for ex-
tracting social networks from texts, we turn to a
public dataset released by Massey et al. (2015).
This dataset contains 2,170 annotated character
relationships produced from 109 fictional narra-
tives. Each character pair is labeled with three
attributes: the valence of the relationship (positive,
negative, or neutral) and two descriptors (“coarse-
grained” and “fine-grained,” with 3 and 30 possible
labels respectively) further clarifying the relation-
ship in terms of social function and connection
(e.g., whether the characters are lovers). Massey
et al. (2015) release the annotation prompt they
used for Mechanical Turk workers alongside the
dataset. We adapt their prompt for Gemini 1.5
Flash in JSON Schema, effectively requiring the
model to return a JSON array of characters and
their relationships for each text.3

4 Results

We use this pipeline to process the entire Project
Gutenberg Corpus. It returns 71,836 networks from
a total 72,875 volumes after omitting 1,039 vol-
umes that fail to pass the Gemini API safe con-
tent filter.4 Removing duplicate networks and mal-
formed relationships (correcting attribute labels
where possible) reduces this to 70,509 total net-
works, of which 29,346 (22,015 nonfiction and
7,331 fiction) have HathiTrust metadata available.

Validation. We assess the validity of our ap-
proach by comparing our Gemini-based pipeline
against the human-annotated results reported in
Massey et al. (2015). For each network in Massey
et al. (2015), we retrieve the original text and pass
it through Gemini together with our prompt. We
additionally instruct the model to only return an-

3We provide an example prompt together with a list of
rejected volumes here.

4Two works that fail to pass the safe content filter are
Abraham Lincoln’s Gettysburg Address and an illustrated copy
of Edgar Allen Poe’s poetry. We do not investigate further the
reasons for rejection in our corpus.
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Figure 2: Density of community distributions for non-
fiction (in green) and fiction texts (in orange). Vertical
lines represent distribution means and graphs are trun-
cated to show 90% of the data. In all cases, fiction
texts feature smaller mean community counts than non-
fiction texts.

notations for the character pairs pre-identified by
Massey et al. (2015). We then calculate the ratio of
true positive annotations over all annotations on a
per-attribute basis to assess accuracy.

Identifying character networks and attributes is
hard: Massey et al. (2015) report inter-annotator
agreement rates of κ = 0.812, 0.744 and 0.364
for these tasks. Our pipeline achieves a promising
81% accuracy for valence and 74% for “fine cate-
gory.” However, Gemini does noticeably worse for
“coarse category” annotations (55%) despite the
fact that each fine label is unique to a single coarse
label (e.g., the fine label “husband/wife” implies
the coarse label “familial”). We therefore make use
of the coarse label annotations corresponding to
the Gemini provided fine category labels in place
of the originally produced values.

5 Network Properties

Previous research has suggested that fictional
worlds are smaller than nonfictional worlds. For ex-
ample, Wilkens et al. (2024) showed that fictional
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protagonists travel smaller distances, follow more
routine paths, and more frequently spend time in
domestic or private spaces than their nonfictional
counterparts. With our new access to large-scale so-
cial network information, we can test whether simi-
lar distinctions hold between community structures.
In the same way that fictional characters travel less
than do people in non-fiction, they may also partic-
ipate in more tightly-knit social networks.

Network characteristics. We test the validity of
this hypothesis by assessing the network charac-
teristics of the nonfiction and fiction volumes with
metadata available in our dataset. We find that non-
fiction networks are on average significantly larger
than fiction networks by both number of nodes
(22.14 v. 42.69) and number of edges (27.42 v.
42.91).5 Two other metrics of network complexity
include the number of disconnected components
(groups of characters that do not interact) and tran-
sitivity (the probability that two nodes that share
a mutual connection are themselves connected).
Fictional networks have significantly fewer discon-
nected components (2.20 vs. 5.12) and their mean
transitivity is significantly larger (0.22 vs. 0.12)
than nonfiction networks. Thus, we see that fic-
tion networks are smaller and more clustered than
nonfiction networks.

Community detection. While completely dis-
connected sub-graphs are easy to identify, there are
also often denser communities embedded in larger
graphs. Since our networks can contain multiple
edges between two nodes representing different re-
lationships, we first divide the full network into
three networks (familial, social, professional). We
then use the Louvain method (Blondel et al., 2008)
to partition each graph into communities, with no
pre-set number of communities per graph.

The mean number of communities in non-fiction
networks is indeed larger than in fiction networks
(11.28 vs. 8.65).6 This is true even if we look only
at social (3.38 vs. 4.08), familial (3.07 vs. 3.32), or
professional (2.20 vs. 3.87) communities. Figure
2 shows the distribution of community counts for
fiction and non-fiction. Fictional networks tend to
have a more consistent number of communities,

5All reported distinctions are significant under Welch’s
t-test at p<10−9.

6This method of calculating community count assumes
that a majority of communities will only contain relationships
of a single edge type. Results with communities drawn from
the entire graph are similar.

while non-fiction networks have a wider range; if a
work has very few or very many communities, it is
more likely to be non-fiction.

Relationship types. We observe that fiction net-
works consist of a significantly larger proportion
of social (48.08% v. 39.44%) and familial (30.07%
v. 21.15%) relationships on average, whereas non-
fiction networks have a larger average proportion
of professional relationships (39.41% v. 21.86%).
This aligns with Wilkens et al. (2024)’s finding that
fictional characters spend more time in domestic
and private spaces.

6 Conclusion

This work presents a novel dataset containing
70,509 high-quality social networks extracted from
fiction and nonfiction narratives. It additionally in-
cludes metadata for 29,346 texts written between
1800 and 1999 in 58 languages. We release this
resource to support researchers in the humanities
and social sciences studying the development of
social worlds over time, and the work of behavioral
scientists who seek to understand how cognitive
models of social communities compare with real-
world social communities.

Our dataset-construction process also con-
tributes to a growing literature on adapting anno-
tation task instructions for language models. Our
results demonstrate that we can use LLMs to gen-
erate large-scale datasets for complicated and nu-
anced annotations on volume-length data. We find
that constrained output such as JSON Schema is
critical to maintaining consistency and compatibil-
ity at scale. We also observe that more concrete,
descriptive annotations are more successful than
more abstract annotations, even when these appear
logically identical to humans.

Next steps. While our dataset is a step forward
for researchers studying social networks, there re-
mains room for progress. Generative language
models improve over older social network extrac-
tion methods based on surface-level features, but
we need better open and locally runnable alterna-
tives to inefficient and costly proprietary models.
These models have low interpretability, do not per-
mit unlimited token lengths, and block content con-
sidered inappropriate for opaque reasons that may
be inappropriate for historical data. We similarly
lack good evaluation methods. Modeling social
networks as graphs is an inherently interpretive
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act, sometimes literally so in the context of liter-
ary data. To that end, social networks may change
depending on the perspective of the narrator. Our
current method does not allow these perspectives
be reflected in graph structures. We believe fu-
ture research should consider further methods for
assessing the validity of extracted social networks.

Limitations

We note three primary limitations impacting this
work. First, our textual data is sourced from pre-
dominantly European authors. Because it is an
American project, the vast majority of volumes in
Project Gutenberg are written in English. While the
dataset does contain volumes written in at least 58
languages, the three most dominant are English,
French, and German. The second limitation is
that Gemini 1.5 Flash has a maximum context
window of one million tokens. This means our
pipeline could not process ∼374 volumes whose
token counts exceed this maximum (although we
note that the average text in our dataset contains
63,656 words, two orders of magnitude below this
maximum). Finally, Gemini 1.5 Flash can only
emit a maximum of 8,000 tokens in one API call.
Our results indicate that some volumes contain so-
cial networks exceeding this maximum, suggesting
some networks included in our dataset are incom-
plete.
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