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Abstract

Code-generating Large Language Models
(LLMs) have become essential tools in mod-
ern software development, enhancing produc-
tivity and accelerating development. This pa-
per aims to investigate the fine-tuning of code-
generating LLMs using Reinforcement Learn-
ing and Direct Preference Optimization, further
improving their performance. To achieve this,
we enhance the training data for the reward
model with the help of symbolic execution
techniques, ensuring more comprehensive and
objective data. With symbolic execution, we
create a custom dataset that better captures the
nuances in code evaluation. Our reward models,
fine-tuned on this dataset, demonstrate signifi-
cant improvements over the baseline, CodeRL,
in estimating the quality of generated code. Our
code-generating LLMs, trained with the help of
reward model feedback, achieve similar results
compared to the CodeRL benchmark.

1 Introduction

Reinforcement Learning (RL) has become one of
the most powerful LLM fine-tuning techniques
(Ouyang et al., 2022). RL integrates feedback into
the fine-tuning process, steering the training in the
direction of human preferences. There are vari-
ous approaches to applying RL to LLMs, but the
general idea often consists of three steps:

1. Fine-tune a pre-trained LLM with supervised
training, generate multiple answers for each
given prompt and assign each answer a quality
score.

2. Use the resulting preference data to train a
reward model - an LLM that learns to produce
a feedback score for a given code snippet.

3. Generate feedback with the trained reward
model and use this feedback to fine-tune the
text-generating LLM.

RL has found many applications, one of which be-
ing coding assistance (Le et al., 2022; Dou et al.,
2024; Wang et al., 2022). According to Yu et al.
(2024), code generation is particularly well-suited
for RL because, unlike natural language tasks, the
preference data can be created automatically and
more objectively through the percentage of passed
unit tests.

However, the quality of unit test feedback is highly
dependent on the test data quality (Beller et al.,
2015). When human developers design test cases,
they may overlook a path in the Control Flow
Graph (CFG) or cover one path multiple times
(Huang, 2017). These errors may result in biased
feedback and, thus, incorrect RL training data.
Our work aims to evaluate whether symbolic exe-
cution improves reward-based fine-tuning of code-
generating models. To achieve this, we enhance
the APPS dataset (Hendrycks et al., 2021), a real-
world coding dataset, by augmenting it with au-
tomatically generated test cases created through
symbolic execution. This technique executes code
with symbolic values (King, 1976), restricted to
specific ranges for each control flow graph (CFG)
path, ensuring that every path is covered exactly
once. Symbolic execution tools analyze the CFG
and generate a sample input for every path, elimi-
nating human biases in test case creation.

Using the augmented APPS dataset, we fine-tune
the CodeT5 model (Wang et al., 2021) with RL,
comparing its performance to CodeT5-finetuned-
CodeRL (Le et al., 2022), a CodeT5 version
fine-tuned with RL on the original APPS that
achieved SOTA performance on the MBPP bench-
mark (Austin et al., 2021) at the time of its release.
Finally, we evaluate symbolic execution for Direct
Preference Optimization (DPO), a supervised al-
ternative to RL, where the model can be trained
directly on a dataset of chosen-rejected code pairs,
without the usage of a reward model (Rafailov et al.,
2024). This addition allows us to evaluate the per-
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formance of symbolic execution under both explicit
(RL) and implicit (DPO) reward settings.

2 Related work

There have been invented several frameworks for
fine-tuning coding models with RL-based strate-
gies. RLTF, Reinforcement Learning from Unit
Test Feedback, utilizes unit test results as multi-
granular feedback signals that penalize incorrect
basic blocks (Liu et al., 2023). PPOCoder ex-
tends unit test feedback with syntactic and seman-
tic matching scores between generated and ground
truth code (Shojaee et al., 2023). Dou et al. (2024)
introduce StepCoder, addressing the issue of not
penalizing unexecuted code by decomposing gener-
ation problems into simple sub-tasks and masking
out unreached code.

Several recent papers introduce systems that com-
bine symbolic execution tools and LLMs during
inference. Wang et al. (2024) propose an LLM
agent that generates execution path constraints for
Python code by iteratively calling a satisfiability
solver. Zaharudin et al. (2024) combine LLMs with
symbolic execution tools to identify code vulner-
abilities, while Chen et al. (2024) apply both to
secure medical software.

Although research has explored RL for fine-tuning
code-generating models and integrated symbolic
execution with LLM inference frameworks, little
attention has been paid to combining these ap-
proaches. Specifically, the use of symbolic ex-
ecution for fine-tuning code-generating models
remains largely unexplored. This paper aims to
bridge this gap.

3 Methodology

Our approach consists of two main steps: prefer-
ence dataset creation and LLM fine-tuning. First,
we use symbolic execution to generate test cases
for APPS train tasks, produce code solutions, and
rank them by performance. We then sample from
the ranked codes to train CodeT5-base (Wang
et al., 2021) as a reward model, which is subse-
quently used to optimize the code-generating LLM,
CodeT5-large-ntp-py (Le et al., 2022).

3.1 APPS analysis

We apply symbolic execution tools on APPS
(Hendrycks et al., 2021) - a dataset of coding prob-
lems scraped from open-source websites. APPS
consists of 5000 train and 5000 test tasks of three
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Figure 1: Test case generation pipeline.

difficulty levels, all in Python. For each task, there
are several input-output pairs available for testing.
We are especially interested in test cases for train-
ing data since we use them to train the reward
model on code-feedback pairs. Figure 3 presents
that 2012 out of 5000 tasks in the train set contain
only one test case each. This distribution results in
a percentage of passed tests being either 100% or
0%, leading to highly coarse and unrefined feed-
back. Moreover, APPS test cases were manually
created by humans, which opens the possibility of
overseeing an execution path (Huang, 2017). In
order to extend the number of test cases and ensure
the coverage of all CFG paths, we generate our
custom inputs.

3.2 Test case generation

Our input generation pipeline is presented in Figure
1. This pipeline employs CrossHair! - an example
input generation tool for Python functions. With
the help of a Satisfiability Modulo Theories solver,
CrossHair explores all execution paths and finds
examples and counterexamples of values.

To run correctly, CrossHair requires a Python func-
tion with annotated input types. Without type anno-
tation, CrossHair outputs data of all possible types,
including those irrelevant to the task. Since APPS
functions lack default type hints, we use the Mon-
keyType annotation tool % to automatically infer
and generate type annotations for ground truth func-
tions based on sample input. We discard tasks that
deviate from the structure of a single, standalone
function and tasks that do not have any sample
inputs. This filtering results in a dataset of 2402
tasks that are processed through the input genera-
tion pipeline and used for reward model training.

1ht’cps: //github.com/pschanely/CrossHair
Zhttps://github.com/Instagram/MonkeyType
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Figure 2: CodeRL training pipeline. Our pipeline exten-
sion is marked green.

3.3 Fine-tuning workflow

Our fine-tuning pipeline relies on CodeRL (Le
et al., 2022) - a framework for RL-based LLM
training. CodeRL implements an actor-critic ar-
chitecture with the code-generating model as the
actor and the reward model as the critic. We modify
CodeRL to integrate custom test cases created with
symbolic execution, as depicted in Figure 2.

The training begins with a supervised warm-up
phase to expose the model to NL-To-Python gen-
eration examples. We employ the original APPS
training set as training data for the warm-up. A val-
idation set, created by sampling 50% of the original
APPS test data, is used to optimize the number of
warm-up epochs, with the remaining 50% reserved
for intermediate and final testing.

After warm-up, the LLM generates 100 codes per
task for the custom training set. These codes are
tested against the corresponding custom input val-
ues. For each code, the tests return a category:
Compile Error, Runtime Error, (at least one) Test
Failed, or Test Passed. The resulting code-feedback
pairs are used to supervisely train CodeT5-base as
the critic model that classifies codes into four cate-
gories.

After training, the critic predicts test outcomes for
each actor-generated code in the custom train set.
These codes and predictions, along with ground
truth solutions, are passed into the actor’s train-
ing loop. Following CodeRL, we compute cross-
entropy loss for ground truth data and RL loss for
generated codes based on critic scores.

The final model is evaluated on 2,500 tasks from
the APPS test set, excluding those in the valida-
tion set, and compared to the warm-up model and
CodeRL baseline.

3.4 DPO training

In DPO, we begin the first two steps of the RL
pipeline: supervised warm-up, followed by code
generation for training set tasks with the new model.
For each task, we select one correct solution and
uniformly sample one incorrect solution to create
a dataset of chosen-rejected pairs. This dataset is
used to train CodeT5 with DPO trainer from the
Huggingface TRL library 3.

3.5 Maetrics

For evaluating actor models, we use pass@k (Chen
et al., 2021), the standard for measuring the per-
formance of generated code. For each problem, if
a model generates n code samples and c of them
are correct, pass@Fk(n, c, k) will measure the prob-
ability that at least one of the top k£ codes passes
all unit tests. The mathematical definition of this
metric is presented in 1.
n—c
E !1 _ . ) ] ()
Problems ( k)

In this paper, we use a k of 5.
For the critic evaluation, we employ two metrics.
First, we use accuracy, as the model is a classifier
that predicts categorical labels. However, accuracy
alone is not sufficient since it only reflects the per-
centage of correct predictions without considering
the severity of misclassifications. The categories
have an inherent order: If a code results in a com-
pile error, it would be a less crucial mistake to pre-
dict a run-time error than code correctness. Thus,
we also employ Mean Average Error, or MAE. We
accordingly assign numbers from O to 3 to each cat-
egory and calculate the absolute difference between
the predicted and actual category values. This met-
ric ensures that misclassifications involving more
dissimilar categories (e.g., predicting "Test Passed"
for code with a compile error) are penalized more

heavily than those involving similar categories (e.g.,
predicting "Run-time Error" for a compile error).

passQk =

4 Experiment details

4.1 Critics

We explore two training configurations to evaluate
the impact of symbolic execution data:

* CodeRL-SE-critic: Fine-tunes the existing
CodeRL critic model CodeT5-finetuned-critic

3https://huggingface.co/docs/trl/main/en/dpo_
trainer
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(Le et al., 2022), enhancing it with symbolic
execution inputs.

¢ CodeT5-SE-critic: Trains a new critic model
from scratch using CodeT5-base (Wang et al.,
2021), the same base model used by CodeRL
(Le et al., 2022), but with symbolic execution
training data.

We train both models for one epoch using a learning
rate of 2e-5. Both values are determined empiri-
cally.

Additionally, we evaluate the CodeRL critic model
CodeT5-finetuned-critic since the paper (Le et al.,
2022) does not provide any information about critic
performance.

4.2 Actors

For actor training, we use CodeT5-large-ntp-py (Le
et al., 2022), a version of CodeT5 optimized for
Python code generation tasks. We use this model
because it was used as the base model for CodeRL
model training. We perform two training experi-
ments, each with one of our trained critic models,
and evaluate these actors alongside the CodeRL
actor. We train these models for one epoch with a
learning rate of 2e-6. We determined these values
empirically as well. Besides training our models,
we run the inference on CodeRL actor and compare
it with our results.

43 DPO

In DPO, CodeT5-large-ntp-py is trained for one
epoch, with a learning rate of 2e-6 and a ( of
0.1. 8 determines how close the DPO model re-
mains to the supervise fine-tuned model, where a
smaller 3 means a further deviation toward DPO
loss (Rafailov et al., 2024).

5 Results

5.1 Enhancing APPS

Figure 3 compares the test case distributions of the
original and custom symbolic execution train sets.
The custom data displays a noticeable rightward
skew, reflecting an increase in test case number per
task. The mean number of test cases increases from
1 to 5, and the median from 5.16 to 7.22. This ob-
servation indicates that our approach succeeded in
the quantitative enhancement of the training dataset
by adding more test cases.

5.2 Critic models

The evaluation results for the critic models are pre-
sented in Table 1. Both of our models, CodeRL-
SE-critic and CodeT5-SE-critic, demonstrate sig-
nificant improvements over the baseline CodeT5-
Sfinetuned-critic used in CodeRL. Among these,
CodeRL-SE-critic, a fine-tuned version of CodeT5-
finetuned-critic, achieves the highest accuracy, sur-
passing the original model by 37.19%. Simi-
larly, CodeT5-SE-critic, which uses CodeT5-base
as its foundation, outperforms CodeRL by 11.33%.
These findings show the effectiveness of train-
ing with the symbolic execution-enhanced dataset,
which positively influences the reward model’s per-
formance.

Model Accuracy MAE

CodeRL-SE-critic 0.4250 0.6617
CodeT5-SE-critic 0.3449 0.8377
CodeT5-finetuned-critic  0.3098 0.9843

Table 1: Evaluation results for critic models, sorted by
accuracy.

5.3 Actor models

The performance of CodeT5-large-ntp-py before
and after the warm-up, the actor models, and the
DPO model is shown in Table 2, divided into three
difficulty levels, along with overall performance
across all levels.

First, we can see the importance of a supervised
warm-up before RL training: the results of the su-
pervisely warmed-up model are significantly better
than the base model - CodeT5-large-ntp-py. This
results in the warmed-up model being a solid base
model for further fine-tuning. Moreover, we can
see that all fine-tuned models, regardless of the
technique and dataset used, outperform supervisely
warmed-up CodeT5-large-ntp-py. Thus, all our set-
tings have the potential to improve LLM coding
performance.

Nonetheless, our best actor model, RL with
CodeRL-SE-critic, achieves only a slight improve-
ment over the CodeRL baseline CodeT5-finetuned-
CodeRL, with an overall performance gain of 0.14,
measured in absolute difference. It outperforms the
baseline for more complex tasks but loses for the
simplest category. In contrast, our second actor,
RL with CodeT5-SE-critic, demonstrates inferior
performance compared to CodeRL. Several fac-
tors could contribute to these results. In RL, if
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Figure 3: The distribution of test case number in the original train set (left) and the modified train set (right).

Training method Introductory Interview Competition Total
RL with CodeRL-SE-critic 9.42 3.52 1.91 4.37
RL (CodeT5-finetuned-CodeRL) 10.11 3.09 1.90 4.23
DPO 8.35 3.08 1.53 3.81
RL with CodeT5-SE-critic 8.09 2.53 1.66 3.44
Supervised warm-up 7.91 2.71 0.67 3.33
None (CodeT5-large-ntp-py) 0.00 0.00 0.00 0.00

Table 2: Pass@5 results for actor models, sorted by overall performance.

the training and evaluation distributions differ, the
actor may learn to perform poorly even if the re-
ward model scores are correct (Casper et al., 2023).
Furthermore, RL training involves numerous hyper-
parameters that are challenging to optimize (Eimer
et al., 2023), and suboptimal hyperparameter tun-
ing may have negatively impacted the model’s per-
formance.

Similarly, our DPO model also underperforms rel-
ative to CodeRL. According to Xu et al. (2024),
DPO models might assign disproportionately high
probabilities to out-of-distribution data due to the
absence of an explicit KL-divergence term. This
phenomenon may explain the poor performance of
DPO.

While our best actor model demonstrates a slight
advantage over CodeRL, the overall improvements
for the actor models are notably less pronounced
than those observed in the critic models. This
finding challenges the intuitive expectation that a
stronger reward model would lead to a more effec-
tive policy. The results raise an important question
for future research: if improvements in the critic do
not directly translate to better actor performance,
to what extent does critic quality contribute to ac-
tor optimization compared to other factors, such as
hyperparameter selection?

6 Conclusion

In this study, we investigated the intersection of
fine-tuning for code-generating models and sym-
bolic execution. By enhancing the APPS dataset
with symbolic execution inputs, we ensured a solid
coverage of paths within the Control Flow Graph.
Using this enriched dataset, we trained two critic
models that significantly outperformed the base-
line - the CodeRL critic. These results indicate the
high potential of using symbolic execution tools to
generate training data for reward models. The en-
hanced coverage provided by symbolic execution
enabled the reward models to access more informa-
tive and accurate training data, thereby improving
their ability to evaluate a code’s performance.

At the same time, while actor and DPO models
outperformed their base models, they gained only a
slight advantage over the CodeRL actor. Although
our critic models predict more precise feedback,
the actors stay on a similar level to CodeRL.

We believe that the intersection of Reinforcement
Learning and symbolic execution holds significant
potential for advancing code-generating models.
Future work could investigate the relationship be-
tween critic performance and actor effectiveness,
optimize hyperparameter configurations for actor
training, and explore datasets with further pro-
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gramming languages or other fine-tuning tasks to
achieve similar gains for actor models. With further
research, we suggest that symbolic execution com-
bined with Reinforcement Learning will enable the
development of more accurate and robust coding
assistants.
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