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Abstract
Knowledge distillation (KD) aims to transfer
the knowledge of a teacher (usually a large
model) to a student (usually a small one). In
this tutorial, our goal is to provide partici-
pants with a comprehensive understanding of
the techniques and applications of KD for lan-
guage models. After introducing the basic
concepts including intermediate-layer match-
ing and prediction matching, we will present
advanced techniques such as reinforcement
learning-based KD and multi-teacher distilla-
tion. For applications, we will focus on KD for
large language models (LLMs), covering topics
ranging from LLM sequence compression to
LLM self-distillation. The target audience is
expected to know the basics of machine learn-
ing and NLP, but do not have to be familiar
with the details of math derivation and neural
models.

1 Introduction

Recent advances in deep learning have largely
changed the field of natural language processing
(NLP). In particular, large language models (LLM)
have been the cornerstone of NLP research, and
they are now tightly integrated into our daily lives.
Despite the success of LLMs in a wide range of
applications, they may be cumbersome to use due
to their high memory and computational overhead.
This calls for an increasing need to make these
models more efficient and accessible, so a broader
range of users can benefit from LLMs.

Researchers have been working on reducing the
computational cost of running LLMs in various
ways. For example, model pruning is a technique
that removes “low-impact” parameters of a network
to reduce the memory usage (LeCun et al., 1989;
Liu et al., 2018; Fan et al., 2021). Alternatively,
quantization aims to reduce the number of bits
used to represent the parameters without severely
deteriorating the performance (Han et al., 2016;
Tao et al., 2022).

In this tutorial proposal, we will focus on knowl-
edge distillation (Hinton et al., 2015; Kim and
Rush, 2016), which aims at transferring knowl-
edge from a teacher (typically a large model) to a
student (known as the student). It has gained in-
creasing attention in the NLP community, driven
by the demands of compressing the ever-growing
and high-performing language models.

After an introduction and overview, we will start
the tutorial with the basics of KD, mainly falling
into the following two categories: intermediate-
layer matching and prediction matching. The for-
mer refers to the distillation of intermediate lay-
ers, including activated features (Sun et al., 2019;
Shleifer and Rush, 2020; Yu et al., 2025) and atten-
tion weights (Jiao et al., 2020; Wang et al., 2021);
we will also discuss relational learning, which dis-
tills the relative structures of features (e.g., trans-
formations) instead of the absolute feature val-
ues (Wang et al., 2021; Huang et al., 2023b).

For the prediction matching, we will present
the classic cross-entropy approach, with an empha-
sis on its multi-modality issue1 (Wei et al., 2019;
Bao et al., 2020; Khan et al., 2020; Wen et al.,
2023a): when the student model’s capacity is not
large enough, it is unable to learn the multi-modal
distribution predicted by the large teacher, often-
times resulting in severe model collapse and mode
issues. We will discuss different divergence-based
methods (Kim and Rush, 2016; Wen et al., 2023b)
to mitigate this issue.

Then, we will move on to the second part of the
tutorial, where we present two selected topics on
advanced KD techniques: reinforcement learning
(RL)-based KD and multi-teacher KD. Reinforce-
ment learning has been gaining increasing attention
in recent years, due to its success in training LLMs,
showing great success in aligning the model with

1Here, a mode refers to a peak of a distribution. It should
not be confused with “multi-modality” that refers to multi-
media data (e.g., text, image, and video).
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human preference as well as mitigating exposure
bias (Ouyang et al., 2022). In here, we will dive
into RL in the context of knowledge distillation,
where the key challenge is to derive a reward func-
tion based on the teacher model (Hao et al., 2022;
Li et al., 2024).

We will also discuss multi-teacher KD, where
the student model learns from multiple teachers,
each having its own expertise. This ties closely to
the multi-modality problem that we have posed in
the first part of our tutorial, where the knowledge
is too diverse for the student to learn. We present a
solution to this based on the ensemble-then-distill
framework, where an ensemble process is applied
before distillation (Shayegh et al., 2024a,b; Wen
et al., 2025b). This allows the student to learn
high-quality, consolidated knowledge instead of
conflicting knowledge from different teachers.

The last part of our tutorial will focus on KD
with large language models (LLMs). We start
by presenting interesting phenomena observed in
LLM distillation, such as the effect of teacher inter-
vention (Saha et al., 2023) and emerging chain-of-
thought abilities in small models (Fu et al., 2023).
Then, we will showcase how KD can be used
to compress the prompts (Wingate et al., 2022;
Sun et al., 2023; Chuang et al., 2024; Mu et al.,
2023) and the reasoning process (Deng et al., 2024;
Cheng and Van Durme, 2024) to speed up infer-
ence. We will move on to self-distillation, where
LLMs are able to reflect upon its own generations
and learn skills such as instruction following (Wang
et al., 2023; Sun et al., 2023), reasoning (Huang
et al., 2023a) and summarization (Jung et al., 2024).
Finally, we will walk through modern distilled sys-
tems, including Alpaca (Taori et al., 2023), Vi-
cuna (Chiang et al., 2023), and DeepSeek’s dis-
tilled models (Guo et al., 2025) to gain a sense of
practical use of KD techniques. We conclude the tu-
torial by showing surprising and interesting applica-
tions related to KD, including quantization (Polino
et al., 2018; Wen et al., 2025a), speculative de-
coding (Zhou et al., 2024), and non-autoregressive
translation (Zhou et al., 2020).

Overall, this tutorial will lay a solid foundation
of knowledge distillation for language models, with
highlights of both machine learning challenges and
cutting-edge applications.

2 Target Audience

The tutorial targets a diverse audience, including
machine learning and NLP researchers, as well as
practitioners.

We expect the audience to have a brief knowl-
edge of deep learning (e.g., cross-entropy loss and
back-propagation training) and NLP (e.g., auto-
regressive text generation and large language mod-
els). However, the audience do not have to be fa-
miliar with the details (e.g., derivative calculations,
transformer attention formulas); only a general im-
pression would suffice.

The audience does not have to have heard of
knowledge distillation. We will teach the founda-
tions before moving on to cutting-edge algorithms
and applications.

3 Outline

PART I: Introduction [10min]

• KD definition

• Motivation

• Overview of this tutorial

PART II: KD Basics [45min]

• Overview

• Intermediate-layer matching

- Matching loss

- Layer selection

• Prediction-matching KD

- Classic cross-entropy matching

- f -divergence matching

- Ranking-based matching

BREAK [10min]

PART III: Selected Advanced KD Techniques
[45min]

• Reinforcement learning for KD

- Motivation and challenges

- Reward induction from teacher

• Multi-teacher KD

- Motivation and challenges

- Ensemble-then-distill framework
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BREAK [10min]

PART IV: KD Applications for LLMs [45min]

• Empirical findings in LLM distillation

• LLM sequence compression

• LLM self-distillation for performance im-
provement

• SOTA distilled systems

• Other interesting KD applications

PART V: Conclusion, Future Directions, and QA
[15min]
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