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Abstract

When developing language technology, re-
searchers have routinely turned to transfer
learning to solve the data scarcity conundrum
presented in low-resource languages. To our
knowledge, this study is the first to evaluate the
amount of documentation needed for transfer
learning, specifically the smallest vocabulary
size needed to create a sentence embedding
space. In adopting widely spoken languages as
a proxy for low-resource languages, our experi-
ments show that the relationship between a sen-
tence embedding’s vocabulary size and perfor-
mance is logarithmic with performance level-
ing at a vocabulary size of 25,000. It should be
noted that this relationship cannot be replicated
across all languages, and this level of documen-
tation does not exist for many low-resource
languages. We do observe, however, that per-
formance accelerates at a vocabulary size of
< 1000, a quantity that is present in most
low-resource language documentation. These
results can aid researchers in understanding
whether a low-resource language has enough
documentation necessary to support the cre-
ation of a sentence embedding and language
model.

1 Introduction

More than 43% of the languages spoken in the
world are endangered (Zhang et al., 2022). Due
to globalization and neocolonialism, language loss
occurs at an accelerated rate (Zhang et al., 2022).
Saving and revitalizing endangered languages has
become very important for maintaining cultural
diversity (Zhang et al., 2022). In times of crisis,
these language technologies allow first responders
to save lives. For example, the Low Resource Lan-
guages for Emergent Incidents (LORELEI) pro-
vides situational awareness based on information
from any language and supports humanitarian assis-
tance/disaster relief, peacekeeping, and infectious
disease response (Strassel and Tracey, 2016).
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Working with minimal data—as would be the
case with endangered languages—makes it diffi-
cult to train natural language models from scratch.
For these reasons, transfer learning is a potential
method for language models to adapt to endangered
languages (Alnajjar et al., 2023; Chen et al., 2019;
Lee et al., 2021; Tran, 2020). We focus our re-
search questions on cross-lingual transfer learning
for low-resource languages to:

¢ RQ 1: What is the lower bound of documen-
tation needed?

* RQ 2: When the target low-resource language
is linguistically distant from the source high-
resource language, does this lower bound of
documentation change?

By establishing this lower-bound, we can better
assess whether a low-resource language has enough
documentation to support the creation of a sentence
embedding space and language model.

2 Methodology

We analyze sentence embeddings as they are highly
important in the creation of language models (Mao
et al., 2024). In a survey of cross-lingual trans-
fer learning learning methodologies, we found that
Alnajjar et al. (2023)’s methodology to be the sim-
plest. Alnajjar et al. (2023) draws on Finnish word
embeddings to create embedding spaces and senti-
ment classifiers for endangered Uralic languages.
The choice of Finnish as the source language is
ideal as Finnish is part of the same language family
as the endangered Uralic languages. We proceeded
to modify the cross-lingual transfer methodology
described in the paper.

When performing cross-lingual transfer learning,
we select Dutch as the “high-resource” source lan-
guage and English to train a Dutch sentiment clas-
sifier. To evaluate whether vocabulary size varies
by proximity to the high-resource source language

207

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 4: Student Research Workshop), pages 207-224
April 30 - May 1, 2025 ©2025 Association for Computational Linguistics



translation
lexicons

L

Qe==0

(B

0—=0

Yoo
- &Y

Dutch embedding
space

Replication and space

realignment

Embedding

oSS

c)::<:>‘," -.‘:'I
—— (:)h’{:)-o}" — .4:).... —
Sentiment Finetune on LT
classifier English STS similarity

score

Figure 1: Overview of methodology. Using translation lexicons, the Dutch embedding space is replicated for each
proxy language and aligned using MUSE. Sentiment classifiers are then built from the embedding spaces and
finetuned on STS English examples. These classifiers are evaluated on their respective language in MTEB.

Dutch, we select four widely spoken languages as
proxies for low-resource target languages: German,
Turkish, Arabic, and Mandarin. We test Arabic and
Mandarin separately to determine how replicable
cross-lingual transfer is across different languages.
Adopting high-resource languages as proxies allow
us to experiment with varying degrees of language
documentation, from the very small to the very
large.

Our methodology is illustrated in Figure 1. We
select a classic tokenizer that splits on whitespace
and punctuation as an acknowledgment of the real-
ity faced by many low-resource languages: a lack
of data to train a more sophisticated tokenizer. With
the help of translation lexicons, we replicate Dutch
word embeddings for each proxy language before
aligning all word embeddings. We then create sen-
tence embeddings, each finetuned on English data
as done in Alnajjar et al. (2023). We then evaluate
these sentence embeddings by injecting sentence
pairs into the sentence embedding space and com-
paring the model’s cosine similarity score with the
actual similarity score using the Spearman correla-
tion (Spearman, 1904).

Language | Text
Dutch Hij stierf dinsdag in Osaka.
German Er verstarb am Dienstag in Osaka.
Turkish Sal1 giinii Osaka’da vefat etti.
Arabic W P 5! L"; ol
Mandarin JEA = o AAE KRR 2

Table 1: Languages analyzed in the study. Translations
are provided for the phrase: “He died in Osaka on Tues-
day" NLLB Team et al. (2024). Turkish uses a similar
script similar to Dutch.

2.1 Evaluating the impact of genetic
proximity using proxies

To account for genetic proximity, we adopt
four high-resource languages as proxies for low-
resource languages: German for its proximity to
Dutch, Turkish because its typology is similar to
Dutch but is in a different language family, and Ara-
bic and Mandarin as their typologies are dissimilar
to Dutch and are in a different language family (see
Table 1 and Appendix A). Transfer learning is per-
formed between two groups: (1) transfer of Dutch
word embeddings to German, Turkish, and Arabic,
and (2) transferring Dutch word embeddings to
German, Turkish, and Mandarin, to see the relative
performance of the languages most dissimilar to
Dutch.

2.2 Tokenizing text

Word tokenizers facilitate the creation of organized
representations of language, which is useful for
language modeling (Dagan et al., 2024). The de-
velopment of these tokenizers requires data (Da-
gan et al., 2024). For example, byte-pair encoding
(BPE) tokenizers require training on text corpora to
learn how to split words into frequently occurring
subword units. While such tokenizers have proven
successful for certain languages and have been used
in state-of-the-art language models, their applica-
bility to low-resource languages remains debated.
Arnett and Bergen (2024) writes that differences in
tokenizer performance can be attributed to dispari-
ties in dataset size. If a BPE tokenizer is exposed
to limited data and does not segment words along
morphological boundaries —a common occurrence
in morphologically-rich languages —it may be dif-
ficult for the language model to efficiently learn the
language (Arnett and Bergen, 2024). While less
robust when compared to a BPE tokenizer, a classic
tokenizer that splits on whitespace and punctuation
is a nod to the reality of low-resource languages:
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there may not exist sufficient data to train a well-
performing tokenizer.

2.3 Using translation lexicons to generate
word embeddings

To simulate our proxy languages under low-
resource conditions, we adopt translation lexi-
cons—dictionaries that translate from one lan-
guage to another—provided by Facebook’s Multi-
lingual Unsupervised and Supervised Embeddings
(MUSE) (Conneau et al., 2017) as the most com-
mon types of resource available for low-resource
and endangered languages are translation lexicons
and universal dependencies (Alnajjar et al., 2023).
We chained together lexicons that translated from
our proxy languages to English and English to
Dutch. These translation lexicons allowed us to
replicate the Dutch word embedding space and vo-
cabulary as the proxy’s. We forwent additional
fine-tuning as performance remained unchanged
(see Appendix B).

2.4 Alignment of word embeddings

We aligned the embedding spaces of English,
Dutch, German, Turkish, Arabic, and Mandarin
using the state-of-the-art supervised multilingual
word embedding alignment technique developed in
MUSE, resulting in cross-lingual word embeddings
(Conneau et al., 2017). For example, the vector
for “dog" in English embeddings points roughly in
the same direction as the same word in all other
languages. To confirm that realignment improves
word translations, see subsection C.1.

2.5 Creating sentence embeddings

The procedure for creating sentence embeddings
involves averaging the word embeddings of a given
sentence and subsequently feeding them to two
fully-connected feed-forward layers, thereby con-
structing a Deep Averaging Network (DAN) (Iyyer
et al., 2015). The sentence embeddings are trained
on the English subset of the Massive Text Embed-
ding Benchmark (MTEB) Semantic Textual Simi-
larity (STS) Benchmark (Muennighoff et al., 2023).
While training the sentence embedding in its associ-
ated language may result in greater improvement in
performance, such data may not always be present
in a low-resource setting.

The resulting sentence embedding space was
evaluated using its corresponding language sub-
set in MTEB. We used the Spearman correlation
score (Spearman, 1904) to compare the predicted

cosine similarity scores with the actual similarity
scores. In evaluating STS systems, researchers rec-
ommend using Spearman’s rank correlation coeffi-
cient (Zesch, 2010). This metric assesses a mono-
tonic relationship by ranking values (Zesch, 2010).
Under the Spearman correlation, a model output
does not need to match the ground truth; a model
output that is well-correlated with the ground truth
produces a high Spearman correlation, indicating
that the sentence embedding can encode meaning-
ful semantic information.

2.6 Creating a sentiment classifier

To assess the robustness of the transfer learning
approach introduced by Alnajjar et al. (2023), we
replicated Alnajjar et al. (2023)’s sentiment clas-
sifier for our proxy languages and compared its
performance in our study to the results reported in
Alnajjar et al. (2023). The model architecture is
depicted in Figure 2.

To train the model, we used English samples
from the Stanford Sentiment Treebank (Socher
et al., 2013), Amazon Reviews Dataset (McAuley
and Leskovec, 2013), and Yelp Dataset (Zhang
et al., 2015), and their associated sentiment an-
notation (positive-negative). To evaluate the
model on our target languages, XED (Ohman
et al., 2020) —a multilabel sentiment classification
dataset —was preprocessed into a binary classifica-
tion dataset (see Appendix D).

3 Results

Under the methodology described in section 2, the
quality of the translations improve as the vocab-
ulary size of the proxy language grows (see sub-
section C.2). The relationship between vocabulary
size and the performance of the sentence embed-
ding is logarithmic. This is evident in the fact
that the greatest increases in performance occur at
smaller vocabulary sizes. Once the vocabulary size
hits 25,000, we begin to see diminishing returns
(see Figure 3 and Figure 4). The notable excep-
tion is Mandarin as increasing the vocabulary size
consistently results in poor performance (see Fig-
ure 4). The poor performance in Mandarin can be
attributed to its prediction of a constant or near-
constant cosine similarity score (see Figure 11).
Interestingly, Turkish and Arabic—two
of the languages that are considered linguis-
tically different from the source language
Dutch—outperformed German, the language
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Figure 2: Architecture of sentiment classifier. To determine whether a sentence has a positive or negative connotation,
the sentence is processed through a sentence embedding layer, followed by three dense layers, a dropout layer, and a

sigmoid activation function.

that was deemed closest to the source language
Dutch (see Figure 3). In Figure 4, this trend is
replicated only in Turkish. It should be noted that
the distributions of the model’s predicted similarity
scores do not mirror those of the actual similarity
scores (see Appendix F).

Using the procedure discussed in subsection 2.6,
we compare our results against Alnajjar et al.
(2023) in Table 2.

Language Label Precision Recall F1-Score Accuracy

neg 0.57 0.57 0.57

Komi-Zyrian pos 055 055 055 0.56
w00 08 o
B % 0@ ok om0
v 05 06 e 09
e B 0% 02 o
k% % ase om0
T I T
Mudain (8 Y oo oy 04

Table 2: Proxy languages (in red) perform worse com-
pared to the Uralic languages in Alnajjar et al. (2023)
study (in black). While the sentiment classifiers in Alna-
jjar et al. (2023) achieve similar F1 scores for predicting
both positive and negative labels, the sentiment classi-
fiers for our proxy languages overfit to one of the labels.
The classifiers achieve a high F1 score for predicting
either positive or negative labels, but not both.

4 Discussion

4.1 Minimum tokens

Once a low-resource language’s documented vo-
cabulary size reaches 25,000, the performance of
its sentence embedding plateaus. Without further
finetuning the performance of the model will stag-
nate as evidenced in Figure 3 and Figure 4. While
a vocabulary size of 25,000 exceeds existing docu-
mentation in low-resource translation lexicons, the

vocabulary size at which a sentence embedding
space most improves (< 1000) is accessible in
most lexicons (see Appendix G). This addresses
our first research question (RQ 1).

4.2 Genetic proximity

Cross-lingual training between typologically-
related languages has shown promising results
in several NLP tasks especially in low-resource
settings (Anastasopoulos and Neubig, 2019; Mc-
Carthy et al., 2019). Figure 3 and Figure 4 affirm
this finding as German and Turkish—two target
languages that share the typology of the source lan-
guage —Dutch —benefit from cross-lingual trans-
fer learning.

Genetic proximity appears to have little im-
pact on the performance of a proxy language.
Interestingly, German STS performance is inferior
to that of Turkish’s (see Figure 3 and Figure 4).
This finding runs counter to Zhao et al. (2020)
where researchers chose Lezgian and Tsez as target
languages because they belong to the same lan-
guage family as the source language. Moreover,
Arabic—a language that is typologically dissimilar
to the source language Dutch—performs the best
out of all four languages. However, this trend is
not replicated in Mandarin. As shown in Figure 5,
naive whitespace tokenization alters the meaning of
the sentence and may have negatively contributed
to Mandarin’s performance. This addresses our
second research question (RQ 2).

5 Limitations and Future Work

5.1 Proxies

While we are interested in examining how well
languages that are typologically dissimilar to the
source language perform, the MTEB dataset only
includes two such languages: Arabic and Mandarin.
Consequently, our analysis was limited by the con-
straints of this evaluation dataset.

The data utilized in this study may not be fully
representative of low-resource data. In reality, our
proxy languages are high-resource languages and
their associated datasets may contain a wider range
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Figure 3: Transfer learning with German, Turkish, and Arabic as target languages. Performance achieves the
greatest growth at vocabulary sizes of 371 (German), 906 (Turkish), and 151 (Arabic).
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he requests students work hard
i & kX O¥ £ B 7

he wants begs study birth strive strength

Figure 5: Correct tokenization of Mandarin Chinese
(top) versus the study’s whitespace tokenization (bot-
tom). The semantic meaning of the sentence changes
depending on the tokenization.

of contexts than those for actual low-resource lan-
guages (Marashian et al., 2025). Often, the only
data available for low-resource languages are small
amounts of religious texts (Marashian et al., 2025).
Future work could verify findings by replicating
the methodology for low-resource languages them-
selves where sufficient data is available.

5.2 Tokenization

The use of a classic tokenizer and the omission of
a more sophisticated tokenizer excludes languages
that lack explicit word boundaries. While Ger-
man, Turkish, and Arabic can be tokenized using
whitespace and punctuation, certain languages like
Mandarin lack distinct spaces between words. Sub-
word tokenization can better handle languages with
non-standard word boundaries. To enhance this
work, the study’s methodology could be replicated
with a subword tokenizer applied to a real-life low-
resource language.

5.3 Methodology Utilized

Table 2 indicates the methodology adopted for
this study overfits to the proxy languages; the
study’s sentiment classifiers lag well behind those
of Alnajjar et al. (2023). Consequently, Alnajjar
et al. (2023)’s methodology is unstable and cannot
transfer knowledge across all languages. Multiple
rounds of hyperparameter finetuning did not im-
prove the model’s performance (see Appendix E).
One possible issue may stem from fine-tuning
the sentiment classifier on English STS examples.
Even with aligned word embeddings, the model
may not possess enough cross-lingual knowledge
to map knowledge gained from the English STS ex-
amples to the proxy language. The heavily skewed
distributions in Figure 10 and Figure 11 suggest
that insufficient knowledge is being captured in this
step of fine-tuning. It is noted in Stevenson and
Merlo (2022) that word embeddings are far from
capturing human-like lexical abilities; a more ef-
fective vector representation of the language may

be necessary to prevent under/over-fitting and pave
the way for more efficient learning. Although there
may exist other cross-lingual transfer methodolo-
gies that are more optimized than Alnajjar et al.
(2023), we present one methodology that is sim-
ple and intuitive in design. While the languages
we evaluated show enough linguistic variation and
could generalize to other languages, we feel that
such methodologies and results cannot transfer
across all languages.

While sentiment classification is a foundational
task in NLP, additional work could be done to ex-
plore how documentation requirements differ for
tasks of varying complexity.

6 Conclusion

Genetic proximity between the source and target
language may not have an impact on how well the
target language performs on the STS task. We note
that the performance of the target language plateaus
at a vocabulary size of 25,000. This may be depen-
dent on morphology as seen in the case of Man-
darin. Based on data from Panlex, low-resource
languages lack the level of documentation deemed
necessary in this study but embedding spaces ex-
perience the greatest level of improvement when
vocabularies are relatively small.

While word embeddings are useful in modeling
language, they would not exist without a tokenizer.
It can be argued that a tokenizer is just as an im-
portant area of research as word embeddings, if
not more important; without a tokenizer, a model
could not extract the relevant semantic features
from text. Future research could investigate the
minimum amount of data needed to develop this
foundational tool in language processing.
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A Proximity to Dutch

See Table 3 for details on how distant our proxies
were from the source language Dutch.

B Skipping additional finetuning

While Alnajjar et al. (2023) finetuned the word em-
beddings with books to expand the embedding’s

Language | Genetic Proximity to Dutch

German 13.5
Turkish 87.5
Arabic 82.8
Mandarin 83.8

Table 3: A genetic proximity between 1 and 30 indicates
two highly related languages while a genetic proximity
between 78 and 100 indicates two languages with no
recognizable relationship (Beaufils and Tomin, 2020).

vocabulary, we discovered that this phase was un-
necessary for our proxy languages. To evaluate the
necessity of this phase, we compared the perfor-
mance of (1) embedding spaces trained on transla-
tion lexicons and finetuned on English STS samples
against (2) sentence embedding spaces trained on
translation lexicons, finetuned on Wikipedia arti-
cles from their respective languages, and finetuned
on English STS samples. Wikipedia was selected
as a data source because its articles cover a wide
range of domains. Embedding spaces that under-
went this extra phase of finetuning on Wikipedia
articles performed only marginally better than em-
bedding spaces that skipped this phase (see Tables
4 and 5). Consequently, this extra phase of finetun-
ing was skipped.

C Qualitative analysis of word
embedding alignment

C.1 MUSE

To qualitatively assess how well MUSE alignment
worked, we retrieved word embedding vectors that
had the highest cosine similarity score with the En-
glish word “revolution." Tables 6, 7, and 8 depict
how before alignment, the closest words to “revolu-
tion" stray from the original definition and take on a
positive connotation (e.g. patriot) or negative tone
(e.g. riots, uprising). Realignment under MUSE re-
sulted in higher cosine similarity scores as well as
words that were denotatively and/or connotatively
similar to the word “revolution.”

C.2 At varying lexicons sizes

For each proxy language, we examine words that
have the highest cosine similarity score with the
English word “revolution” across multiple vocab-
ulary sizes. When aligned with small vocabulary
sizes, Mandarin embedding spaces output words
that are in a different language (see Table 12). At
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smaller vocabulary sizes (< 200 words), words that
are deemed most similar appear to be tangential to
the concept of revolution. Certain terms such as
“loyalisten" (German: “loyalists") and “japonlar"
(Turkish: “Japanese") reflect potential bias (see Ta-
ble 9 and 10). As vocabulary sizes grow, so do
cosine similarity scores (see Tables 9, 10, 11, 12).
Even at larger vocabulary sizes, many terms with a
high cosine similarity score are ones that reflect a
positive and/or negative connotation of revolution,
such as “diktaturen"” (German: “dictatorships") and
“vatansever" (Turkish: “patriotism") (see Tables 9
and 10).

D Cleaning XED

XED is a multilabel classification dataset, annotat-
ing samples with labels such as anger, disgust, and
anticipation. To convert the dataset into one for
binary classification, we labeled samples as posi-
tive or negative based on specific rules, resulting
in the positive-negative label distribution shown in
Table 13.

* A sample is positive if it contains only pos-
itive labels (i.e. ‘“‘anticipation”, “joy", and
“trust"). Samples that combined positive la-
bels with a neutral label (i.e. “surprise") were

still considered positive.

* A sample is negative if it contains only neg-
ative labels (i.e. “anger”, “disgust”, “fear”,
“sadness"). Samples that combined negative
labels with a neutral label (i.e. “surprise")
were also considered negative.

E Impacts of hyperparameter finetuning

Due to resource constraints and the computational
load of the sentiment classifier, exhaustively ex-
ploring the hyperparameter space was intractable.
We focused our efforts on tuning the number of
neurons in the hidden layer as the low F1 scores
in predicting certain labels indicate that the model
was underfitting and potentially lacked sufficient
complexity to effectively handle the sentiment anal-
ysis of sentences (see Table 2). Setting the dropout
rate to 0.2,we fail to identify an optimal hidden
layer neuron count as the model consistently pre-
dicts positive labels well at the expense of negative
labels. This relationship is occasionally reversed:
the model consistently predicts negative labels well
at the expense of positive labels. Results are shown
in Figure 6, Figure 7, Figure 8, and Figure 9.

F Distribution of Semantic Textual
Similarity Scores

It is apparent that the distributions of the predicted
cosine similarity scores do not mirror that of the
actual cosine similarity scores (see Figure 10 and
11). Except for Mandarin, proxy languages show a
left-skewed distribution in cosine similarity scores
(see Figure 10 and 11). A higher cosine similarity
score indicates greater similarity between sentences
(Muennighoff et al., 2023), suggesting that the sen-
tence embedding space is more likely to classify a
pair of sentences as similar rather than dissimilar.

We normalized the actual similarity scores in
Figure 10 and Figure 11 to allow for better compar-
ison.

G Documentation Available in
Low-Resource Languages

Table 14 indicates the number of word translation
pairs available in PanLex (Kamholz et al., 2014).
Panlex is a database that provides over 1.1 bil-
lion pairwise translations in about 9,000 language
varieties, including 1,603 UNESCO-classified en-
dangered and vulnerable languages. Using the
methodology described in the paper, endangered
languages in general do not possess 25,000 entries,
the amount of data required to see a plateau in
embedding performance. Notably, sentence em-
bedding spaces experienced the greatest increase
in performance when the vocabulary size was less
than 1000, the average number of translations in
a translation lexicon for an endangered language
(see Table 14 and Figure 12).

H Comparison of proxy language
sentence embedding spaces against
MTEB models

Except for Mandarin, our best-performing sentence
embedding spaces perform as well as the average
model on the MTEB leaderboard (see Table 15).
How to further improve these sentence embeddings
is a matter of future research.
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Language |

Training and Finetuning Process

Spearman Correlation

German translation dictionary, MUSE alignment 0.371
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.376
Turkish translation dictionary, MUSE alignment 0.488
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.517
Arabic translation dictionary, MUSE alignment 0.516
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.503

Table 4: Fine-tuning the word embedding space on Wikipedia articles resulted in marginal gains in performance for

the German, Turkish, Arabic test group.

Language | Training and Finetuning Process | Spearman Correlation
German translation dictionary, MUSE alignment 0.333
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.363
Turkish translation dictionary, MUSE alignment 0.466
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.493
Mandarin translation dictionary, MUSE alignment -0.046
translation dictionary, finetuning on Wikipedia articles, MUSE alignment 0.074

Table 5: Fine-tuning the word embedding space on Wikipedia articles resulted in marginal gains in performance for

the German, Turkish, Mandarin test group.

Pre-MUSE | Post-MUSE

Word Translation ~ Cosine Similarity | Word Translation Cosine Similarity
muros not German 0.1897 rebellion rebellion 0.5144
mox not German 0.1897 aufstand revolt 0.5144
franken franc 0.1910 radikalisierung radicalization 0.5150
koadjutor coadjutor 0.1917 aufstinde riots 0.5311
latein Latin 0.1918 umwélzungen upheavals 0.5371
palgrave not German 0.1980 revolutioniren revolutionary 0.6200
neb not German 0.1997 konterrevolution  counterrevolution 0.6209
emeritierung emeritus 0.2100 revolutionire revolutionary 0.6590
emeritierter emeritus 0.2100 revolutiondr revolutionary 0.6865
avalos not German 0.2181 revolutionen revolutions 0.6948

Table 6: German translations and cosine similarity scores of “revolution” before and after MUSE alignment. Quality

of translation significantly improves following MUSE alignment.

Pre-MUSE | Post-MUSE

Word Translation Cosine Similarity \ Word Translation Cosine Similarity
bem not Turkish 0.1850 revolutionibus not Turkish 0.5010
galicya galicia 0.1863 diktatorlitk dictatorship 0.5081
gravis gravis 0.1888 sosyalizm socialism 0.5123
prism not Turkish 0.1891 isyan revel 0.5161
lennox not Turkish 0.1905 ayaklanmasi uprising 0.5161
gsc not Turkish 0.1906 ayaklanmalar riots 0.5292
frangi franc 0.1917 devrimler revolutions 0.5391
latin not Turkish 0.1970 devrim revolution 0.6237
palgrave  not Turkish 0.1980 devrimciler revolutionaries 0.6611
neb not Turkish 0.1997 devrimci revolutionary 0.6611

Table 7: Turkish translations and cosine similarity scores of “revolution" before and after MUSE alignment. Quality

of translation significantly improves following MUSE alignment.
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Pre-MUSE | Post-MUSE

Word Translation  Cosine Similarity \ Word Translation  Cosine Similarity
Bl recall 0.1800 RN overthrow 0.4902
KE#H  archbishop 0.1803 FEE patriot 0.4991
L/ retire 0.1841 B dictatorship 0.5079
g not a phrase 0.1891 HiEg dictatorship 0.5079
pluribus  not Mondarin 0.1893 T dictatorship 0.5079
gsc not Mandarin 0.1906 g socialism 0.5109
mox not Mandarin 0.1910 FiES uprising 0.5115
1T XX Latin 0.1970 REE royalist 0.5148
HE educate 0.1979 Ak revolutionary 0.6875
palgrave  not Mandarin 0.1970 R revolution 0.6928

Table 8: Mandarin translations and cosine similarity scores of “revolution” before and after MUSE alignment.
Quality of translation significantly improves following MUSE alignment.
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Figure 6: We evaluate the F1 scores of the German sentiment classifier on positive and negative labels across
varying amounts of hidden layer neurons. The German classifier from the German, Turkish, and Mandarin test group
(abbreviated as de_tr_zh) is depicted alongside that from the German, Turkish, and Arabic test group (abbreviated
as de_tr_ar). Increasing the number of neurons causes a tradeoff in positive and negative label performance as
shown in the de_tr_zh group. Moreover, increasing the number of neurons does not prevent the model from
overfitting to positive labels or underfitting to negative labels as shown in the de_tr_ar group.
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Figure 7: We evaluate the F1 scores of the Turkish sentiment classifier on positive and negative labels across
varying amounts of hidden layer neurons. The Turkish classifier from the German, Turkish, and Mandarin test group
(abbreviated as de_tr_zh) is depicted alongside that from the German, Turkish, and Arabic test group (abbreviated
as de_tr_ar). In de_tr_zh, increasing the number of neurons does not prevent the Turkish sentiment classifier
model from overfitting to positive labels and underfitting to negative labels. This is reversed in de_tr_ar; the
Turkish model overfits to negative labels and underfits to positive labels.
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Figure 8: We evaluate the F1 scores of the Mandarin sentiment classifier on positive and negative labels across
varying amounts of hidden layer neurons. Increasing the number of hidden neurons causes a tradeoff in positive and

negative label performance.
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Figure 9: We evaluate the F1 scores of the Arabic sentiment classifier on positive and negative labels across varying
amounts of hidden layer neurons. Increasing the number of hidden neurons seemingly causes a convergence in
performance but the classifier’s ability to correctly positive labels is sacrificed to correctly predict negative labels.
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Figure 10: Distribution of cosine similarity scores across the MTEB evaluation German, Turkish, and
Arabic datasets. As the vocabulary size increases, the distribution becomes more left-skewed.
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Figure 11: Distribution of cosine similarity scores for the MTEB evaluation German, Turkish, and Mandarin
datasets. As the vocabulary size increases, the distribution becomes more left-skewed with the exception
of Mandarin.
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Figure 12: Distribution of PanLex translations for UNESCO-classified vulnerable and endangered languages. Most
endangered languages have fewer than 20,000 translations.
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Word Translation Cosine Similarity
Vocabulary size of 185
‘Word Translation Cosine Similarity ihtiyag need 0.3368
bazi some 0.3381
verbiete ban 0.2925 japonlar japanese 0.3422
tibergelaufen defected 0.2986 saldirilar attacks 0.3428
stilllegung decommissioning 0.3058 izdiham confluence 0.3490
ausgleichszahlung compensation 0.3131 £
besprechung meeting 0.3206 . enluard elqard 0.3596
iiberschreitung exceedance 0.3213 hitkiimdarlik reign 0.4241
allgemeinen general 0.3235 danton danton 0.4517
passiert happened 0.3322 bagla start 0.4888
loyalisten loyalists 0.3407 hiirriyet freedom 0.4929
umgestaltung refactor 0.3612
Vocabulary size of 11,861 Vocabulary size of 7,251
Word Translation Cosine Similarity Word Translation Cosine Similarity
demokratisierung democratization 0.5395 mubhalefet opposition 0.5261
zusammenbrechen collapse 0.5429 basarisizlik failure 0.5275
absolut_lstlschen absolutl_ st' 0.5475 iistiinligi superiority 0.5285
radikaler more radical 0.5542 katihm attendance 0.5317
unterdriickt suppressed 0.5601 A .
unterdriickten suppressed 0.5601 getirildi brought 0.5326
bevorstehende upcoming 0.5727 ¢okils collapse 0.5415
feindschaft enmity 0.5752 dirilis resurrection 0.5435
feindseligkeit hostility 0.5752 diismanlik hostility 0.5734
revolutiondren revolutionary 0.6664 vatansever patriot 0.5926
Vocabulary size of 23,721 devrim revolution 0.6694
Word Translation Cosine Similarity Vocabulary size of 14,503
radikaler more radical 0.5549 Word Translation  Cosine Similarity
dlktatl{fen dictatorships 0.5596 katihm participation 0.5319
unterdriickt suppressed 0.5600 .
unterdriickten suppressed 0.5600 getirildi brought 0.5321
feindseligkeit suppressed 0.5740 ¢cokilg collapse 0.5416
feindschaft enmity 0.5740 dirilis resurrection 0.5445
bevorstehende upcoming 0.5748 kapitalist capitalist 0.5531
unterdriickung suppression 0.5854 diismanlik hostility 0.5727
verdringung displacement 0.5854 vatansever patriotic 0.5913
revolutiondren revolutionary 0.6645 vatanseverlik patriotism 0.5933
devrim revolution 0.6684
Table 9: German translations and cosine similarity devrimei revolutionary 0.6794

scores of “revolution” across varying dictionary sizes.

Increasing the vocabulary size results in German trans-

Vocabulary size of 227

Table 10: Turkish translations and cosine similarity
scores of “revolution" across varying dictionary sizes.
Increasing the vocabulary size results in Turkish transla-
tions that are semantically closer to “revolution."”

lations that are semantically closer to “revolution."
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Vocabulary size of 137

Word Translation Cosine Similarity
- b Beijing 0.2427
Vocabulary size of 76 SEA dislocation 0.2430
Word Translation Cosine Similarity E)jf—‘? dynamic 0.2463
o innovation 0.2473
el need 0.2582 amraam not Chinese 0.2626
sly=| atmosphere 0.2637 5z tax 0.2632
clael enemies 0.2711 &% maximum 0.2772
- ) silently 0.2897 Ti—:%’f/lz collaboration 02779
NN strain 0.2949 ?;;\ Per?a“em 8§SZ§
1A fires 0.3211 G then :
duﬂ-' ¥ British 0.3326 Vocabulary size of 4,398
is legitimacy 0.3915 ) ) .
é“"“” atrocities 04016 Word Translation Cosine Similarity
slaze ! belief 0.4358 R4 binding 0.5042
st
Vocabulary size of 9,982 ﬁx}?ﬁ;’fjﬂ I:S)I:;I(;eéi,t 828‘7‘-(2)
Word Translation Cosine Similarity R demo 0.5194
0 FRF ] time 0.5197
¢ "snd 0.5261 SR opposition 0.5240
e time 0.5275 Rl chaos 0.5241
Ole3)! time 0.5285 128 recovery 0.5467
3y time 0.5317 Eup turmoil 0.5567
=== oy
Ll discontent 0.5326 B hostility 0.5769
Joal unrest 0.5415 Vocabulary size of 17,592
b, gl dictatorships 0.5435
Jad failure 0.5734 Word Translation Cosine Similarity
J= | interference 0.5926 3
i . . unrest 0.5526
L, sl dictatorship 0.6694 B dictatorship 0.5629
Vocabulary size of 19,364 ZBa oppressed 0.5636
)5 hostility 0.5765
Word Translation Cosine Similarity RN overturn 0.5807
o, oWl dictatorships 0.5262 BB patriotism 0.5874
.. . ikl inhibition 0.5884
Jae failure 0.5262 T regime 0.5952
Ll prevalent 0.5269 Y loyalist 0.6204
Jol interference 05351 Eh R revolutionary 0.7352
L, gkl dictatorship 0.5614
b emerging 0.5748 Table 12: Mandarin translations and cosine similarity
slaal hostility 0.5753 scores of “revolution" across varying dictionary sizes.
WY overthrow 0.5833 Increasing the vocabulary size results in Mandarin trans-
CAEJ\ suppression 0.5863 lations that are semantically closer to “revolution.”
ol el revolutions 0.6672
Language ‘ Positive Samples ‘ Negative Samples
Table 11: Arabic translations and cosine similarity Arabic 1269 1735
scores of “revolution" across varying dictionary sizes. German 2051 2614
Increasing the vocabulary size results in Arabic transla- Turkish 3570 4552
tions that are semantically closer to “revolution." Mandarin 587 608

Table 13: Number of positive and negative samples
in processed XED data. Ratio of positive to negative
samples is 1:1.
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Degree of endangerment | Average | Standard deviation

Vulnerable 1205.34 8063.48
Definitely endangered 1094.03 5183.69
Severely endangered 541.77 3359.48
Critically endangered 315.94 1542.20
Extinct 251.69 969.93

Table 14: The average number of translations found for UNESCO-classified vulnerable and endangered languages
in PanLex. Existing documentation for endangered languages is generally low. The high standard deviation may be
attributed to outliers (e.g. certain vulnerable languages may contain significantly more documentation than others in
the category) as shown in Figure 12.

German Turkish Arabic Mandarin
best-performing sentence embedding 0.371 0.488 0.516 0.046
average MTEB score 0.391 0.466 0.439 0.588
minimum MTEB score  0.082 0.038 0.052 0.048
25th percentile MTEB score  0.266 0.370 0.304 0.600
50th percentile MTEB score  0.418 0.473 0.524 0.654
75th percentile MTEB score  0.506 0.582 0.571 0.668
maximum MTEB score  0.609 0.688 0.598 0.749

Table 15: Comparison of our models’ Spearman correlation scores to MTEB models’. Data compiled from
Muennighoff et al. (2023). Our models perform average (with the exception of Mandarin) compared to models in
this leaderboard.
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