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Abstract

Existing in-context learning (ICL) methods
for relation extraction (RE) often prioritize
language similarity over structural similarity,
which may result in overlooking entity relation-
ships. We propose an AMR-enhanced retrieval-
based ICL method for RE to address this issue.
Our model retrieves in-context examples based
on semantic structure similarity between task
inputs and training samples. We conducted ex-
periments in the Supervised setting on four
standard English RE datasets. The results show
that our method achieves state-of-the-art perfor-
mance on three datasets and competitive results
on the fourth. Furthermore, our method out-
performs baselines by a large margin across
all datasets in the more demanding Unsuper-
vised setting.

1 Introduction

Large language models (LLMs) exhibit strong in-
context learning (ICL) abilities across various NLP
tasks simply by being given a few examples of the
task. However, the quality of few-shot demonstra-
tions can substantially impact the performance of
ICL, and tasks requiring high precision, such as
relation extraction, remain challenging.

Relation extraction (RE) is a task to identify a
predefined semantic relation between entity pairs
mentioned in the context. Relations between en-
tity pairs are often implicitly expressed, which can
lead to suboptimal ICL performance. Existing ICL
methods for RE often overlook the semantic asso-
ciations between entity pairs, relying primarily on
entity mentions or overall sentence semantics for
representation (Han et al., 2023; Wan et al., 2023;
Li et al., 2024; Ma et al., 2023; Sun et al., 2023).

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) provides a detailed semantic
graph structure that represents semantics through
nodes and edges, where nodes correspond to se-
mantic elements such as events, entities and argu-

ments, and edges indicate the relationships between
them. AMR graphs offer precise descriptions of
entities by incorporating their arguments and se-
mantic roles, making them well suited for the RE
task (Hu et al., 2023; Zhang and Ji, 2021; Gururaja
et al., 2023).

As shown in Figure 1, the input sentence, "...
get great joy from eating ...", is parsed into a se-
mantic graph, where the node "source" connects to
two entity nodes ("joy" and "eat-01"). This struc-
ture explicitly represents the Cause-Effect relation
between these two arguments, illustrating how se-
mantic graphs can capture underlying relational
meanings beyond surface text.

To bridge the contextual gap caused by missing
semantic structure, we propose AMR-RE, an AMR-
enhanced retrieval-based ICL method that lever-
ages AMR graphs to select in-context examples
based on semantic structure similarity. Evaluations
on four English RE datasets show that our method
surpasses state-of-the-art methods on three datasets
with the Supervised AMR-based retriever (Section
4.1). To comprehensively assess our approach, we
further evaluate AMR-RE in the more challeng-
ing Unsupervised setting. Our simple yet effec-
tive architecture (Section 4.2) consistently achieves
higher F1 scores compared to sentence embedding-
based ICL baselines.

2 Preliminaries

2.1 Task Definition

Given a set of pre-defined relation classes R, rela-
tion extraction aims to predict the relation y ∈ R
between the given pair of subject and object entities
(esub, eobj) within the input context C, or if there
is no pre-defined relation between them, predict
y = NULL. We formalize RE as a language gener-
ation task, and introduce the prompt construction
in the next section.
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Figure 1: An overview of our proposed method in the Supervised Setting (Section 3, Section 4.1). Given a test
input, we first adopt our AMR-enhanced demonstration retrieval method to select proper demonstrations from the
training set. Subsequently, all retrieved demonstrations are included in the prompt construction.

2.2 Prompt Construction

We construct a prompt for each test example. Each
prompt consists of three components:
Instructions: We provide a precise description of
the RE task and a set of pre-defined relation classes
R. The model is required to output the relation
corresponding to these predefined classes; if the
relation does not belong to any of these classes, the
model will output NULL.
ICL Demonstrations: Given one test example, we
search k-Nearest Neighbor (kNN) demonstrations
via two different frameworks: Supervised (Section
4.1) and Unsupervised (Section 4.2). All demon-
strations are included in the prompt.
Test Input: We provide the test input in the same
format as the ICL Demonstrations, and the LLM is
expected to output the relation.

3 The AMR-RE Model

This section gives an overview of our AMR-
RE method (Figure 1). Given an input text, AMR-
RE first generates its AMR graph using an off-the-
shelf AMR parser. A self-supervised graph model
then encodes this graph to obtain the graph embed-
dings. These embeddings are then used to retrieve
kNN examples from the training set for ICL (Wan
et al., 2023).

Our method leverages the shortest path between
two entities for retrieving RE demonstrations, as it
aligns with the core objective (supplying semantic
structure) of the RE task.

3.1 AMR Graph Encoding

AMR Graph Construction: To generate the AMR
graph from the input text, we adopt an off-the-shelf

AMR parser1. We parse the input sentence into
an AMR graph G = {V,E,R}, where V , E, R
are the sets of nodes, edges, and relation types,
respectively. In G, the edge labeled (u, r, v) ∈ E,
where u, v ∈ V and r ∈ R, means that there is an
edge labeled r from node u to node v.
Self-supervised Graph Encoder: After construct-
ing the AMR graph from the input text, we use a
graph encoder to produce the graph embeddings.
Shou and Lin (2023) employ a self-supervised
approach to train an AMR graph-based neural
network; this model assesses the AMR similarity
through the encoded representations, hereafter re-
ferred to as the SS-GNN model. We adapt SS-GNN
for the RE task by optimizing it on our proposed
graph RE representations. Notably, this training
framework only depends on the corpus without
annotated relation labels. This method explicitly
optimizes representations by assessing the similar-
ity between two AMR graphs via a contrastive loss.
Training details are added in Appendix A. Given an
AMR graph G = [(u1, r1, v1), · · · , (un, rn, vn)],
G is linearized by a depth-first traversal algo-
rithm G = [u1, r1, v1, · · · , un, rn, vn;A], where
A is the adjacency matrix. G will be fed to SS-
GNN to obtain the node representations Hnode =
{hu1

node, h
r1
node, · · · , hvnnode} where hanode denotes as

the node representation of node a.

Hnode = SS-GNN([u1, r1, v1, · · · , vn];A) (1)

3.2 Graph Representation for RE
The SS-GNN model originally employs mean pool-
ing of all nodes in the AMR graph as the graph rep-
resentation, which is also used for self-supervised

1https://github.com/IBM/transition-amr-parser
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training. While this approach has demonstrated sig-
nificant advancements in overall AMR similarity
assessment, it is not optimized for identifying rela-
tionships between two specific entities. To address
this limitation, we construct graph RE represen-
tations specifically designed for RE, focusing on
capturing the structural and semantic information
of entities and their relationships.

Inspired by previous works, the shortest path be-
tween two entities in the semantic structure (Hu
et al., 2023) or the syntactic structure (Cheng and
Miyao, 2017) often contains crucial information
needed to determine relations. Based on these in-
sights, we focus on leveraging the shortest AMR
path (SAP) as the most informative subgraph for
retrieving the relevant RE demonstrations.

To investigate the optimal way of represent-
ing a relation with AMR graph representations
for the RE task, we establish fine-grained se-
tups for the graph RE representation Rgraph.
Typically, the shortest path between the entity
pair (eobj , esub) can be denoted as Vpath =
{eobj , p1, p2, · · · , pn, esub} where Vpath ∈ V , and
pi represents intermediate nodes on the shortest
AMR path (SAP). We investigated two different
pooling strategies and two path modeling strate-
gies.
Pooling Strategy: To analyze the impact of the
pooling strategy on Rgraph, we adopt two pooling
methods:

(1) Mean Pooling: We use the average of all node
representations from the shortest path for retrieval,
formally Rgraph = 1

|Vpath|
∑

vi∈Vpath
hvinode.

(2) Concatenation: The node representations of
the entity pair, heobjnode and hesubnode, are concatenated
with the mean pooling of the nodes along the short-
est AMR path to form the final graph representa-
tion, formally Rgraph = h

eobj
node⊕hesubnode⊕hP , where

hP = 1
n

∑n
i=1 h

pi
node.

Path Modeling: We use two distinct methods to
explore how to effectively leverage information
from the shortest path:

(1) SAP: This approach strictly isolates all the
information from the components not in the short-
est path between entity nodes, and only the short-
est AMR path is fed to SS-GNN, which encodes
the node representations along the path. The final
graph RE representation Rgraph is constructed by
pooling the node representations within the path.

(2) SAP+CTX: We use the whole AMR graph as
the input for SS-GNN. In this setup, the node repre-

sentations benefit from bidirectional attention and
the GNN adapter, allowing them to integrate con-
textual information from neighbor nodes. The pool-
ing of the node representations within the shortest
AMR path is then formed as the graph RE repre-
sentation.

By combining the pooling and path modeling
strategies, we obtained four distinct configurations,
with detailed results provided in Table 5.

4 AMR-Based Demonstration Retrieval

In this section, we introduce two settings for in-
corporating AMR graph information to retrieve
ICL demonstrations. First, we present the Super-
vised setting, where AMR-RE benefits from both
graph and sentence RE representations (Section
4.1). To further evaluate the effectiveness of our
method, we assess AMR-RE under the more chal-
lenging Unsupervised setting (Section 4.2). AMR-
RE retrieves in-context examples by kNN retrieval
from the training set using the relation representa-
tion Rrel (Section 4.3).

4.1 Supervised Setting

In the Supervised setting, we integrate both
sentence-level and structural information to achieve
optimal performance and explore the potential inter-
actions between these two types of representations.
Sentence RE Representations: We use PURE
(Zhong and Chen, 2021), an entity marker-based
RE model. For example, given the input sentence
“And we will see you then”, the subject entity "we"
and object entity "you", the sentence becomes:
“[CLS] And [SUB_ORG] we [/SUB_ORG] will
see [OBJ_PER] you [/OBJ_PER] then [SEP]”.
The final hidden representations of the BERT en-
coder are denoted as Hsent = {h1sent, · · · , hmsent}
where hisent denotes the i-th hidden representa-
tion. Let sobj and ssub be the indices of the be-
ginning of the entity markers [SUB_ORG] and
[OBJ_PER]. We define the sentence representation
as Rsent = h

sobj
sent ⊕ hssubsent, where ⊕ denotes the

concatenation of representations along the first di-
mension.
Graph RE Representations: We obtain graph RE
representations Rgraph from the SS-GNN as we
introduced in Section 3.1.

We use the concatenation of AMR graph em-
beddings Rgraph from SS-GNN and sentence
embeddings Rsent from PURE, formally Rrel =
Rgraph⊕Rsent. SS-GNN and PURE are fine-tuned

335



on RE datasets by predicting the relation probabil-
ity from Rrel through a feedforward network. No-
tably, SS-GNN is first self-supervised trained, then
subsequently fine-tuned on RE task.

4.2 Unsupervised Setting

We further evaluate our approach in the more chal-
lenging Unsupervised setting for comprehensively
analyzing the effectiveness of AMR graph. In this
setting, AMR-RE retrieves examples using only
graph RE representations Rgraph, which means
Rrel = Rgraph. Note that SS-GNN is only self-
supervised on the corpus without annotated relation
labels in Unsupervised setting. We compare our
model with Sentence RE Representations-based
baselines.

4.3 Demonstration Retrieval

The relation representation Rrel is used to perform
kNN retrieval, where the top-k most similar demon-
strations are selected and included in the prompt.
To efficiently implement kNN demonstration re-
trieval, we adopt FAISS (Johnson et al., 2019) li-
brary for efficient search.

5 Experiments

Backbone LLM: We use OpenAI’s GPT-4 as the
LLM model in AMR-RE and in all baselines, and
we set the number of demonstrations to k = 10 in
the main results. For a fair comparison, all results
are reproduced by ourselves. Baselines such as
Wan et al. (2023) originally used GPT-3.5 (text-
davinci-003), however, this model is not available
through the OpenAI API anymore. In addition,
GPT-4 has been shown to outperform its previous
versions in several NLP tasks and was the SOTA
backbone for ICL at the time. Our method can be
easily applied to other backbones as well, however,
models such as Llama currently cannot match GPT-
4’s performance in ICL (Chatterjee et al., 2024).
Evaluation Datasets: We evaluate our model on
four English RE datasets. Two general domain
RE datasets: SemEval 2010 Task 8 (Hendrickx
et al., 2010) and ACE052, one temporal RE dataset:
TimeBank-Dense (Cassidy et al., 2014), and one
scientific domain dataset: SciERC (Luan et al.,
2018). Due to the high cost of the OpenAI API,
following Wan et al. (2023), we sample a subset
of ACE05 dataset (due to its large size) for our
experiments. Details of each dataset are provided

2https://catalog.ldc.upenn.edu/LDC2006T06

in Appendix B. We adopt Micro-F1 as evaluation
metrics. The hyperparameter settings are provided
in the Appendix C.

6 Main Results

6.1 Results in the Supervised Setting

Baselines in Supervised Setting: To analyze the
effectiveness of the AMR graph, we select two
baseline methods for comparison with AMR-RE.

(1) Supervised RE Baseline w/o ICL: We imple-
ment PURE (Zhong and Chen, 2021) as a directly
comparable baseline to show the impact of ICL.

(2) Baseline with Supervised Retrievers: We im-
plement GPT-RE_FT (Wan et al., 2023) as the base-
line with a Supervised retriever. GPT-RE_FT em-
ploys representations encoded by PURE (Zhong
and Chen, 2021).
Results: Table 1 shows our results. Overall,
AMR-RE outperforms the baselines in the Su-
pervised setting. This indicates that the more
explicit representation of AMR graphs enhances
the quality of the retrieved demonstrations. In the
Supervised setting, AMR-RE achieves SOTA per-
formance on the SemEval, SciERC and TB-Dense
datasets while delivering competitive results on
the ACE05 dataset. The results indicate that the
fine-tuned structure representation benefits from
both structural and semantic information. However,
ACE05 contains a large proportion of the samples
annotated as NULL relation, which introduces sig-
nificant noise. This can mislead the model during
both retriever training and ICL inference, resulting
in decreased performance compared to the fully-
supervised baseline, PURE.

6.2 Results in the Unsupervised Setting

Baselines in Unsupervised Setting: We select
three baselines that are comparable to AMR-RE in
Unsupervised setting. The details of each baseline
are introduced below:

(1) GPT-Random: we randomly select few-shot
ICL demonstrations with additional constraints to
ensure a more uniform label distribution;

(2) GPT-Sent: we follow Gutierrez et al. (2022)
to retrieve kNN demonstrations with SimCSE (Gao
et al., 2021), which is a widely used sentence em-
bedding model;

(3) GPT-RE_Entity+: we adopt the entity-
prompted sentence embedding proposed by Wan
et al. (2023) that incorporates both the entity pair
and contextual information for retrieval.
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Method Retriever SemEval (∆%) TB-DENSE (∆%) SciERC (∆%) ACE05 (∆%) Avg
Supervised Setting

PURE - 90.77 66.70 67.08 68.62 73.57
GPT-RE_FT PURE 91.46 67.58 67.32 68.59 73.74
AMR-RE (Ours) SS-GNN+PURE 91.97 (↑ 0.6) 71.54 (↑ 5.9) 68.10∗ (↑ 1.1) 67.94∗ (↓ 0.9) 74.89

Unsupervised Setting
GPT-Random - 67.83 22.03 16.48 9.73 29.02
GPT-Sent SimCSE 77.64 28.73 21.60 10.04 34.50
GPT-RE_Entity+ SimCSE 80.25 31.19 26.15 13.10 37.67
AMR-RE (Ours) SS-GNN 84.68 (↑ 5.5) 38.17 (↑ 22.4) 27.89∗ (↑ 6.7) 15.04∗ (↑ 14.8) 41.45

Table 1: Main results. We set the number of demonstrations to k = 10. For AMR-RE, we only report the best results
from the four distinct configurations obtained by combining the pooling and path modeling strategies, explained
in Section 3.1 (see Table 5 for detailed results). Underlined results refer to the SAP graph RE representation,
otherwise, SAP+CTX is applied. The ∆% indicates the corresponding differences in percentage when compared to
GPT-RE_FT and GPT-RE_Entity+ in Supervised and Unsupervised settings respectively. The Avg column shows
the average score for all datasets. The highest results are in bold. ∗ denotes that this result is implemented by
concatenation pooling, otherwise, mean pooling is used.

Method SemEval (∆%) SciERC (∆%)
Supervised Setting

AMR-RE 91.97 68.10
w/o self-sup 90.82 (↓ 1.3) 67.04 (↓ 1.6)
w/o Rsent 89.71 (↓ 2.5) 67.19 (↓ 1.3)
w/o Rgraph 91.46 (↓ 0.6) 67.32 (↓ 1.2)

Unsupervised Setting
AMR-RE 84.68 27.56

w/o self-sup 81.67 (↓ 3.6) 26.01 (↓ 5.6)

Table 2: Ablation study. For the full model, we show
the best configuration results from Table 1. w/o self-
sup indicates that the retriever is not self-supervised
on the target dataset. The ∆% is the percentage of
corresponding difference.

Results: Table 1 shows our results in the Unsuper-
vised setting. AMR-RE consistently outperforms
the baselines on all four datasets. These findings
underscore the efficacy of AMR-enhanced graph
RE representations in effectively capturing rela-
tional information. In particular, by focusing on
the shortest AMR path, AMR-RE highlights core
entities and the semantic relations between them,
thereby reducing noise and providing clearer re-
lational cues compared to conventional sentence-
embedding-based approaches.

7 Ablation Study

Table 2 illustrates the impact of self-supervision
on the graph encoder and the roles of sentence
and graph RE representations in the relation repre-
sentations. The results show that self-supervision
enhances performance, with graph (Rgraph) and
sentence (Rsent) representations both being cru-
cial in the Supervised setting. We also investigated
the impact of the number of demonstrations on
performance. Figure 2 shows that AMR-RE consis-

Figure 2: Performance for the different number of few-
shot examples on TB-Dense.

tently outperforms the baselines across all k-shots,
demonstrating the effectiveness of incorporating
AMR graphs for retrieval.

8 Case Study

To demonstrate how semantic structure similarity
enables the retrieval of highly relevant demonstra-
tions and surpasses sentence-based baselines on RE
ICL, we present two representative case studies in
the Unsupervised Setting. Figure 3 illustrates that
our proposed AMR enhanced retrieval method ef-
fectively captures both the similarity of event struc-
ture and the semantics of the entities. This shows
that demonstrations with high semantic structure
similarity serve as more suitable and informative
RE demonstrations for ICL. Figure 4 highlights the
effectiveness of AMR-RE. Our proposed method
successfully retrieves few-shot RE demonstrations
with semantically equivalent entities (e.g., "proto-
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Figure 3: A case study of semantic structure similar-
ity. The demonstration with similar semantic structure
enables the LLM to correctly generate the gold label,
"Cause-Effect".

Figure 4: A case study of AMR-RE retrieved demon-
stration quality. MESSAGE AND TOPIC is the gold
label.

col"–"contract", "negotiations"–"talks"), while also
capturing implicit relational connections. It demon-
strates AMR-RE’s ability to align both explicit and
implicit semantic information for improved relation
extraction. In contrast, the sentence-based retrieval
method fails to model such information.

9 Conclusions

We proposed AMR-RE, an AMR-enhanced
retrieval-based ICL method that uses AMR graphs
to select demonstrations based on semantic struc-
ture similarity. Evaluations on four English RE
datasets show that AMR-RE outperforms the base-
lines. This underscores the effectiveness of com-
bining graph learning with LLMs for relation ex-
traction. Our experiments further demonstrate that

AMR graph information can lead to more accurate
and robust relation extraction, even in Unsuper-
vised settings.

10 Limitations

We focused our work on: 1) demonstrating the ef-
fectiveness of graph similarity in retrieval-based
ICL on the RE task. However, our work can be
generalized beyond RE, as AMR is a universal se-
mantic analysis tool applicable to other tasks, and
ICL is also not restricted to RE; 2) evaluating our
method on English RE datasets, mainly because
AMR parsers only offer promising performance in
English (Cai et al., 2021). There are other seman-
tic tools, such as multilingual dependency parser
(Üstün et al., 2020), for constructing graphs that
extend beyond English.
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A Self-supervised Training for AMR
Graph Encoding

SS-GNN (Shou and Lin, 2023) adopts a self-
supervised approach, Contrastive Tension (CT) to
optimize the representation of an AMR graph. The
main assumption is that AMR graphs with adjacent
distributions have similar meanings. In our work,
we adapt this approach to our novel AMR graph
representation.

Two independent transformer-based encoders
that also incorporate graph neural networks are
identically initalized. The training objective is to
maximize the dot product between positive pairs
(Gp, G

+
p ) while minimizing the dot product be-

tween negative pairs (Gp, G
−
p ). For each randomly

selected AMR graph Gp, we use G+
p = Gp to cre-

ate a positive pair. Then, we construct negative
instances by pairing Gp with K randomly sampled
different graphs. The K + 1 instances are included
in the same batch. The training contrastive loss L
is binary cross-entropy between similarity scores
and labels.

L =

{
− log σ(hgraph · h+graph)
− log σ(1− hgraph · h−graph)

(2)

Hyperparameter Value
Engine Name GPT-4-0314
Temperature 0
Top_P 1
Frequency_penalty 0
Presence_penalty 0
Best_of 1

Table 3: GPT-4 hyperparameters.

where σ refers to the Logistic function; hgraph
is the graph representation. The model is then
updated to compute the similarity between the two
graphs.

B Evaluation Datasets

In this section, we describe the evaluation datasets
used in our experiments. Table 4 shows the statis-
tics for each dataset.
SemEval 2010 Task 8 (Hendrickx et al., 2010):
This data set focuses on the semantic relations be-
tween pairs of nominals. It was annotated from
general domain resources. The task is to clas-
sify the semantic relations into one of nine di-
rected relation types: Cause-Effect, Instrument-
Agency, Product-Producer, Content-Container,
Entity-Origin, Entity-Destination, Component-
Whole, Member-Collection, Message-Topic, and
Other (to indicate that there is no relation between
the pair of nominals). An example of a sentence
with an event pair that holds the Cause-Effect rela-
tion is shown below:

The (e1:discomfort) from the
(e2:injury) was now precluding
him from his occupation which involved
prolonged procedures in the standing
position.

ACE05: This dataset contains entities, relations,
and events annotated from resources from domains
including newswire, broadcast news, broadcast con-
versation, weblog, discussion forums, and conver-
sational telephone speech. It requires identifying
semantic relations into the following six types: ar-
tifact, general-affiliation, organization-affiliation,
part-whole, person-social, physical. The following
example contains an entity pair with the part-whole
relation:

Witnesses say they heard blasts around a
presidential complex in the (e1:center)
of the (e2:city).
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Dataset # Relation # Train # Dev # Test (# Subset)
SemEval 9 6,507 1,493 2,717 (2,717)
TB-Dense 6 7,553 898 2,299 (2,299)
SciERC 7 16,872 2,033 4,088 (4,088)
ACE05 6 121,368 27,597 24,420 (2,442)

Table 4: Statistics of the evaluation datasets. # Subset denotes the number of instances sampled from the original
test set, due to the high cost of the OpenAI API.

TB-Dense (Cassidy et al., 2014): TB-Dense is a
public benchmark for temporal relation extraction
(TRE). It was annotated from TimeBank (Puste-
jovsky et al., 2003) and TempEval (UzZaman et al.,
2013). We use a preprocessed version from (Wang
et al., 2022) for experiments. TB-Dense annotates
temporal relations for event pairs within adjacent
sentences. To handle this, we separately parse
the two sentences into AMR graphs and then con-
nect the two graphs through a shared root node
following (Cheng and Miyao, 2017). Given a pas-
sage and two event points, the task is to classify
the relations between events into one of six types:
BEFORE, AFTER, SIMULTANEOUS, VAGUE,
IS_INCLUDED, and INCLUDES. An example
with two events, e1 and e2 (in bold) that hold the
SIMULTANEOUS relation is shown below:

Nobody (e1:hurried) her up. No one
(e2:held) her back.

SciERC (Luan et al., 2018): This dataset includes
annotations for scientific entities and their rela-
tions annotated from 500 scientific abstracts taken
from Artificial Intelligence conferences and work-
shops proceedings. The relation types are: used-for,
feature-of, hyponym-of, part-of, compare, conjunc-
tion and corefence. Following example contains
the feature-of relation between two entities:

They improve the reconstruction results
and enforce their consistency with a
(e1:priori knowledge) about (e2:object
shape).

C Hyperparameters

GPT-4: We used GPT-4 by the OpenAI API 3

during the experiments. The hyperparameters used
can be found in Table 3, we report the result of the
single run for all experiments.
Unsupervised Sentence Embedding Model: We
use the sentence embedding method SimCSE in

3https://platform.openai.com/docs/
api-reference/introduction

our experiments. We use the sup-simcse-bert-base-
uncased model as the base encoder.
Graph Encoder (SS-GNN): During training, we
set the positive ratio to 4/16, meaning each batch
of 16 contains 4 positive graph pairs and 12 nega-
tive pairs. Specifically, we sampled 4 graphs and
generated one positive pair and three negative pairs
for each graph. The transformer parameters were
initialized using the uncased BERT base model
(Devlin et al., 2019), while the graph adapter pa-
rameters were initialized randomly. Hyperparame-
ters were set as follows: 1 epoch, learning rate as
1e-5, dropout rate as 0.1, and graph adapter size as
128. We experimented with sequence length of 128
for SemEval and 256 for the other three datasets.
The training was done using NVIDIA Quadro RTX
8000.
Supervised RE Model (PURE): To maintain con-
sistency across datasets, we use a single-sentence
setup for Semeval, as it is a sentence-level rela-
tion extraction dataset. For pre-trained language
models (PLMs), we follow PURE by using scibert-
scivocab-uncased (Beltagy et al., 2019) as the base
encoder for SciERC and bert-base-uncased (Devlin
et al., 2019) for the other three datasets. We also
adhere to the hyperparameters specified in their
paper.

D Results of All AMR-RE configurations

Table 5 shows the results for all the configurations
in our experiments.
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Setting Path Pooling SemEval TB-DENSE SciERC ACE05 Avg

Supervised
SAP+CTX Mean 90.84 71.54 67.92 67.37 74.22

Concatenation 90.03 70.56 68.10 67.94 74.36

SAP Mean 91.97 68.23 67.81 66.80 73.70
Concatenation 91.70 67.89 68.04 67.21 73.71

Unsupervised
SAP+CTX Mean 81.40 38.17 27.64 14.82 40.51

Concatenation 79.48 37.78 27.89 15.04 40.05

SAP Mean 84.68 35.64 27.56 14.65 40.63
Concatenation 83.51 33.75 27.61 14.69 39.89

Table 5: AMR-RE results with all configurations. The results in bold are reported in the main results.
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