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Abstract

We challenge the prevailing assumption that
LLMs must rely fully on sub-word tokens for
high-quality text generation. To this end, we
propose the “Generative Pretrained Thought-
former” (GPTHF), a hierarchical transformer
language model capable of text generation by
compressing text into sentence embeddings
and employing a sentence attention mechanism.
GPTHF retains GPT’s architecture, modifying
only token interactions via dynamic sparse at-
tention masks.

Our experiments show that GPTHF achieves
an up to an order of magnitude improvement
in FLOPs efficiency and a threefold increase
in runtime speed compared to equally-sized
GPT models in the low-size regime. This is
achieved through a unique generation method
that caches and reuses sentence embeddings,
allowing significant portions of the input to
bypass large parts of the network.

1 Introduction

The development of LLMs has garnered substan-
tial interest due to their impressive capabilities in
NLP tasks. The dominant paradigm for improv-
ing LLMs has been scaling, with models scaling
from hundreds of millions (e.g. BERT, Devlin et al.
(2018)) to over a trillion parameters (e.g. Switch
Transformer, Fedus et al. (2022)) in a span of four
years. While these massive scales unlock remark-
able performance across NLP tasks (Naveed et al.,
2023), they come with substantial costs in hard-
ware, energy, and time (Strubell et al., 2019; Pat-
terson et al., 2021), requiring the exploration for
more efficient methods.

Efforts to improve efficiency include pruning
(Augasta and Kathirvalavakumar, 2013), quantiza-
tion (Hubara et al., 2018), and knowledge distilla-
tion (Gou et al., 2021). Mixture of experts models
(Shazeer et al., 2017; Fedus et al., 2022) further
reduced inference costs while preserving capac-
ity. However, one area remains under-explored:

the reliance of LLMs on sub-word tokens, each re-
quiring embeddings several kilobytes in size. This
raises the question of whether more condensed text
representations could offer similar performance
with greater efficiency. Models like the Funnel-
Transformer (Dai et al., 2020) hint at potential
gains through compressing and subsequently de-
compressing hidden states.

Going one step further, we introduce GPTHF,
a hierarchical transformer that compresses entire
sentences into fixed-size embeddings. We explore
whether such representations still carry sufficient
semantic payload to maintain generation quality,
thereby asking if sub-word tokens could possibly
be eliminated for greater computational efficiency.
Experimental results show that GPTHF achieves
strong perplexity scores, follows scaling laws in
the low-parameter regime, and operates at a signifi-
cantly reduced FLOPs cost and inference time.

Contributions. 1. We propose GPTHF, a trans-
former language model that generates text by com-
pressing sentences into one fixed-size embedding
and employing sentence-level attention, with mini-
mal modifications to GPT. 2. We introduce a gen-
eration method that caches and reuses sentence em-
beddings, yielding linear efficiency improvements
with context size, achieving up to 10x FLOP reduc-
tions and 3x runtime speedup.

2 Related Work

A new line of research explored the idea of a “hier-
archical transformer,” a transformer operating on
variable-size embeddings within different layers of
the network. Early examples include the models
of Yang et al. (2016) and Montero et al. (2021).
The Funnel Transformer (Dai et al., 2020) com-
pressed token sequences via incremental pooling,
with inter-layer skip connections allowing later lay-
ers to access pre-compressed information. When
re-investing the saved FLOPs, the Funnel Trans-
former outperformed previous state-of-the-art mod-
els with comparable computational resources.
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Nawrot et al. (2021) expanded this idea to gen-
erative transformers with their “Hourglass” model,
demonstrating improved perplexity on a Wikipedia
dataset. Other examples include Sentence-BERT
(Reimers and Gurevych, 2019) and Sentence-GPT
(Muennighoff, 2022), focus on generating sentence
embeddings for downstream tasks.

Our work differs from all of the above in several
ways. Instead of compressing a fixed-size group of
tokens, we compress a sentence – a unit of higher
semantic value in language – into one embedding.
We focus on leveraging these embeddings to im-
prove computational efficiency, not on the embed-
dings themselves.

3 Methodology

3.1 Architecture
The GPTHF model consists of two main com-
ponents: a word-level transformer encoder
(wlt_encoder) and a sentence-level transformer
body (slt_body). The encoder compresses each
sentence into a single embedding while preserving
essential information. The slt_body contextual-
izes these sentence embeddings and generates the
next-token prediction.

During the forward pass (see Figure 2), the in-
put tokens x1, · · · , xn are first processed by the
wlt_encoder, producing contextualized sub-word
embeddings. The wlt_encoder uses block atten-
tion masks, which will be explained below. Fetch-
ing the last token of each sentence si yields an
embedding ei, i ∈ [m]:

ei = Pooling(wlt_encoder(x1, ..., xn)),

where m is the number of sentences. These embed-
dings are then processed by the slt_body:

êi = slt_body(e1, ..., en)), i ∈ [m].

Finally, êm is fed into the language modeling head
to predict the next token.

Block attention masks. To ensure sentence em-
beddings capture only intra-sentence information,
we use a localized attention mechanism that re-
stricts token attention to within the same sentence.
This is enforced via a dynamically computed (for
each input) block attention mask, defined by a
sentence index vector at tokenization time. Each
block corresponds to a sentence, preventing cross-
sentence interactions (see Figure 1).

Model sizes and Details. A summary of the
model sizes and other hyperparameters are pro-
vided in Table 1. Through empirical experimenta-
tion, a relatively large encoder is found beneficial.

Figure 1: Visualization of block attention masks for a
text with sentence index vector [0, 0, 1, 1, 1]. (a) A block
matrix allowing attention within sentences. (b) Block
lower triangular matrix allowing attention to previous
tokens within sentences during training.
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Figure 2: Overview of the Generative THF (GPTHF)
Architecture during inference. The boxes in the models
indicate the type of attention masks used. The attention
masks are explained in Figure 1.

We decide on the following modifications over the
vanilla transformer (Vaswani et al., 2017), mostly
inspired by Llama-1 (Touvron et al., 2023) and
Geiping and Goldstein (2023), who proposed archi-
tectural changes when training language models in
low-compute settings.

First, we replace an absolute positional em-
bedding layer with rotary positional embeddings
(RoPE, Su et al. (2024)) at each attention layer of
the network. We use SwiGLU activation (Shazeer,
2020) with a dimension of 2/3 4d. Moreover we use
pre-normalization layers with RMSNorm (Zhang
and Sennrich, 2019). Finally, we disable all QKV
biases in the transformer attention layers and linear
layers.

3.2 Pre-training

We use the next token prediction objective common
in auto-regressive models. To prepare GPTHF for
token prediction while enabling efficient parallel
training, we again employ specialized attention
masks (Figure 4). The target is the next token in
the sequence (Figure 3).

Interestingly, training GPT and GPTHF differs
only in replacing full triangular attention matrices
with dynamically computed sparse ones, with no
architectural changes.
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Name Params d nheads lenc lbody lr

GPTHF-8-4 151M 768 12 8 4 6e-4
GPTHF-16-8 454M 1024 16 16 8 4e-4

Table 1: Model sizes and hyperparameters for GPTHF
models.
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Figure 3: Overview of the pre-training procedure. The
boxes in the models indicate the type of attention masks
used. The attention masks are explained in Figure 4.

Data. Our training corpus incorporates Open-
WebText, Wikipedia and ArXiv. OpenWebText
forms the backbone due to its large size and diverse
internet content. Wikipedia is known for its vast
coverage of general knowledge. Finally, ArXiv
augments our corpus with scientific and technical
texts. We use the standard GPT-2 tokenizer, inher-
iting its handling of vocabulary size and unknown
words, while introducing an “end-of-sentence” to-
ken. This token is crucial in the design of a fast
generation method, a cornerstone of this work.

Details. We use the Adam optimizer with weight
decay of 0.01, β1 = 0.9, β2 = 0.98 and ϵ = 10−8.
We maintain gradient clipping with a value of 0.5.
As our learning rate scheduler we use linear de-
cay with 10000 warmup steps. The peak learning
rates are provided in Table 1. We keep the batch
size scheduler from (Geiping and Goldstein, 2023),

Figure 4: Attention masks during pre-training for an
input with the sentence index vector [0,0,1,1,1]: The left
matrix is the "block triangular mask" as in Section 3.1.
After going through the encoder, every token represents
the compressed prefix of its sequence up to itself, and
is only allowed to attend to itself and compressions of
previous sequences (right).

starting batch size at 64 and linearly ramping up
to 4096, reaching this peak at 60% of the training
duration. Lastly, we eliminate dropout during train-
ing. Our models undergo only a single pass or less
over the pre-training corpus, which mitigates the
risk of overfitting.

3.3 Fast generation
The insight that enables a faster generation algo-
rithm to be mathematically equivalent to regular
token generation is the design of our block-wise
attention matrix. During the generation loop, when
generating a token in sentence j, only tokens in sen-
tence j are affected – tokens in previous sentences
remain unchanged. Since the feed-forward layers
operate element-wise, there is no operation within
the transformer layer that alters the compressed
embeddings e1, e2, · · · , ej−1. The core idea is to
cache these embeddings, allowing the encoder to
process only the current sentence j to compute
ej . The body then processes the concatenation of
the cached embeddings e1, e2, · · · , ej−1 and the
updated ej . For an illustration, see Figure 5.
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Figure 5: Illustration of the Fast Generation Algorithm.
Having finished s1 and s2 in the context, any subsequent
token mathematically cannot influence e1, e2. The Fast
Generation Algorithm caches them and feeds them di-
rectly to the slt_body, together with e3.

4 Experiments

4.1 Setup
We evaluate GPTHF against GPT-style baselines of
comparable size, using validation perplexity and ef-
ficiency metrics (FLOPs and runtime). Due to com-
putational constraints, the training data is limited to
10 billion tokens, divided into 320’000 micro-batch
steps of size 64 with a context size of 512 tokens.
All models are pre-trained on the same datasets.

Baselines. We trained a 12-layer baseline named
“Baseline-12” and a 24-layer “Baseline-24” with
the same architecture and size as their GPTHF
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Figure 6: Validation perplexity of pre-trained models
and baselines. Lower values indicate better perfor-
mance.

counterparts. The only difference was that they
were trained using full triangular masks for both
encoder and body, as opposed to the masks in Fig-
ure 4. As remarked in Section 3.2, the baselines can
be regarded as equivalent to conventional GPTs.

4.2 Perplexity

Validation perplexities after training are presented
in Figure 6. They were calculated on a hold-out
validation dataset comprising 16 million tokens.

Scaling Laws Hold in the Low-Compute Setting.
GPTHF models have higher perplexity than base-
lines but follow scaling laws in the low-parameter
regime. Both show a ∼5-point perplexity drop
when scaling from 12 to 24 layers after 10B to-
kens. GPTHF-16-8 and the 12-layer baseline per-
form on par, setting a basis for further compar-
isons: If GPTHF-16-8 achieves higher generation
efficiency and/or speed than a 12-layer GPT, train-
ing a larger model capable of compression might
be worthwhile.

4.3 FLOPs

The speedup from our fast generation algorithm
(Section 3.3) depends on token distribution across
sentences as opposed to only the shape of the input.
Intuitively, more sentences help by caching com-
pleted ones to skip the encoder. Since theoretical
FLOPs analysis is impractical, we measure empir-
ically using OpenWebText samples with varying
prompt lengths (n) and token counts (k), leveraging
the tool from Li. All numbers in Table 2 exclude
KV-caching (Pope et al., 2023), as adapting our
approach to it requires significant additional effort.

Efficiency Gain Increases With Prompt Length.
The results show that efficiency improves with
larger n, but surprisingly decreases with higher
k. A closer examination reveals that our models

generate few relevant tokens, often repeating them
without generating end-of-sentence tokens. This
occurs in both GPTHF models and baselines, indi-
cating that it likely stems from insufficient scale or
training rather than compression. Since the fast al-
gorithm relies on completed sentences, generation
quality directly affects efficiency. This explains a)
the small gains 100-prompt/250-generation tokens,
and b) strong efficiency gains (up to 10x) for 500-
prompt/20-generation tokens. We hypothesize that
a model capable of correctly terminating sentences
achieves greater efficiency gains than reported in
Table 2, increasing with both n and k.
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Figure 7: Scatter plots showing the average number of
sentences (x-axis) versus the efficiency gain (y-axis) of
GPTHF over GPT when generating 20 tokens.

Sentences vs Efficiency. Figure 7 shows scatter
plots of the average sentence count (x-axis) versus
efficiency gain (y-axis). We see that the efficiency
gain increases linearly with the average number
of sentences. For batched data, the efficiency gain
is lower likely due to larger variety (which can be
observed from the increased variance) in tokens,
leading to more padding tokens being processed,
which slows the fast generation algorithm.

4.4 Inference Time
While we save many FLOPs, not all translate to
faster runtime due to GPU inefficiencies from non-
trivial and conditional executions. We measure
actual inference times to account for this, using an
identical setup (see Table 3).

Speedup Increases With Context. Similar to
the FLOP experiment, increasing up to 25% for
unbatched data as k grows. Batched data shows
gains with larger n but not k, which we attribute to
the same sentence-termination limitations.

Latency vs. Throughput. We attribute the sig-
nificant speedup differences between unbatched
and batched data to latency vs. throughput. For un-
batched data with small contexts, the GPU remains
idle. This limits the runtime by latency, which
primarily depends on model size. Batched data
utilizes GPUs better, converting efficiency gains in
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Batch size 1 Batch size 32

n, k = 100,100 100,250 250,100 250,250 500,20 100,100 100,250 250,100 250,250 500,20

Baseline-12 2.38T 9.1T 4.88T 15.7T 1.56T 2.46T 9.62T 4.96T 16.0T 1.7T
GPTHF-8-4 0.95T 4.16T 0.80T 4.31T 0.17T 1.90T 7.72T 2.53T 9.32T 0.58T
Efficiency 2.51x 2.19x 6.10x 3.64x 9.18x 1.29x 1.25x 1.96x 1.72x 2.93x

Baseline-24 8.30T 31.4T 17.0T 53.9T 5.45T 8.52T 32.7T 17.2T 54.9T 5.95T
GPTHF-16-8 2.99T 17.4T 2.97T 17.5T 0.56T 6.11T 25.6T 8.39T 31.3T 2.04T
Efficiency 2.78x 1.81x 5.72x 3.08x 9.73x 1.39x 1.28x 2.05x 1.75x 2.92x

Table 2: Empirical FLOP count per sample for varying prompt lengths n and generated token counts k. Lower
values indicate better efficiency. Bold values highlight highest speedup for each batch size. The mean over 50
batches is reported. Efficiency is calculated as the inverse of the FLOP reduction of the GPTHF model compared to
its respective baseline.

Batch size 1 Batch size 32

n, k = 100,100 100,250 250,100 250,250 500,20 100,100 100,250 250,100 250,250 500,20

Baseline-12 1.73s 4.44s 1.82s 4.77s 0.44s 0.17s 0.57s 0.28s 0.88s 0.093s
GPTHF-8-4 1.77s 4.46s 1.77s 4.48s 0.41s 1.90T 0.50s 0.18s 0.56s 0.041s
Speedup 0.98x 1.00x 1.03x 1.06x 1.07x 1.13x 1.14x 1.56x 1.57x 2.27x

Baseline-24 3.40s 8.88s 3.73s 9.85s 0.84s 0.40s 1.42s 0.73s 2.34s 0.26s
GPTHF-16-8 3.32s 8.43s 3.32s 8.44s 0.67s 0.35s 1.24s 0.37s 1.29s 0.087s
Speedup 1.02x 1.05x 1.12x 1.17x 1.25x 1.14x 1.15x 1.97x 1.81x 2.99x

Table 3: Empirical generation time in seconds per sample for different prompt lengths n and number of tokens
generated k. Lower values are better. Bold values indicate highest speedup for each batch size. The mean over 50
batches executed on a single NVIDIA RTX A6000 is reported. Speedup is calculated as the inverse time reduction
of our model in comparison to the baseline.

FLOPs into higher throughput. Moreover, speedup
increases with model size, resulting in up to triple
the speedup when comparing GPTHF with equal-
sized baselines and slightly faster when comparing
GPTHF 16-8 with the 12-layer baseline.
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Figure 8: Scatter plots showing the average number of
sentences (x-axis) versus the speedup gain (y-axis) of
GPTHF over GPT when generating 20 tokens.

Sentences vs. Speedup. Figure 8 plots average
sentence count (x-axis) against runtime speedup
(y-axis). The figure highlights a linear relationship
between the number of sentences and the speedup,
with a larger constant for a larger model size.

4.5 Discussion
Our experiments show that compression results in
a notable performance drop. Switching from a

baseline/GPT to a GPTHF increases perplexity by
5 points after 10B tokens of training, similar to
reducing a 24-layer GPT to 12 layers.

However, GPTHF models exhibit promising scal-
ing behavior and significant efficiency improve-
ments. Our method achieves speedups of up to 10x
in FLOPs and 3x in runtime, scaling linearly with
context size. For both our method and the baseline,
KV-caching was excluded. Future work might want
to explore KV cache integration to evaluate the ef-
fectiveness of our approach over state-of-the-art
implementations.

Evaluating the overall tradeoff, we compare the
GPTHF-16-8 and the 12-layer baseline, which per-
form on par (Figure 6). When processing 500 to-
kens of context, GPTHF-16-8 uses ∼ 1/3 of the
FLOPs for unbatched data and is slightly faster
(7%) for batched data. Larger prompt lengths and
batch sizes are expected to amplify these gains,
making the tradeoff worthwhile at low compute
scales.

These results suggest that sentence embeddings
could replace sub-word tokens in low-compute
settings while maintaining reasonable perplex-
ity, but whether they remain competitive at larger
scales is still open.
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5 Limitations

A central question remains in whether transform-
ers can generate high-quality text using only com-
pressed sentence embeddings with sufficient size
and training. While smaller GPTHF models fol-
low scaling laws similar to GPTs, their inability
to reliably finish sentences highlights challenges
tied to either scale or the compression method itself.
Further training on larger models is necessary to de-
termine if this limitation is inherent to compression
or surmountable via scaling.

Future work should evaluate these models on
downstream tasks to assess practical utility beyond
perplexity. Additionally, integrating GPTHF with
existing optimizations like KV-caching could yield
better speedups, though diminishing returns are a
potential challenge. Comprehensive ablation stud-
ies focusing on key parameters like hidden size
could offer deeper insights into performance. Alter-
native approaches, such as directly generating sen-
tence embeddings and subsequently decompress-
ing, warrant exploration to enhance or complement
current methods.
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