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Abstract

In this work, we evaluated Lithuanian
and general history knowledge of multi-
lingual Large Language Models (LLMs)
on a multiple-choice question-answering
task. The models were tested on a dataset
of Lithuanian national and general history
questions translated into Baltic, Nordic,
and other languages (English, Ukrainian,
Arabic) to assess the knowledge sharing
from culturally and historically connected
groups. We evaluated GPT-4o, LLaMa3.1
8b and 70b, QWEN2.5 7b and 72b, Mis-
tral Nemo 12b, LLaMa3 8b, Mistral 7b,
LLaMa3.2 3b, and Nordic fine-tuned mod-
els (GPT-SW3 and LLaMa3 8b).

Our results show that GPT-4o consistently
outperformed all other models across lan-
guage groups, with slightly better results
for Baltic and Nordic languages. Larger
open-source models like QWEN2.5 72b
and LLaMa3.1 70b performed well but
showed weaker alignment with Baltic
languages. Smaller models (Mistral
Nemo 12b, LLaMa3.2 3b, QWEN 7B,
LLaMa3.1 8B, and LLaMa3 8b) demon-
strated gaps with Lithuanian national his-
tory related questions (LT-related) align-
ment with Baltic languages while per-
forming better on Nordic and other lan-
guages. The Nordic fine-tuned models did
not surpass multilingual models, indicat-
ing that shared cultural or historical con-
text alone does not guarantee better per-
formance.

1 Introduction

Large Language Models provide a functional
framework for tackling various natural lan-
guage processing (NLP) tasks, such as question-

answering (Izacard et al., 2022; Dong et al., 2024),
machine translation (Zhu et al., 2023; Kocmi et al.,
2024) and so on. However, LLMs have shown less
reliable results for low-resource languages (Ran-
jan et al., 2024; Sakib and Das, 2024) due to the
smaller fraction of available data in comparison to
English and a few other widely spoken languages.

Benchmarking multilingual LLMs across lan-
guages is essential for evaluating their capabilities.
However, the availability of high-quality, cultur-
ally aligned datasets remains a challenge. This
need for culturally aligned high-quality datasets
becomes even more critical when evaluating his-
torical knowledge, where ensuring linguistic and
cultural fairness adds a layer of complexity.

Verifying comparability of the results on histor-
ical knowledge QA datasets requires that a sin-
gle set of historical events is queried in all lan-
guages. The choice of that set is likely to be biased
to events more represented in widely spoken lan-
guages. Conversely, events that are more region-
or cultural-specific are less likely to occur in the
benchmarks. Finding and addressing these gaps
is important to improve the fairness of LLMs and
highlight historical and cultural biases.

In this work, we focus on evaluating multi-
lingual LLMs on Lithuanian and general history.
Our goal is to determine how LLMs perform on
Lithuanian history exam questions when prompted
in different languages and explore the alignment
between languages and historical awareness, par-
ticularly within the Nordic and Baltic language
groups.

Our contribution is the following:

• We automatically translated publicly avail-
able Lithuanian history exam question-
answering dataset into Nordic (Danish,
Finnish, and Swedish), Baltic (Estonian and
Latvian), and other (Arabic, Ukrainian, and
English) languages and partially manually
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evaluated it.

• We tested GPT-4o (OpenAI et al., 2024),
LLaMa3.2 3b, LLaMa3 8b, LLaMa3.1 8b
and 70b (Dubey et al., 2024), Mistral Nemo
12b (Jiang et al., 2023), QWEN2.5 7b
and 72b (Team, 2024; Yang et al., 2024),
and GPT-SW3 and Nordic-trained LLaMa3
8b (Ekgren et al., 2023) models and com-
pared their achieved accuracy scores per lan-
guage and its average per language group.

Our findings revealed that GPT-4o consistently
outperformed other models across all evaluated
languages and language groups on a dataset of
LT-related and general history questions. Larger
open-source models, such as LLaMa3.1 70b and
QWEN2.5 72b, also demonstrated strong and con-
sistent performance in all languages. In contrast,
smaller models like Mistral Nemo 12b, LLaMa3
8b, LLaMa3.2 3b, and LLaMa3.1 8b showed no-
table gaps in their historical knowledge from a
Lithuanian perspective, particularly with Baltic
languages, despite Lithuanian being part of this
group. The best performance was observed in
the Nordic language group, suggesting that cul-
tural or historical alignment alone does not ensure
higher accuracy. Interestingly, the Nordic pre-
trained models failed to surpass the multilingual
model.

The code and data are available in our GitHub
repository1.

2 Related Work

Pre-trained LLMs have exhibited a remarkable
ability to encode and retrieve factual and common
knowledge across different languages (Wang et al.,
2023; Zhao et al., 2024). However, there is a no-
table variation in model performance across lan-
guages, with a strong shift toward high-resource
languages (Qi et al., 2023), particularly languages
with Latin scripts (Ifergan et al., 2024).

The datasets used for benchmarking multilin-
gual LLMs are created using either one of the
two approaches: human annotation (Kocmi et al.,
2023; Goyal et al., 2022) or translating existing an-
notated datasets using LLMs (Lai et al., 2023).

Although datasets created by human annota-
tors provide accurate translations and task-specific

1https://github.com/OpenBabylon/
NoDaLiDa2025-LT-History-Eval

precision, they require considerable investment of
both time and finances (Yang et al., 2019).

On the other hand, with an advancement of
LLMs, the translation performance of automatic
tools has been significantly boosted lately. For ex-
ample, ChatGPT demonstrates fewer errors with
the launch of the GPT-4 engine, even for distant
languages (Jiao et al., 2023). The quality control
research on the DeepL translation tool found that
DeepL2 performed well in terms of translation ac-
curacy, fluency, and naturalness, reaching an over-
all semantic similarity score 94.13 (Linlin, 2024).

This improvement elevated the creation of
benchmark datasets on various tasks. DeepL
was used for creating the X-FACT multilingual
factual knowledge dataset translated in 25 lan-
guages (Gupta and Srikumar, 2021). In the re-
search (Thellmann et al., 2024), five well-known
datasets of various tasks were translated by DeepL
into 21 European languages. LLMs with different
numbers of parameters were evaluated on newly
introduced datasets. The authors observed that
models generally achieve higher performance on
Romance and Germanic languages compared to
Slavic languages.

ChatGPT was utilized to translate the 158K En-
glish instructions into 26 languages, including 7
low-resource languages (Lai et al., 2023). The
data was used to instruction-tune LLM for mul-
tiple languages using reinforcement learning from
human feedback. The resulting framework, Okapi,
was also evaluated on datasets translated by Chat-
GPT from English into 26 selected languages.

3 Methodology

In this paper, we investigate performance consis-
tency of LLMs within Nordic and Baltic language
groups on the Lithuanian history exams questions.
We hypothesized that the LLMs perform better in
this domain, when presented with questions in lan-
guages from Nordic and Baltic groups than from
other due to the cultural, linguistic and historical
similarities.

The methodology consists of two steps: data
preparation and models’ benchmarking.

Data Preparation. To test the hypothesis, we
chose EXAMS (Hardalov et al., 2020) dataset.
Specifically, we used samples that correspond to
Lithuanian history. Each sample contains a ques-

2https://www.deepl.com/
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Figure 1: Example of the dataset sample in Lithua-
nian.

tion, four different answer choices marked with
the labels A,B,C and D with an indication of the
correct one (see Figure 1). Questions and choices
are in Lithuanian. We manually removed the ques-
tions that require an image to answer it, obtaining
550 samples.

The dataset was machine translated into Nordic
(Danish, Finnish, and Swedish), Baltic (Estonian
and Latvian), and outside of Nordic-Baltic, multi-
lingual language group: Ukrainian, English, and
Arabic. In more details, the dataset was trans-
lated from Lithuanian to English, and then the
English translations were translated in other lan-
guages. We used GPT-4o (OpenAI et al., 2024)
and DeepL as translation algorithms, as they are
proven to have a good machine translation perfor-
mance from- and to-English rather than between
underrepresented languages (Wang, 2024; Hendy
et al., 2023).

After that, we separated dataset into 2 parts:
Lithuanian national history related questions (LT-
related) and general history questions. We as-
signed a question to the LT-related group if it
specifically mentions Lithuania, mentions Lithua-
nian historic figure or a question about the coun-
try that Lithuania was a part of or occupied by
(e.g. Polish-Lithuanian Commonwealth, USSR
after 1940 etc.). Other questions were assigned to
a general history questions group.

To ensure quality, a subset of the dataset was
evaluated manually by a group of native speakers.
Annotators were presented with 100 English and

Figure 2: Example of the chat prompts that the
model was presented to evaluate the dataset in
Lithuanian and English languages.< . . . > is the
actual question that the model is evaluated on.

translated language pairs (50 from LT-related and
50 from General history dataset) with 20 samples
being the same for all the annotators to measure
the annotators’ agreement. For more details, see
Appendix A.

Models’ benchmarking. We experimented on
the following models: LLaMa3 8b, LLaMa3.1 70b
and 8b (Dubey et al., 2024), LLaMa3.2 3b (Dubey
et al., 2024), Mistral Nemo 12b (Jiang et al.,
2023), GPT-4o (OpenAI et al., 2024), QWEN2.5
7b and 72b (Team, 2024; Yang et al., 2024), and
families of instruct pre-trained models developed
by AI Sweden3: GPT-SW3 (Ekgren et al., 2023)
(126m, 356m, 1.3b, 6.7b) pre-trained for and
LLaMa3 8b fine-tuned for Swedish, Norwegian
and Danish. GPT-SW3 models were pre-trained
for Swedish, Norwegian, Danish, Icelandic, En-
glish, and programming code and LLaMa3 8b (we
will refer to this model as NRD LLaMa3 from now
on to avoid confusion) was fine-tuned for Swedish,
Norwegian and Danish.

In our experiments, we used multilingual in-
struct LLMs. During generation, all the parame-
ters were set to defaults, except for random seed,
which we set to 2 with Ollama 4 framework for
open source models. For Nordic models, we

3https://huggingface.co/
AI-Sweden-Models

4https://github.com/ollama/ollama
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used implementation from the transformers (Wolf
et al., 2020). Specifically, we used GPT-SW3 and
Swedish LLaMa3 8b5. The models were shown
the same set of questions, translated to the corre-
sponding language.

Another limitation of the approach is that we
used GPT-4o for both translation and evaluation.
To ensure that there is no data leakage, the model
was shown only one sentence from the dataset at a
time during translation and evaluation (along with
manually crafted few-shot examples).

For each language in the translated dataset,
the model was evaluated on the multiple choices
question-answering task. The model was pre-
sented with a system message in English explain-
ing the task, four question-answering examples in
the corresponding language, and finally, a ques-
tion with answer choices that the model has to an-
swer. The examples were presented in the same
format as the final question and consisted of ques-
tion, four answer choices marked with A, B, C, D,
and the correct letter for an answer as an expected
output. Examples were taken from the modern
(later than 2020) history of Lithuania, and do not
intersect with questions in the dataset. Everything,
except the system prompt, was presented to the
model in the evaluated language (see Figure 2).

The results were parsed in the following way. If
the model generated more than one letter, the gen-
erated text was separated into words. From these
words, only capital letters were kept that corre-
sponds to possible choice letters A,B,C, or D. If
only one letter was present, it was considered as a
final output. Otherwise, we assume that the model
failed to produce a reasonable output and record it
as if the model’s answer was incorrect. As a re-
sult, we measured accuracy score for each model
and each language.

During the evaluation, the translation quality
can influence the final results. Since the original
dataset was in Lithuanian, we would expect the
models perform better on Lithuanian, as it did not
go through translation steps. It is can be viewed as
a possible advantage for Lithuanian over other lan-
guages, particularly for LT-related history ques-
tions.

5https://huggingface.co/collections/
AI-Sweden-Models/

4 Results and Discussion

For each LLM, we grouped its results per language
group into Nordic (Danish, Finnish, and Swedish),
Baltic (Lithuanian, Latvian, Estonian), and mul-
tilingual (Ukrainian, English, and Arabic). The
accuracy scores per language and averages scores
per language group are presented in Tables 1 and 2
and on Figures 3, 4, and 5.

Our results demonstrated that all the models ex-
cept for GPT-4o obtained better scores for gen-
eral history questions rather than for LT-related
ones. This observation is expected due to a biased
training datasets for such models towards English-
centric data.

The largest evaluated model, GPT-4o, per-
formed consistently better than other models for
LT-related and general history questions in all lan-
guage groups. The model achieved a maximum
average score of 0.88 for LT-related history ques-
tions for the Baltic group (BLT) and performed
similarly for Nordic languages (NRD) with a score
of 0.87, though it showed slightly weaker perfor-
mance in the multilingual group (MLT), scoring
0.84. These results suggest better knowledge rep-
resentation for Nordic and Baltic language groups
in LT-related history exams. Among the individual
languages, English and Lithuanian were the best-
performing languages for both LT-related and gen-
eral history questions.

The 70b group of models (QWEN2.5 72b and
LLaMa3.1 70b) demonstrated second best perfor-
mance across all the types of questions. QWEN2.5
showed lower accuracy for Baltic languages on
average, obtaining similar scores for MLT and
NRD groups. Also, in both types of questions,
QWEN2.5 showed similar trends of receiving
lower scores in Estonian and Latvian, but higher
scores for Nordic languages. Additionally, its per-
formance was better in general questions across
all languages, but when it comes to the alignment
with LT-related, model was able to output better
results for English, Swedish, and Danish rather
than for Lithuanian or Baltic languages. In con-
trast, LLaMa3.1 70b did not performed at par with
diff language groups. The results are similar for
all languages in all questions with Arabic being
the weakest and Lithuanian with English slightly
stronger than others.

In case of Mistral Nemo 12b, the model scored
the smallest scores comparing to other, even
smaller (7-8b, 3b) models. It showed similar re-
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NRD BLT MLT
LT G LT+G LT G LT+G LT G LT+G

GPT-4o 0.87 0.89 0.88 0.88 0.89 0.89 0.84 0.88 0.86
QWEN2.5 72b 0.74 0.87 0.81 0.71 0.83 0.77 0.76 0.87 0.82
LLaMa3.1 70b 0.72 0.82 0.77 0.72 0.81 0.76 0.72 0.81 0.77
M Nemo 12b 0.36 0.49 0.43 0.36 0.42 0.39 0.41 0.55 0.48
LLaMa3.1 8b 0.47 0.62 0.54 0.44 0.57 0.50 0.50 0.66 0.58
LLaMa3 8b 0.45 0.48 0.46 0.39 0.40 0.40 0.48 0.53 0.50
QWEN2.5 7b 0.49 0.62 0.56 0.46 0.48 0.47 0.58 0.73 0.65
LLaMa3.2 3b 0.40 0.50 0.45 0.34 0.33 0.34 0.42 0.47 0.45

Table 1: Average accuracy results per language group and model. NRD stands for Nordic, BLT stands
for Baltic, and MLT stands for multilingual language groups. LT-R, G, and LT+G stand for Lithuania-
related history questions, general history questions and merged history questions respectively. M Nemo
12b refers to Mistral Nemo 12b model.

SW DN EN
LTR G LTR+G LTR G LTR+G LTR G LTR+G

NRD LLaMa3 8b 0.43 0.50 0.46 0.42 0.51 0.46 − − −
GPT-SW3 126m 0.27 0.22 0.24 0.27 0.21 0.24 0.27 0.20 0.24
GPT-SW3 356m 0.27 0.21 0.24 0.27 0.21 0.24 0.23 0.20 0.21
GPT-SW3 1.3b 0.23 0.24 0.23 0.23 0.23 0.23 0.23 0.24 0.24
GPT-SW3 6.7b 0.32 0.27 0.29 0.33 0.29 0.29 0.24 0.28 0.26

Table 2: Accuracy results for Nordic fine-tuned models. NRD LLaMa3 8b refers to pre-trained LLaMa3
8b by AI Sweden. LTR, G, and LTR+G stand for Lithuania-related history questions, general history
questions and merged history questions respectively. SW (Swedish), DN (Danish), EN (English) indicate
a language that was used for evaluating the model.

sults across all language groups, obtaining the
same average accuracy scores (36%) on Baltic and
Nordic group on LT-related questions and a bet-
ter performance for Nordic group on general ques-
tions than for Baltic. The average of MLT group
was better, even though neither score was higher
than 64%.

LLaMa3 8b, QWEN2.5 7b, and LLaMa3.1 8b
demonstrated a weaker performance when tested
on BLT group across all questions. Using Lithua-
nian showed a better results. Similarly, Swedish
and Danish helped QWEN2.5 7b obtain a bet-
ter score. This results indicate that these models
are better aligned with Lithuanian national history
when asked in a language from Nordic group or
in Lithuanian. LLaMa3.2 3b showed similar per-
formance on NRD group to Mistral Nemo, but
in MLT and BLT settings it received the lowest
scores.

The Nordic-specific models performed simi-
larly on all their supported languages. From

the considered models, NRD LLaMa3 is a clear
winner. It demonstrated a similar performance
across its supported languages and is very close
to LLaMa3.2 performance on Swedish and Dan-
ish, but still underperformed LLaMa3.1 8b and
QWEN2.5 7b on the corresponding languages.
When it comes to a family of GPT-SW3, the
greater the amount of parameters - the better per-
formance. GPT-SW3 6.7b outperformed other
versions of the model across Swedish and Dan-
ish. However, on English, GPT-SW3 with 126m
performed better on LT-related questions.

While our findings suggest that shared cul-
tural or historical context does not guarantee bet-
ter model performance, the other factors could
potentially play a role. The evaluated multilin-
gual models were trained on disproportionately
larger datasets for Nordic languages due to its
better availability (e.g. Wikipedia articles for
Swedish and Danish etc.). This disproportion can
explain the performance gaps, even for general
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FN SW DN EST LAV LT AR EN UA

GPT-4o

QWEN2.5 72b

LLaMa3.1 70b

Mistral Nemo 12b

LLaMa3.1 8b

LLaMa3 8b

QWEN2.5 7b

LLaMa3.2 3b

0.86 0.87 0.89 0.85 0.89 0.91 0.79 0.90 0.86
0.72 0.77 0.75 0.70 0.72 0.74 0.73 0.80 0.77
0.73 0.71 0.74 0.69 0.72 0.76 0.68 0.78 0.72
0.36 0.35 0.39 0.34 0.37 0.38 0.35 0.49 0.42
0.47 0.49 0.48 0.43 0.43 0.47 0.43 0.57 0.53
0.44 0.47 0.46 0.41 0.39 0.40 0.44 0.57 0.46
0.46 0.52 0.51 0.42 0.49 0.47 0.53 0.64 0.57
0.37 0.42 0.42 0.33 0.37 0.35 0.41 0.50 0.37

Figure 3: Accuracy results per language for LT-
related history questions.

FN SW DN EST LAV LT AR EN UA

GPT-4o

QWEN2.5 72b

LLaMa3.1 70b

Mistral Nemo 12b

LLaMa3.1 8b

LLaMa3 8b

QWEN2.5 7b

LLaMa3.2 3b

0.88 0.91 0.91 0.88 0.88 0.93 0.84 0.92 0.90
0.87 0.89 0.88 0.82 0.81 0.87 0.86 0.90 0.88
0.82 0.83 0.83 0.82 0.79 0.84 0.77 0.85 0.84
0.47 0.49 0.54 0.43 0.41 0.43 0.45 0.64 0.59
0.60 0.65 0.61 0.55 0.53 0.63 0.53 0.74 0.73
0.40 0.50 0.55 0.43 0.38 0.41 0.43 0.65 0.51
0.54 0.67 0.68 0.47 0.51 0.49 0.67 0.83 0.69
0.42 0.54 0.55 0.33 0.33 0.35 0.38 0.66 0.39

Figure 4: Accuracy results per language for gen-
eral history questions.

knowledge questions. For instance, in our results,
smaller models consistently achieved higher accu-
racy on Swedish and Danish compared to Lithua-
nian across both general and LT-related ques-
tions. These differences highlight the importance
of training data availability and linguistic repre-
sentation, in addition to cultural and historical
alignment, in shaping LLM performance. Future
work should further investigate the interaction be-
tween these factors to better address the challenges
of underrepresented languages.

In conclusion, our experiments show that GPT-
4o performs consistently better across all tested
languages and language groups on LT-related and
general history questions. Larger open source
models, LLaMa3.1 70b and QWEN2.5 72b also
performed consistently well in all languages. Mis-
tral Nemo 12b, LLaMa3 8b, LLaMa3.2 3b, and

FN SW DN EST LAV LT AR EN UA

GPT-4o

QWEN2.5 72b

LLaMa3.1 70b

Mistral Nemo 12b

LLaMa3.1 8b

LLaMa3 8b

QWEN2.5 7b

LLaMa3.2 3b

0.87 0.89 0.90 0.87 0.89 0.92 0.81 0.91 0.88
0.79 0.83 0.81 0.76 0.77 0.80 0.79 0.85 0.82
0.77 0.77 0.78 0.75 0.75 0.80 0.73 0.81 0.78
0.41 0.42 0.46 0.39 0.39 0.40 0.40 0.56 0.50
0.53 0.57 0.54 0.49 0.48 0.55 0.48 0.65 0.63
0.42 0.48 0.50 0.42 0.39 0.40 0.44 0.61 0.48
0.50 0.59 0.60 0.44 0.50 0.48 0.60 0.73 0.63
0.39 0.48 0.49 0.33 0.35 0.35 0.40 0.58 0.38

Figure 5: Accuracy results per language for
merged LT-related and general history questions.

LLaMa3.1 8b demonstrated significant gaps in
their historical knowledge for LT-related history
questions within Baltic language group, even
when Lithuanian is part of this group. The bet-
ter performance was obtained in Nordic language
group, indicating that cultural or historical align-
ment alone does not guarantee higher accuracy for
these models. The Nordic pre-trained models were
not able to outperform the multilingual model, re-
jecting our initial hypothesis.

5 Conclusion

This study evaluated the performance of Large
Language Models (LLMs) on Lithuanian histori-
cal multiple-choice question-answering tasks, fo-
cusing on Baltic, Nordic, and other language
groups. The models were evaluated on the Lithua-
nian national history related (LT-related) questions
and a general history questions.

Our findings showed that GPT-4o consistently
outperformed all other tested models across lan-
guages, achieving the highest scores for LT-related
and general history questions, with slightly better
results for Baltic and Nordic languages. Among
open-source models, larger models QWEN2.5 72b
and LLaMa3.1 70b performed well but did not
match GPT-4o, especially in Baltic languages.
Smaller models, including Mistral Nemo 12b,
LLaMa3.2 3b, QWEN 7B, LLaMa3.1 8B, and
LLaMa3 8b demonstrated weaker results with
Baltic languages, including Lithuanian, while per-
forming better in Nordic and multilingual groups.

Nordic fine-tuned models performed consis-
tently across their supported languages but failed
to surpass general multilingual models, even
within their specialized domain. These findings
highlight that shared cultural or historical con-
text alone does not guarantee better model per-
formance. To bridge these gaps, further efforts
are needed to develop targeted datasets and fine-
tuning strategies to improve LLM alignment with
less-resourced languages like those in the Baltic
language group.
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A Manual Translation Quality
Evaluation

The annotation guidelines and examples can be
found in our GitHub repository. For each trans-
lated language, we utilized the same following
strategy. We recruited native speaker annotators,
who are also are proficient in English. They
were presented with 80 random samples from the
dataset distinct for each annotator and 20 sam-
ples that are the same for each annotator. From
those 80 samples, 40 were selected from a pool
of Lithuanian history questions, and other 40 from
the general history question. The same approach
was applied for the remaining 20 samples: 10 were
selected from a pool of Lithuanian history ques-
tions, and other 10 from the general history ques-
tion.

The annotators were presented with the trans-
lated English question, its answer choices and
the corresponding translation for the question and
choices. in the case of Lithuanian to English trans-
lation, the pairs of Lithuanian and English were
presented. They were instructed to determine if
the translation is correct from the following stand-
points. The translation accurately conveys the
meaning of the English or Lithuanian text. The
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Lang Pair # Reject (A) # Reject (B) # Accept (A) # Accept (B) Intersect, % Cohen Kappa
LT-EN 11 18 89 82 75 0.286
EN-UA 10 30 90 70 75 0.286
EN-AR 28 21 72 79 65 0.239

LT-EST* 13 54 87 46 0.55 0.0
EN-SW 1 6 99 94 0.9 -0.053
EN-DN 9 41 91 59 0.6 -0.013
EN-FN 15 33 78 67 0.73 0.189

LT-LAV* 27 43 73 57 0.7 0.381

Table 3: Annotation results. * indicates translation with DeepL from Lithuanian to the target language.
# Reject and Accept refer to a number of rejected and accepted samples by the annotator (marked with
letters A and B). Intersect indicates a percentage of samples that annotators assigned the same label.

order of answers (with respect to the letters) is
the same in both languages. The names of his-
torical figures, locations, dates, or events are cor-
rectly translated and align with conventions. Text
semantics are clear and do not change the intent or
emphasis of the question or answers. If the transla-
tion contains grammar or phrasing issues, or minor
typos, they do not lead to confusion or ambiguity
and do not change the semantics.

If the translation does not fit the requirements
above, the translation is rejected. The annotation
results and agreements (in a form of number of in-
tersections and Cohen Kappa scores) are presented
in the Table 3. During our experiments, chatGPT
showed poor results when translating to Latvian
and Estonian. Therefore, we used DeepL to trans-
lated Lithuanian to Latvian and Estonian. The
annotation in the Table 3 corresponds to DeepL
translation.

The obtained Cohen Kappa scores were not
high, especially for Swedish and Danish. As we
only had 20 samples for comparison (Bujang and
Baharum, 2017), the Cohen Kappa score is not re-
liable in this case, we additionally calculated the
number of intersections.
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