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1 Tutorial Content

An embodied agent is a generalist agent that can
take natural language instructions from humans and
perform a wide range of tasks in diverse environ-
ments. Recent years have witnessed the emergence
of Large Language Models (LLMs) as powerful
tools for building Large Agent Models (LAMs),
which have shown remarkable success in support-
ing embodied agents for different abilities such as
goal interpretation (Ding et al., 2023b; Xie et al.,
2023; Liu et al., 2023a; Hazra et al., 2023; Joublin
et al., 2023; Wu et al., 2023; Wang et al., 2024b;
Smirnov et al., 2024), subgoal decomposition (Not-
tingham et al., 2023; Ahn et al., 2022; Zhu et al.,
2023; Chen et al., 2023; Song et al., 2022; Wang
etal., 2023a), action sequencing (Silver et al., 2023;
Liang et al., 2024; Wang et al., 2023c; Hu et al.,
2023; Ni et al., 2023; Zhao et al., 2023; Wang et al.,
2024a; Dalal et al., 2024; Liu et al., 2023b; Rana
et al., 2023; Liang et al., 2022), and transition mod-
eling (causal transitions from preconditions to post-
effects) (Guan et al., 2023; Raman et al., 2022;
Smirnov et al., 2024; Singh et al., 2022; Wang et al.,
2023b; Li et al., 2024; Wong et al., 2023). How-
ever, moving from language models to embodied
agents poses significant challenges in understand-
ing lower-level visual details, and long-horizon
reasoning for reliable embodied decision-making.
We categorize the foundation models into Large
Language Models (LLMs), Vision-Language Mod-
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els (VLMs), and Vision-Language-Action Models
(VLAs). We investigate how embodied decision-
making abilities differ between these models and
how they scale as they get larger.

This tutorial will present a systematic overview
of recent advances in foundation models for em-
bodied agents, covering three types of foundation
models based on input and output:

* Large Language Models (LLMs)
* Vision-Language Models (VLMs)
* Vision-Language-Action Models (VLAs)

We compare these models and explore their design
space to guide future developments, focusing on
the following key aspect:

* Lower-Level Environment Encoding and
Interaction: We are tackling the challenge
of helping LLMs truly understand the phys-
ical world, especially geometric perception
learning. This means teaching it about spatial
relationships, how objects are defined and lo-
cated, and how concepts can be built up from
simpler parts, how changes in the world can
be modeled as a result of actions, and precon-
ditions and post-effect. In detail, we work on
the key challenges:

— State/Object Representation: the abil-
ity to interact with its environment, un-
derstand intricate visual details, and
grasp complex geometric structures;

— Action Representation: the ability
to control state transitions from pre-
conditions to post-effects;

— Goal Representation: the ability to in-
terpret goals and ground to the environ-
ment;

— Trajectory Representation: the abil-
ity to represent a trajectory of action se-
quence to achieve the goal;
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— Reward Representation: the ability to
quantify the progress of goal achieve-
ment, interpreting implicit rewards from
human feedback or task completion.

¢ Longer-Horizon Decision Making: We are
working on enhancing LLM’s ability to reason
over longer periods. We will formulate the
decison making process as Markov Decision
Process, including:

— Goal Interpretation: given natural lan-
guage instructions, output environment-
grounded goal states.

— Subgoal Decomposition: given a goal,
output a sequence of states to be achieved
as subgoals.

— Action Sequencing: given a goal, output
a sequence of actions to achieve the goal
states.

— Transition Modeling: given an action,
predict and control the pre-conditions
and post-effects of object states.

Target Audience: We expect audience from
natural language processing (NLP) community,
robotics community, computer vision (CV) com-
munity, and machine learning (ML) communities.
Prerequisite Knowledge: While no specific back-
ground knowledge is assumed of the audience, it
would be best for the attendees to know about basic
deep learning and foundation model technologies,
such as pre-trained language models and vision-
language models.

Relevance to the CL / NLP Community:
CL/NLP audience will learn of recent trends and
emerging challenges in leveraging language mod-
eling for embodied agents, as well as learning re-
sources and tools for participants to obtain ready-
to-use models and benchmarks, prompting thor-
ough discussions regarding the impact of founda-
tion models on embodied intelligence. In this tu-
torial, we will comprehensively review existing
paradigms for foundations for embodied agents,
and focus on their different formulations based on
the fundamental mathematical framework of robot
learning, Markov Decision Process (MDP), and
design a structured view to investigate the robot’s
decision-making process.
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Content Time
Motivation and Overview 15 mins
Foundation Models meet Virtual Agents: | 45 mins
Environment Overview 5 mins
State Estimation 5 mins
MDP Policy Learning 10 mins
Reward Modeling 5 mins
Transition Modeling 5 mins
Large World Model 10 mins
Evaluation 5 mins
Foundation Models meet Physical Agents: | 75 mins
MDP Formulation Overview 25 mins
Physical World Perception
High-level Planning 50 mins
Low-level Planning
Break 30 mins
Robotic Foundation Models (VLASs) 30 mins
Remaining Challenges 15 mins
QA 30 mins

Table 1: Conference Schedule.

2 Tutorial Outline

2.1 Motivation and Overview [15min]

We will define the main research problem and mo-
tivate the topic by presenting embodied decision
making of multiple representation levels and ability
modules. We will categorize the foundation models
and outline the road map.

2.2 Foundation Models meet Virtual Agents
based on Markov Decision Process
Formulation [45min]

We will ground the abilities of foundation model to
the fundamental modules of MDP: The embodied
agent receives a natural language goal specifica-
tion, translates it to the environment objects and
their states, relations, and actions as a goal specifi-
cation, and aims to achieve it through a sequence
of state transitions. To abstract the embodied envi-
ronment, we design the representation to contain
Object, State, Action, and, based on that, Goal (as
final states) and Trajectory (as temporally depen-
dent sequences of actions/states). Existing works in
embodied task and motion planning (TAMP) have
used LLMs to perform varying tasks, serving differ-
ent abilities. Here in Table 2 we provide a extended
list of such works with detailed categorization.



2.2.1 Physical World Perception [10min]

Input of States, which corresponds to State Estima-
tion, grounding environment to objects and their
relations and actions.

2.2.2 Goal Interpretation [10min]

Input of Goals, which corresponds to Goal Inter-
pretation, translating the natural language goal to
environment objects and their relations and actions.

2.2.3 High-Level Planning: Subgoal
Decomposition and Action Sequencing
[10min]

Output of Trajectories, where the output can be a
sequence of actions or a sequence of states, which
can be regarded as Action Sequencing and Sub-
goal Decomposition. The Subgoal Decomposition
and Action Sequencing modules are similar in that
they both involve trajectory output and evaluate the
ordering of decision making. However, the fun-
damental distinction between them lies in the na-
ture of their outputs. Action sequencing produces
imperative actions, while subgoal decomposition
generates declarative states.

2.2.4 Low-level Planning: Transition
modeling [10min]

Transition modeling can be considered as the low-
level controller that governs the state transitions
when executing an action. The bottleneck for tran-
sition modeling is the ability to search a path to
navigate from initial predicates to goal predicates
using existing actions. We will define precondi-
tions and post effects for each action enables this
search and backtracking.

2.3 Foundation Models meet Embodied
Agents [75min]

MDP Formulation Overview and
Physical World Perception [25min]

2.3.1

We will introduce the foundation models interact-
ing with physical world: PaLM-E (Huang and Oth-
ers, 2023) and ConceptGraphs (Garcia and Oth-
ers, 2023) emphasize high-level planning, while
(Chao et al., 2021) and (Yadav and Others, 2024)
focus on low-level actions. CoPa (Lee and Oth-
ers, 2024) bridges this gap with sophisticated VLM
and GraspNet optimization. Environmental rep-
resentations evolve from simple images to com-
plex state graphs (Garcia and Others, 2023). Opti-
mization functions range from imitation learning
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(Chao et al., 2021) to constrained optimization (Ya-
dav and Others, 2024) and multi-step processes
(Lee and Others, 2024). Advanced models intro-
duce spatio-temporal reasoning (Yadav and Others,
2024) and open-vocabulary 3D scene graphs (Gar-
cia and Others, 2023), demonstrating trends toward
sophisticated environmental understanding and Al
integration in robotic manipulation.

2.3.2 Low-Level and High-Level Planning
[S0min]

The key difference between LLMs and LAMs lies
in their ability to make decisions. While LLMs
align instructions with language output, LAMs
must align goals with decision-making trajectories.
Traditional causal reasoning requires disentangling
all elements, but foundation models often entan-
gle them. This means foundation model training
does not truly teach reasoning but rather learns
input-output distribution mapping. Agent models
focus on decision-making ability, aligning goals
with decision-making trajectories rather than just
instructions with language output. LLMs have been
widely used for different abilities such as goal in-
terpretation (Ding et al., 2023b; Xie et al., 2023;
Huang et al., 2022b; Lin et al., 2023; Ahn et al.,
2022; Liu et al., 2023a; Hazra et al., 2023; Joublin
et al., 2023; Zha et al., 2023; Huang et al., 2023;
Zhu et al., 2023; Guan et al., 2023; Wake et al.,
2023; Wu et al., 2023; Wang et al., 2024b; Smirnov
et al., 2024), subgoal decomposition (Nottingham
etal., 2023; Ahn et al., 2022; Zhu et al., 2023; Chen
et al., 2023; Song et al., 2022; Wang et al., 2023a),
action sequencing (Silver et al., 2023; Hao et al.,
2023; Liang et al., 2024; Chen et al., 2024; Xu et al.,
2023; Wang et al., 2023c; Hu et al., 2023; Liu et al.,
2024; Ni et al., 2023; Chalvatzaki et al., 2023; Wu
et al., 2024; Mavrogiannis et al., 2023; Zhao et al.,
2023; Li et al., 2023; Wang et al., 2024a; Parakh
et al., 2023; Dalal et al., 2024; Liu et al., 2023b;
Rana et al., 2023; Liang et al., 2022; Wang et al.,
2023a; Wong et al., 2023; Huang et al., 2022a),
and transition modeling (causal transitions from
preconditions to post-effects) (Guan et al., 2023;
Raman et al., 2022; Smirnov et al., 2024; Ding
et al., 2023a; Singh et al., 2022; Wang et al., 2023b;
Li et al., 2024; Wong et al., 2023).

2.4 Robot Foundation Models
(Vision-Language-A ction Models) [30min]

VLASs combine vision, language, and robotic con-
trol to enable robots to understand scenes and act



(Smith and Doe, 2023). Using pretrained models,
they aim to improve generalization across tasks and
environments (Jones and Brown, 2022; Brown and
Green, 2024), potentially enabling complex multi-
step tasks from high-level instructions (Kim et al.,
2024). VLAs could bridge human-robot communi-
cation (Lee and Taylor, 2023) and enhance robotic
flexibility across domains (Kim et al., 2024). We
will then layout remaining challenges in reliabil-
ity, safety, and adaptation (Wilson and Martinez,
2024).

2.5 Remaining Challenges [15min]

We will conclude the tutorial by discussing out-
standing challenges and promising research direc-
tions in three key areas: low-level visual perception,
long-horizon decision making, and trustworthy de-
cision making for verifying decision correctness.

2.6 Panel and QA [30min]

We will discuss a dozen potential PhD dissertation
topics focused on the new frontiers of model-driven
and data-driven improvements to foundation mod-
els for embodied agents. It will be done in a more
interactive panel format. We will also answer ques-
tions from audience.

3 Logistics

3.1 Reading list

Please find reading list in Table 2. We agree
to allow the publication of the tutorial materi-
als and presentation in the ACL Anthology. All
the materials are openly available at https://

embodied-foundation-model.github.io/.

3.2 Tutorial Size / Prior Tutorials

Based on the level of interest in this topic, we
expect around 100-150 participants interested in
planning and interactions with physical world. No
special requirements for technical equipment are
needed.

This tutorial has not been presented elsewhere.
The presented topic has not been covered by pre-
vious AAAI/IICAI/NeurIPS/CVPR/ACL tutorials
in the past five years. There are tutorials on vision-
language pretraining at CVPR 2024 (Jun 2024,
around 300 audience)” but without much involve-
ment of embodied Al. Another related tutorial is
LLMs for Planning tutorial at AAAI 2024 (Feb

*https://vlp-tutorial.github.io/
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2024, around 200 audience)’ without discussing
the advancement of VLMs and VLAs. In contrast,
we focus on the a systematic analysis of foundation
models for embodied intelligence, including LLMs,
VLMs and VLAs.

3.3 Diversity and Inclusion

Topics Promoting Diversity: Our team repre-
sents a diverse range of expertise in foundation
models for embodied agents, covering LLMs,
VLMs and VLAs. Manling is an experts in LLMs
for embodied agents from a language modeling
background, while Jiayuan focus on LLMs for em-
bodied agents with emphasis on symbolic repre-
sentations and robotics interfaces. Yunzhu bring
strong backgrounds in VLMs supported embodied
agents. Collectively, the team has earned multiple
best paper awards from top conferences including
CVPR, ICCV, ECCYV, CoRL, RSS, and NeurIPS.
This combination of specializations enables us to
provide a comprehensive view of embodied foun-
dation models.

Diversifying representation: We have a diverse
organizer team across multiple institutions (North-
western, Stanford, MIT, Columbia) with varying
seniority (ranging from senior PhD students to as-
sistant professors and research scientists), gender
(2 out of 3 organizers are female researchers), race,
and ethnicity.

Diversifying participation: The call-for-papers
aims to bridge researchers from different subcom-
munities within NLP (such as IE, QA, IR, dialog,
etc) and outside NLP (such as representation learn-
ing, data science, etc), and will encourage people to
create a more comprehensive view of the problem.

4 Tutorial Presenters

Manling Li (manling.li@northwestern.edu) is
an assistant professor at Northwestern University
and a postdoc at Stanford University. She ob-
tained her PhD in computer science at UIUC in
2023. Her work on multimodal knowledge ex-
traction won the ACL’20 Best Demo Paper and
NAACL’21 Best Demo Paper, and LLMs control-
ling won the ACL’24 Outstanding Paper. She was
a recipient of MSR PhD Fellowship, DARPA Riser,
EE CS Rising Star, etc. She served on the Organiz-
ing Committee of ACL 25 (Virtual Infrastructure

https://yochan-lab.github.io/
tutorial/LLMs-Planning/index.html
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Co-Chairs), NAACL 25 (Publication Co-Chairs),
EMNLP 24 (Demo Co-Chairs), and organized
the 1st Knowledgeable LLM workshop at ACL
2024 and AAAI 2025. She has delivered Work-
shops at multiple conferences including AAAI’21,
ACL’21, NAACL’22, AAAT’23, CVPR’23, and
IICATI’24. Additional information is available at
https://limanling.github.io. Her pre-
vious tutorials include:

* [JCAI’'24: Beyond Human Creativity: A Tu-
torial on Advancements in Al Generated Con-
tent (AIGC).

* CVPR’23/AAAT’23:  Knowledge-Driven
Vision-Language Pretraining.

e NAACL’22: New Frontiers of Information
Extraction.

* AAAT’21/ACL’21: Event-Centric Natural
Language Understanding.

Jiayuan Mao (jiayuanm@mit .edu) is a Ph.D.
student at MIT, advised by Professors Josh Tenen-
baum and Leslie Kaelbling. Her research agenda
is to build machines that can continually learn con-
cepts (e.g., properties, relations, rules, and skills)
from their experiences and apply them for reason-
ing and planning in the physical world. Her re-
search topics include visual reasoning, robotic ma-
nipulation, scene and activity understanding, and
language acquisition. Her work is supported by an
MIT presidential fellowship. She has co-organized
the Workshop on Planning in the Era of LLMs
at AAAI 2024, the Workshop on Learning Effec-
tive Abstractions for Planning at CoRL 2024, the
Workshop on Visual Concepts at ECCV 2024, the
workshop on Visually Grounded Interaction and
Language (VIGIL) at NAACL 2021, and the Neuro-
Symbolic Visual Reasoning and Program Synthe-
sis tutorial at CVPR 2020. She has served as a
reviewer for ICML, NeurIPS, ICLR, CVPR, ICCV,
ECCV, ACL, CoLLM, ICRA, RSS, CoRL, AAAI,
IJCAL ICAPS, T-PAM]I, and IJCV. Additional in-

formation is available at https://jiayuanm.

com. Her previous tutorials include:

* CVPR2020: Neuro-Symbolic Visual Reason-
ing and Program Synthesis tutorial.

Yunzhu Li (yunzhu.li@columbia.edu) is
an Assistant Professor of Computer Science at
Columbia University. Before joining Columbia,
he was an Assistant Professor at UIUC CS, spent
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time as a Postdoc at Stanford, and earned his PhD
from MIT. His work stands at the intersection of
robotics, computer vision, and machine learning,
with the goal of helping robots perceive and in-
teract with the physical world as dexterously and
effectively as humans do. Yunzhu’s work has been
recognized through the Best Systems Paper Award
and the Finalist for Best Paper Award at CoRL. He
is also the recipient of the Sony Faculty Innova-
tion Award, the Adobe Research Fellowship, and
was selected as the First Place Recipient of the
Ernst A. Guillemin Master’s Thesis Award in Ar-
tificial Intelligence and Decision Making at MIT.
His research has been published in top journals and
conferences, including Nature, Science, NeurIPS,
CVPR, and RSS, and featured by major media out-
lets, including CNN, BBC, The Wall Street Jour-
nal, Forbes, The Economist, and MIT Technol-
ogy Review. Additional information is available at
https://yunzhuli.github. io. His previ-
ous tutorials include:

* CVPR2021: Learning Representations via
Graph-structured Networks.

* ICCV2021: Multi-Modality Learning from
Videos and Beyond.
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A Appendix

Table 2: Readling List, focusing on existing Embodied Agent planning works usage of Large Language Models: Each “FMs”
refers to the usage of FMs to perform an ability module. For example, Ada (Wong et al., 2023) uses FMs for Action Sequencing
and Transition Modeling, while LLM+P (Liu et al., 2023a) uses FMs for Goal Interpretation. (Part 1)

Existing Work Ref. Goal Action Subgoal Transition
Interpretation Sequencing Decomposition Modeling
SayCan (Ahn et al., 2022) FMs FMs
Ada (Wong et al., 2023) FMs FMs
LLP+P (Liu et al., 2023a) FMs
AutoTAMP (Chen et al., 2023) FMs FMs
Code as Policies (Liang et al., 2022) FMs FMs FMs
Voyager (Wangetal., 2023a) FMs FMs
Demo2Code (Wang et al., FMs FMs FMs
2023b)
LM as ZeroShot Planner (Huang et al., FMs FMs
2022a)
SayPlan (Rana et al., 2023) FMs FMs FMs
Text2Motion (Lin et al., 2023) FMs
LLMGROP (Ding et al., 2023b) FMs FMs
REFLECT (Liu et al., 2023b) FMs FMs
Generating Consistent PDDL ~ (Smirnov et al., FMs FMs
Domains with FMs 2024)
PlanSeqLearn (Dalal et al., 2024) FMs
COWP (Ding et al., 2023a) FMs FMs FMs
HumanAssisted  Continual (Parakh et al., 2023) FMs
Robot Learning
DECKARD (Nottingham et al., FMs FMs
2023)
MOSAIC (Wang et al., 2024a) FMs
Interactive Task Planning with ~ (Li et al., 2023) FMs FMs
Language Models
RoCo (Zhao et al., 2023) FMs
Cook2LTL (Mavrogiannis FMs
et al., 2023)
InnerMonologue (Huang et al., FMs
2022b)
MLDT (Wu et al., 2024) FMs
Learning to Reason over Scene  (Chalvatzaki et al., FMs FMs FMs
Graphs 2023)
GRID (Ni et al., 2023) FMs FMs
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Table 3: Categorization of Existing Embodied Agent Planning Works’ Usage of Large Language Models (Part 2)

Existing Work Ref. Goal Action Subgoal Transition
Interpretation Sequencing Decomposition Modeling
LLMplanner (Song et al., 2022) FMs FMs
DELTA (Liu et al., 2024) FMs
Look Before You Leap (Hu et al., 2023) FMs FMs
CAPE (Raman et al., FMs FMs
2022)
HERACLEs (Wang et al., 2023c) FMs
RoboTool (Xu et al., 2023) FMs FMs
PROMST (Chen et al., 2024) FMs
LLM3 (Wang et al, FMs FMs
2024b)
Ghost in the Minecraft (Zhu et al., 2023) FMs
PlanBench (Valmeekam et al., FMs FMs
2022)
TaPA (Wu et al., 2023) FMs FMs FMs
ChatGPT Robot Control (Wake et al., 2023) FMs
LLM World Models for Plan- (Guan et al., 2023) FMs FMs
ning
DEPS (Wang et al., FMs FMs
2023d)
Grounded Decoding (Huang et al., 2023) FMs
ProgPrompt (Singh et al., 2022) FMs FMs
DROC (Zha et al., 2023) FMs FMs
LMPC (Liang et al., 2024) FMs FMs
GPTPDDL (Xie et al., 2023) FMs
RAP (Hao et al., 2023) FMs
LEAGUE++ (Lietal., 2024) FMs FMs
CoPAL (Joublin et al., FMs FMs
2023)
SayCanPay (Hazra et al., 2023) FMs FMs
LLMGenPlan (Silver et al., 2023) FMs
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