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Abstract

Reinforcement learning with human feedback
(RLHF) is shown to largely benefit from precise
reward models (RMs). However, recent stud-
ies in reward modeling schemes are skewed
towards English, limiting the applicability of
RLHF in multilingual alignments. In this
work, we investigate the cross-lingual trans-
fer of RMs trained in diverse languages, pri-
marily from English. Our experimental results
demonstrate the strong cross-lingual transfer of
English RMs, exceeding target language RMs
by 3-4% average increase in Mutlilingual
RewardBench. Furthermore, we analyze the
cross-lingual transfer of RMs through the rep-
resentation shifts. Finally, we perform multilin-
gual alignment to exemplify how cross-lingual
transfer in RM propagates to enhanced multi-
lingual instruction-following capability, along
with extensive analyses on off-the-shelf RMs.
We release the code,! model and data.?

1 Introduction

Recent advances in reinforcement learning with hu-
man feedback (RLHF) as a large language model
(LLM) post-training technique (Christiano et al.,
2017; Ziegler et al., 2020) highlight the importance
of having high-quality data (Wang et al., 2024f;
Dubey et al., 2024) and reward model (RM) (Etha-
yarajh et al., 2022; Gao et al., 2023; Ji et al., 2023;
Wang et al., 2024a,e). Leveraging synthetic data
has contributed to building stronger English RMs
due to their efficiency and scalability (Cui et al.,
2024; Wang et al., 2024b; Zhu et al., 2024).
Nevertheless, adopting RMs for non-English lan-
guages is heavily understudied. While LLM-as-a-
Judge can be used as a generative reward model
for multilingual RLHF settings (Son et al., 2024),
generative RMs have been shown to underperform
“Equal Contribution
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traditional RMs (Lambert et al., 2024; Wang et al.,
2024b). Meanwhile, Wu et al. (2024) empirically
demonstrates the possibilities of cross-lingual trans-
fer in RMs, but the findings were limited to simple
tasks and encoder-decoder models.

In this paper, we show that RMs trained on
English-only datasets (i.e., English RMs) display
strong cross-lingual transfer when built on top of
multilingual pre-trained language models (MLMs).
We first demonstrate the cross-lingual transfer of
English RMs by consistently outperforming target
language RMs in Multilingual RewardBench.
Then, we explain it with two reasons: 1) English
preserves representations of the initial MLMs (Sec-
tion 3.1), and 2) representations of MLMs inher-
ently have a strong understanding of languages
(Section 3.2), concluding that RMs should pre-
serve representations of MLMs for generalizability.
Additional analysis of off-the-shelf RMs supports
our findings by both classifier and generative RMs
based on MLMs having strong cross-lingual trans-
fer. Finally, multilingual alignment experiments ex-
hibit the propagation of strong cross-lingual trans-
fer in English RMs to downstream usage, having
an average win rate increase of 9.5% across four
non-English languages.

2 English as a Lingua Franca in RMs

We empirically verify the cross-lingual transfer in
reward models (RMs) trained with different lan-
guages, thereby showing that the English prefer-
ence data is a lingua franca in reward modeling.

2.1 Background

Cross-lingual transfer Training multilingual
language models (MLMs) at scale has shown to
incur cross-lingual transfer in both encoder-only
(Devlin et al., 2019; Conneau et al., 2020; Chi et al.,
2022) and encoder-decoder (Xue et al., 2021) trans-
former architectures. Recently, studies revealed the
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LLAMA-3.2-3B-IT QWEN2.5-3B-IT
RewardBench | Category | Chat Chat(H) Safety Reason Avg. | Chat Chat(H) Safety Reason Avg.
Target 79.1 67.3 88.0 65.5 75.0 | 80.7 68.2 84.8 68.2 75.5
SPANISH English 86.3 69.3 89.3 72.4 79.3 | 827 68.0 88.3 73.6 78.1
A +7.2 +2.0 +1.3 +6.9 +4.3 | +2.0 -0.2 +3.5 +5.4 +2.6
Target 754 62.5 88.5 65.7 73.0 | 77.1 67.8 85.7 72.8 75.8
ITALIAN English 83.0 69.3 88.7 75.1 79.0 | 83.2 68.2 88.4 76.0 79.0
A +7.6 +6.8 +0.2 +9.4 +6.0 | +6.1 +0.4 +2.7 +3.2 +3.2
Target 69.6 58.8 80.9 60.1 67.3 | 684 63.2 80.9 61.4 68.5
KOREAN English 69.8 594 84.3 73.0 71.6 | 70.7 61.6 85.4 73.6 72.8
A +0.2 +0.6 +3.4 +12.9 +4.3 | 423 -1.6 +4.5 +12.2 +4.3
Target 68.7 59.9 81.2 52.6 65.6 | 69.8 64.7 81.8 61.3 69.4
CHINESE English 54.7 64.0 82.6 79.3 70.2 | 58.7 67.8 84.3 78.2 722
A -14.0 +4.1 +1.4 +26.7 +4.6 | -11.1 +3.1 +2.5 +16.9 +2.8

Table 1: Multilingual RewardBench evaluation results on the target language ("Target") and English ("English")
RMs. "A" denotes the accuracy gain of English RMs compared to the target language RMs. English RMs show
higher average scores in the lingual axis than target language RMs. Also, English RMs excel target language RMs
in reasoning ("Reason") tasks with diverse evaluation sub-categories.

implications of cross-lingual transfer in decoder-
only models as well (Ustiin et al., 2024; Wang et al.,
2024c); however, they were limited to generative
tasks (Zhang et al., 2024) or downstream alignment-
tuning only (Dang et al., 2024).

Reward modeling Reward models are trained
as a classifier (Christiano et al., 2017) to return
a scalar value ry(-) with the objective with the
Bradley-Terry model (Bradley and Terry, 1952):

Lrm = o (ro(z, yw) — (T, 91)) ,

with the prompt = and corresponding preferred and
dispreferred responses y,, and y;. While crucial
in alignment-tuning (Rafailov et al., 2024; Hong
et al., 2024; Meng et al., 2024), reward modeling
schemes for multilingual usage are still understud-
ied. Motivated by this research opportunity, we
study the cross-lingual transfer of English-focused
RMs with recent autoregressive models and how it
propagates to downstream multilingual alignment.

2.2 Experimental Details

Dataset We curate a synthetic preference dataset
of 86k instances® from five representative English
preference datasets: SafeRLHF (Dai et al., 2024),
WildGuard (Han et al., 2024), HelpSteer2 (Wang
et al., 2024e), Offsetbias (Park et al., 2024), and
Magpie (Xu et al., 2024b). Using English data, we
create four parallel machine-translated versions®,

utilizing X-ALMA (Xu et al., 2024a).

3Refer to Appendix A for detailed process.
4Spanish (Sp), Italian (It), Korean (Ko), and Chinese (Ch)

&3

Models Two state-of-the-art 3B multilingual pre-
trained language models are fine-tuned’ as re-
ward models: Llama-3.2-3B-Instruct (Dubey et al.,
2024) and Qwen2.5-3B-Instruct (Yang et al., 2024).

Evaluation We prepare four non-English
Multilingual RewardBench by translating
RewardBench (Lambert et al., 2024) to assess the
cross-lingual transfer in RMs.

2.3 Results and Analysis

English RMs show strongest cross-lingual trans-
fer Average reward model accuracy ("Avg") in
Table 1 shows that English RMs surpass target lan-
guage RMs in general. Specifically, Llama-3.2-3B
gained at least 4.3%, where the cross-lingual gener-
alizability of English RMs is more highlighted than
Qwen2.5-3B, which gained at most 4.3%. How-
ever, considering that all Qwen-based target lan-
guage RMs outperform the Llama-based target lan-
guage RMs, Qwen2.5-3B is shown to be a better
model choice for training a language-specific RM.

Reasoning tasks significantly benefit from cross-
lingual transfer Generalizability of English
RMs is best highlighted in the reasoning tasks
("Reason") in Table 1, especially in non-Latin lan-
guages. Non-Latin languages, Korean and Chinese,
improved significantly in English RMs compared
to target language RMs, exceeding 12% and 27%
in Chinese, for instance.

SRefer to Appendix B for detailed hyperparameters.
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(a) Llama-3.2-3B (b) Qwen2.5-3B

Figure 1: Proportion of the largest singular value in the
concatenated hidden states for fixed context translated
in five languages with RMs trained in each language.
While English ("En") best preserves the representation
diversity of the base model ("Inst’), Korean ("Ko") leads
to the most homogeneous representations.

3 Analysis on Lingual Tranfer of MLM

This section provides empirical and theoretical in-
sights on why English is lingua franca in reward
modeling, given a multilingual language model
(MLM) using two arguments: 1) English acts
as a lingua franca in reward modeling because
it best preserves the representations of the base
model, and 2) representations in MLMs should
be preserved since they are inherently effective in
language-aware encoding.

3.1 English preserves general representations

Non-English reward modeling is detrimental to
generalizability In general, the generalizability
of the downstream model is closely connected to
how much the representations are preserved during
the fine-tuning (Aghajanyan et al., 2021; Razdai-
biedina et al., 2023). We demonstrate this in RMs
by ablating over different languages and tasks. We
assess the general representation preservation of
RMs used in Section 2 by comparing their hid-
den states against the initial model. To do so, we
measure how much the distinct representations are
collapsed into similar spaces in Figure 1. In spe-
cific, we construct a matrix of the last hidden states
Ho () € R>*dmodel across five languages using mul-
tilingual dataset BeleBele (Bandarkar et al., 2024):

Ho(z) = concat [{Hé(g;l)}l L} € RIEXdmodet.
€

where H))(x) € Rdmael refers to the last hidden
state of the model 6 for sequence x; in the language
[, but with fixed context. Then, we measure the
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proportion of the largest singular value in Hgy(x):

01
R o
i=101i

fo(x) ,S = diag (o1, ...

70—\L|) ’

with S as singular value matrix of Hy(x). Intu-
itively, having fy(x) close to 1 imples the hidden
states in different languages are homogeneous: i.e.,
representations are embedded into similar space.
In Figure 1, we plot fy(x) with different RMs.
English RMs best preserve the representations by
staying close to the base instruct model ("Inst"). On
the other hand, Korean RMs ("Ko") tend to deviate
the most from the base model, thereby homogeniz-
ing the multilingual representations the most. Both
observations were more extreme in Llama-3.2-3B.

General representation preservation is crucial
for cross-lingual/task transfer Notably, the pro-
clivity in general representation preservation in Fig-
ure 1 aligns with the accuracy in Table 1. Non-
English RMs with Llama-3.2-3B tend to introduce
stronger representation collapse than Qwen2.5-3B
in Figure 1. This aligns with Section 2.3 as Llama-
3.2-3B gets more severe degradation using target
language RMs, implying the significance of repre-
sentation preservation in cross-lingual transfer.

Furthermore, the same tendency holds for cross-
task analysis. RewardBench has especially fine-
grained divisions under the reasoning category (e.g.,
Java, Python, Rust, math) compared to other cat-
egories. Thus, strong generalization abilities are
crucial to achieving decent scores in the reason-
ing category. Interestingly, English RMs dominate
other languages in reasoning despite the fixed data
across the languages in Table 1, which strongly
supports the significance of representation preser-
vation in cross-task generalization.

3.2 MLM representations are language-aware

In autoregressive language models (Radford et al.,
2019) with tied embeddings (Jiang et al., 2023;
Team, 2024a), the logits for next token is:
Vi
he B = [lhe] - leall - cos (6)] _ .
where 0; is the angle between h; and e;. Therefore,
the capability of language models in generative
tasks is closely related to having good representa-
tions (Edunov et al., 2019) that could accurately
align with the ideal next token.
Token embeddings are a good proxy to under-
stand the effectiveness of representations as they
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Figure 2: Embedding norm distribution comparison between English and four other languages (2 non-Latin (top),
2 Latin (bottom)) across four language models: OLMo-1B and SmolLM-1.7B (monolingual pre-training) and
Qwen2.5-3B and Llama-3.2-3B (multilingual pre-training). While English and non-English token embedding norm
distributions of OLMo-1B and SmolLM-1.7B are distinct, they are similar in Qwen2.5-3B and Llama-3.2-3B.

imply the imbalance in pre-training corpora (Chung
et al., 2024), especially by linguality in this study
(Wen-Yi and Mimno, 2023). Thus, we can infer
that language models with similar embedding norm
distribution across the language will have decoder
layers that can return language-aware fine-grained
hidden states, which deserve to be preserved for
their generalizability.

MLMs have similar token embedding norm dis-
tributions across the language We validate this
point by comparing the two models in Section 2
with two monolingual pre-trained language models:
OLMo-1B (Groeneveld et al., 2024) and SmolLLM-
1.7B (Allal et al., 2024). We clarify the lingualities
in each model’s pre-training in Appendix C.

We collect the disjoint language-specific token
embedding norms for each model:

€ = {HejH}jeAl 7Al - V: ﬂ Al =
leL

where A; is the token indices of language [ in V.
We compare ey, distribution over five languages.
In Figure 2, the distribution for English in
SmolLM-1.7B and OLMo-1B are distinct from
four languages, especially Korean and Chinese,
which are non-Latin languages that do not share
similar alphabets. However, Qwen2.5-3B and
Llama-3.2-3B have similar ranges and distributions
across the languages, even in non-Latin languages.
Thus, we can infer that Qwen2.5-3B and Llama-
3.2-3B, as MLMs, are sufficiently trained on the
multilingual corpus to encode information with di-
verse linguality by having similar embedding norm
distributions across the languages (Dagan et al.,

85

2024; Chung et al., 2024). This supports why rep-
resentation preservation is a crucial condition for
generalizable RMs with MLMs, as discussed in
Section 3.1.

4 Multilingual Alignment using RM

In this section, we perform experiments to outline
the effects of using the reward models (RMs) from
Section 2 and how their cross-lingual transfer can
propagate to the actual alignment process.

4.1 Experimental Details

We sample 10k prompts from the cleaned Ultra-
Feedback dataset (Bartolome et al., 2023; Cui
et al., 2024) and translate prompts across target
languages. Then, we sample four responses per
prompt with Qwen2.5-7B-Instruct (Team, 2024b)
and label them with desired RMs. By selecting
the responses with the highest and lowest rewards,
we prepare pairwise preference data. We train
Qwen2.5-7B-Instruct on each language from the
newly curated datasets with Direct Preference Op-
timization (Rafailov et al., 2024, DPO). Refer to
Appendix B for the detailed setup.

Evaluation We evaluate the trained model’s
language-specific instruction-following capabil-
ity with Multilingual AlpacaEval, adopted
from the instances and evaluation pipeline of
Alpacakval (Li et al., 2023). We report the de-
tailed process and configurations in Appendix D.

4.2 Results and Analysis

English RM largely improves base models in
every language As shown in Figure 3, models
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Figure 3: Multilingual AlpacaEval results of

Qwen?2.5-7B-Instruct models fine-tuned with DPO on
on-policy generations for four non-English languages
over fine runs. The alignment data were labeled with
either English RM or target language RM. Results are
averaged over 5 runs.

aligned with English RM show a notable leap com-
pared to Qwen2.5-7B-Instruct ("Base"), by increas-
ing up to 9.3% point in Spanish. As the win
rate was measured against GPT-4-Turbo, a strong
proprietary language model, such enhancements
strongly support the validity of using English RMs
for multilingual alignment in desired languages.

Exploiting English RMs is a desirable choice in
multilingual alignment We emphasize that us-
ing high-quality English preference data of better
accessibility is a decent choice, considering the effi-
ciency and efficacy in real-world cases. In Figure 3,
models aligned with English RM outperformed or
at least on par with ones with target language RMs,
tied only in Chinese. Thus, adopting an English
RM for multilingual alignment is a cost-efficient
yet performant alternative, discarding the need for
scaled translations for the reward model.

5 Cross-lingual Transfer of External RMs

Along with the controlled comparisons in Section
2, we analyze the cross-lingual transfer in off-the-
shelf models on the original RewardBench through
Multilingual RewardBench. To ensure diversity
in reward modeling schemes, we selected two clas-
sifier reward models (RMs), ArmoRM-8B (Wang
et al., 2024b) and OffsetBias-8B (Park et al., 2024),
alongside two generative RMs, GPT-40° and Self-
Taught-Llama-70B (Wang et al., 2024d).

6https://platform.openai.com/docs/models/
gpt-4o0
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MODEL | EN | Es | IT | Ko | CH
ARMORM-8B 90.4 | 80.1 | 789 | 71.5 | 69.6
OFFSETBIAS-8B | 89.4 | 78.9 | 79.5 | 74.5 | 73.1
GPT-40f 86.7 | 80.4 | 78.6 | 75.2 | 72.1
ST-L-70B* 90.0 | 83.1 | 81.5 | 75.6 | 74.1

Table 2: Averaged MULTILINGUAL REWARDBENCH
results in two classifier RMs (top) and two generative
RMs (bottom). Off-the-shelf RMs based on MLMs
show strong cross-lingual transfer as in Table 1.

Classifier RMs Two classifier RMs are both
trained on top of Llama3-8B-Instruct (Dubey et al.,
2024), which are based on multilingual pre-trained
language models (MLMs) as discussed in Ap-
pendix C. As in Table 1, these RMs also demon-
strate strong cross-lingual transfer in four lan-
guages, mostly exceeding 70% accuracy across
the board in Table 2.

Generative reward models Interestingly, we can
observe strong cross-lingual transfer in the gen-
erative RMs in Table 2, as in the classifier RMs.
As discussed in Section 3.2, fine-grained repre-
sentation learning is a crucial component for hav-
ing strong downstream generative abilities. While
the extent of multilingual pre-training in GPT-
4o is not verifiable, GPT-40 has the least decre-
ment in non-English settings. Meantime, Self-
Taught-Llama-70B with extensive multilingual pre-
training demonstrates the strongest cross-lingual
transfer, achieving the best accuracies in all four
non-English Multilingual RewardBench.

Conclusion

We empirically demonstrate English as a lingua
Jfranca in reward modeling, given recent multilin-
gual pre-trained language models (MLMs). We
explain this with two consecutive arguments. First,
English reward models (RMs) best preserve the
representations of initial MLMs, while other lan-
guages induce representation collapse. Second,
MLM representations inherently have a rich under-
standing of languages and tasks, making them valu-
able to preserve in downstream tasks. By extend-
ing our analysis to the off-the-shelf reward models,
we show that using MLMs for reward modeling
is crucial for eliciting strong cross-lingual transfer.
Through strong cross-lingual transfer in English
RMs, we establish a concrete foundation for ex-
ploiting English RMs for multilingual alignment.
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Limitations

To extend to more languages and evaluation bench-
marks, we have mainly utilized a 3B LLM to train
the reward model (RM) with only 86k instances.
However, as outlined in Appendix E, the 3B RMs
are on par with a state-of-the-art RM, ArmoRM,
which was trained with over 550k instances. Future
works on the effects of data size and mixture will
provide an enhanced understanding of our work.

Also, in Section 4, we use the AlpacaEval evalua-
tion setup, which utilizes LLM-generated reference
responses and LLLM-as-a-Judge to select a winning
response. Therefore, while we show a vast increase
in post-training alignment, the process relies on the
multilinguality of OpenAl models and the evalua-
tion biases of the LLM-based evaluations outlined
in Zheng et al., 2023.
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A Data Curation

We used full datasets for HelpSteer2, SafeRLHF, and Offsetbias. We filtered the prompts with one harmful
and unharmful response each for WildGuard, finally having 8,383 instances. Lastly, we randomly sample
60,000 instances from the synthetic preference dataset comprising responses from Llama-3-70B-Instruct
(Dubey et al., 2024) and Gemma-2-9B-It (Team, 2024a) labeled with ArmoRM (Wang et al., 2024b).
From the 108k instances, we finally select 80% of instances as the train set.

B Training Configurations

Both reward modeling and downstream on-policy preference optimization were down using Hugging Face
TRL library (von Werra et al., 2020) on 4 NVIDIA A100 GPUs with Accelerate (Gugger et al., 2022) and
DeepSpeed ZeRO 3 (Rajbhandari et al., 2020), and Paged AdamW optimizer (Loshchilov and Hutter,
2019; Dettmers et al., 2023) with 8-bit precision (Dettmers et al., 2022).

B.1 Reward Modeling

We used a maximum learning rate of 1e —5 and 10% of warm-up followed by cosine decay. The projection
head for the reward model was initialized with A/ (0, 1/v/dmodel + 1) (Stiennon et al., 2020; Huang et al.,
2024). The global batch was set to 128.

B.2 On-Policy Preference Optimization

We fine-tune Qwen2.5-7B-Instruct (Team, 2024b) with DPO using Liger-kernel (Hsu et al., 2024). We
use a cosine decaying learning rate scheduler for single epoch training.

DPO configurations We apply 8 = 0.1 with the learning rate of 5e — 7. The global batch size was set
to 32 using gradient accumulation steps of 8 with a per-device batch size of 1, which was the maximum
number for NVIDIA A100 80GiB.

Data curation To construct the preference pairs for preference optimization, we sample 4 responses
from Qwen-2.5-7B-Instruct. Then, we compute the rewards through the reward models and select the
response with the highest and lowest reward values as the preference pairs for training the checkpoints
through DPO.

C Linguality in Pre-training

Olmo-1B and SmolLM-1.7B are selectively pre-trained on Dolma (Soldaini et al., 2024) and an English-
focused subset of FineWeb (Penedo et al., 2024), respectively: i.e., monolingual pre-training. On the other
hand, the Qwen2.5 series is pre-trained on more than 7 trillion tokens comprising more than 30 languages
(Yang et al., 2024; Team, 2024b): i.e., multilingual pre-training. Similarly, 8% of 15 trillion tokens for
pre-training Llama-3 series were multilingual (Dubey et al., 2024).

D MULTILINGUAL ALPACAEVAL Setup

Starting from the 805 translated prompt instances’ (Zhang et al., 2024), we compute the language-specific
win-rate of the model evaluated by GPT-40® against the reference responses from GPT-4-Turbo’. Given
the generations from the reference model and aligned model, we adopt a LL.M-as-a-Judge evaluation
given the evaluation template'”.

7https ://huggingface.co/datasets/zhihz0535/X-AlpacaEval

8https ://platform.openai.com/docs/models/gpt-4o0
*https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
Yhttps://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/evaluators_configs/
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E REWARDBENCH Evaluation Results Across Languages

REWARD MODEL | CHAT | CHAT(H) | SAFETY | REASON | AvG.

ARMORM-L3-8B* | 969 | 76.8 | 905 | 97.3 | 90.4
L32-3B-IT-EN 92.5 81.8 90.2 95.5 | 90.0
L32-3B-IT-Sp 82.1 71.7 88.2 81.5 | 80.9
L32-3B-IT-IT 86.3 66.0 88.4 754 | 79.0
L32-3B-IT-Ko 84.4 70.6 84.8 787 | 79.6
L32-3B-IT-CH 82.4 69.7 85.5 86.6 | 81.0
Q25-3B-IT-EN 89.1 75.2 87.3 954 | 86.8
Q25-3B-IT-Sp 89.7 70.4 85.1 83.2 | 82.1
Q25-3B-IT-IT 88.3 68.9 86.2 88.8 | 83.0
Q25-3B-IT-Ko 86.3 69.5 84.6 76.8 | 79.3
Q25-3B-IT-CH 84.6 68.2 84.8 89.1 | 81.7
Q25-7B-IT-EN 91.3 81.6 90.3 96.5 | 89.9
Q25-7B-IT-Sp 90.5 75.9 89.5 94.1 | 87.5
Q25-7B-IT-IT 90.8 74.1 88.5 92.5 | 86.5
Q25-7B-IT-Ko 89.4 70.8 87.9 94.9 | 85.8
Q25-7B-IT-CH 83.2 72.6 87.2 90.8 | 83.5

Table 3: REWARDBENCH results for reward model comparison across four different categories. (* denotes
off-the-shelf models)

REWARD MODEL | CHAT | CHAT(H) | SAFETY | REASON | AvG.

ARMORM-L3-8B* | 89.4 | 645 | 89.0 | 77.5 | 80.1
L32-3B-IT-EN 86.3 69.3 89.3 72.4 | 79.3
L32-3B-IT-Sp 79.1 67.3 88.0 65.5 | 75.0
L32-3B-IT-IT 80.4 63.2 88.0 64.8 | 74.1
L32-3B-IT-Ko 79.1 63.8 84.0 548 | 70.4
L32-3B-IT-CH 77.9 64.9 84.1 594 | 716
Q25-3B-IT-EN 82.7 68.0 88.3 73.6 | 78.1
Q25-3B-IT-SP 80.7 68.2 84.8 68.2 | 75.5
Q25-3B-IT-IT 78.2 67.5 87.0 73.4 | 76.6
Q25-3B-IT-Ko 77.1 67.1 85.3 584 | 72.0
Q25-3B-IT-CH 78.8 64.5 85.3 76.4 | 76.2
Q25-7B-IT-EN 82.1 73.7 91.4 73.3 | 80.1
Q25-7B-IT-Sp 84.1 71.5 89.9 78.4 | 81.0
Q25-7B-IT-IT 84.6 70.0 89.2 78.3 | 80.5
Q25-7B-IT-Ko 84.9 65.8 87.0 76.0 | 78.4
Q25-7B-IT-CH 83.5 66.0 87.2 69.5 | 76.5

Table 4: Spanish REWARDBENCH results for reward model comparison across four different categories. (* denotes
off-the-shelf models)
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REWARD MODEL | CHAT | CHAT(H) | SAFETY | REASON | AvVG.

ARMORM-L3-8B* | 83.2 | 654 | 886 | 785 | 789
L32-3B-IT-EN 83.0 69.3 88.7 75.1 | 79.0
L32-3B-IT-Sp 74.9 67.8 87.6 657 | 74.0
L32-3B-IT-IT 75.4 62.5 88.5 657 | 73.0
L32-3B-IT-Ko 77.7 64.9 84.8 571 | 711
L32-3B-1T-CH 75.4 62.5 84.5 61.7 | 71.0
Q25-3B-IT-EN 83.2 68.2 88.4 76.0 | 79.0
Q25-3B-IT-Sp 81.0 65.8 84.3 70.9 | 75.5
Q25-3B-IT-IT 77.1 67.8 85.7 72.8 | 75.8
Q25-3B-IT-Ko 78.8 68.0 82.5 61.7 | 72.7
Q25-3B-IT-CH 82.1 64.9 83.7 76.7 | 76.9
Q25-7B-IT-EN 82.4 73.0 89.6 75.1 | 80.0
Q25-7B-IT-Sp 84.6 69.3 89.1 79.8 | 80.7
Q25-7B-IT-IT 80.2 69.7 87.9 78.5 | 79.1
Q25-7B-IT-Ko 84.1 64.3 85.8 727 | 767
Q25-7B-IT-CH 81.8 65.8 86.5 67.9 | 75.5

Table 5: Ttalian REWARDBENCH results for reward model comparison across four different categories. (* denotes
off-the-shelf models)

REWARD MODEL | CHAT | CHAT(H) | SAFETY | REASON | AVG.

ARMORM-L3-8B* | 66.5 | 60.3 | 838 | 753 | 715
L32-3B-IT-EN 69.8 59.4 84.3 73.0 | 71.6
L32-3B-IT-Sp 70.7 60.3 84.0 67.8 | 70.7
L32-3B-IT-IT 74.9 56.6 83.6 66.2 | 70.3
L32-3B-IT-Ko 69.6 58.8 80.9 60.1 | 67.3
L32-3B-IT-CH 69.3 583 79.7 59.3 | 66.7
Q25-3B-IT-EN 70.7 61.6 85.4 73.6 | 72.8
Q25-3B-IT-Sp 74.9 59.6 82.3 69.2 | 715
Q25-3B-IT-IT 74.3 62.1 82.0 69.4 | 71.9
Q25-3B-IT-Ko 68.4 63.2 80.9 614 | 68.5
Q25-3B-IT-CH 74.3 61.2 82.2 66.2 | 71.0
Q25-7B-IT-EN 68.2 66.2 87.9 70.9 | 73.3
Q25-7B-IT-Sp 75.7 59.9 86.1 704 | 73.0
Q25-7B-IT-IT 76.3 61.0 84.9 68.8 | 72.7
Q25-7B-IT-Ko 72.9 65.4 84.8 67.6 | 72.7
Q25-7B-IT-CH 76.3 63.2 84.6 65.1 | 72.3

Table 6: Korean REWARDBENCH results for reward model comparison across four different categories. (* denotes
off-the-shelf models)
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REWARD MODEL | CHAT | CHAT(H) | SAFETY | REASON | AVG.

ARMORM-L3-8B* | 60.6 | 60.5 | 837 | 73.6 | 69.6
L32-3B-IT-EN 54.7 64.0 82.6 79.3 | 70.2
L32-3B-IT-Sp 61.2 60.5 82.9 70.5 | 68.8
L32-3B-IT-IT 66.8 57.0 84.9 66.4 | 68.8
L32-3B-IT-Ko 68.4 61.0 81.1 61.3 | 67.9
L32-3B-IT-CH 68.7 59.9 81.2 526 | 65.6
Q25-3B-IT-EN 58.7 67.8 84.3 782 | 722
Q25-3B-IT-Sp 68.7 62.5 79.5 71.0 | 70.4
Q25-3B-IT-IT 69.8 62.3 81.6 70.6 | 71.1
Q25-3B-IT-Ko 70.1 61.4 79.7 623 | 68.4
Q25-3B-IT-CH 69.8 64.7 81.8 61.3 | 69.4
Q25-7B-IT-EN 55.0 66.2 85.7 75.8 | 70.7
Q25-7B-IT-Sp 71.5 63.4 84.9 729 | 73.2
Q25-7B-IT-IT 70.9 60.7 85.7 67.6 | 71.2
Q25-7B-IT-Ko 73.5 60.7 83.9 70.1 | 72.1
Q25-7B-IT-CH 67.9 61.6 84.8 64.1 | 69.6

Table 7: Chinese REWARDBENCH results for reward model comparison across four different categories. (* denotes
off-the-shelf models)
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