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Abstract
Automatic Post-Editing (APE) systems often
struggle with over-correction, where unneces-
sary modifications are made to a translation,
diverging from the principle of minimal editing.
In this paper, we propose a novel technique
to mitigate over-correction by incorporating
word-level Quality Estimation (QE) informa-
tion during the decoding process. This method
is architecture-agnostic, making it adaptable
to any APE system, regardless of the under-
lying model or training approach. Our ex-
periments on English-German, English-Hindi,
and English-Marathi language pairs show the
proposed approach yields significant improve-
ments over their corresponding baseline APE
systems, with TER gains of 0.65, 1.86, and
1.44 points, respectively. These results under-
score the complementary relationship between
QE and APE tasks and highlight the effective-
ness of integrating QE information to reduce
over-correction in APE systems.

1 Introduction

Automatic Post-Editing (APE) focuses on devel-
oping computational approaches to improve Ma-
chine Translation (MT) system-generated output
by following the principle of minimal editing (Bo-
jar et al., 2015; Chatterjee et al., 2018a). Along
with the shift in the field of MT research- from sta-
tistical to neural approaches, research within APE
has observed a similar trend- towards neural APE
systems (Chatterjee et al., 2018a, 2019, 2020).

The need for large APE datasets for training
neural APE models is addressed by generating
artificial triplets (Junczys-Dowmunt and Grund-
kiewicz, 2016; Negri et al., 2018; Freitag et al.,
2022). However, unlike real (human post-edited)
APE triplets, these do not follow the minimality
principle, leading to distributional differences (Wei
et al., 2020). Despite training on synthetic data
and fine-tuning with real data, current APE sys-
tems face over-correction issues, primarily due to

the size imbalance between synthetic and real data
(Chatterjee et al., 2020; Bhattacharyya et al., 2023).

While strategies like optimizing data selection,
data augmentation, and model architecture have
addressed APE over-correction, mitigating it at the
decoding stage remains underexplored (do Carmo
et al., 2020). Focusing on other stages limits the
applicability across different APE systems. Moti-
vated by this, we propose an over-correction mit-
igation method using an external Quality Estima-
tion (QE) signal during decoding, applicable to any
black-box APE system. Our contribution is:

• An over-correction mitigation technique that
uses fine-grained word-level QE information
to perform constrained decoding. The tech-
nique shows improvements of 0.65, 1.86, and
1.44 TER points, respectively, over existing
En-De, En-Hi, and En-Mr APE systems (Re-
fer to Table 2).

• Comparison and analysis of the standard beam
search and proposed decoding techniques that
quantify the extent of how over-correction-
prone they are (Refer to Section 5).

2 Related Work

There are multiple attempts to curtail the over-
correction at different stages of APE development.

Chatterjee et al. (2016a,b); Wang et al. (2021) fo-
cus on data by selecting training samples that may
prevent APE from facing the over-correction, aug-
mentation with triplets containing the same transla-
tions and post-edits, and weighing training samples
with perplexity-based scoring to limit their contri-
bution to learning the APE model.

Junczys-Dowmunt and Grundkiewicz (2017)
modify their APE architecture using monotonic
hard attention to improve translation faithfulness.
Chatterjee et al. (2017) use task-specific loss based
on attention scores to reward APE hypothesis
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Figure 1: An example of the word-level QE-based Grid Beam Search decoding technique used for English-Hindi
APE system. Words marked in green denote word-level QE predicted ‘OK’ tags for them. These correct translation
segments (shown in the list) are referred to as constraints and are used during the decoding to ensure they appear in
the final APE output.

words present in the original translation. Tebbi-
fakhr et al. (2019) train a classifier to predict post-
editing effort and prepend its output to source and
translation sequences.

Tan et al. (2017) train separate APE models
and use a QE system to rank their outputs. Lee
(2020a); Deoghare and Bhattacharyya (2022); Yu
et al. (2023) mitigate over-correction by reverting
to the original translation based on QE speculation.
Chatterjee et al. (2018b) incorporate word-level
QE information into the decoder to guide minimal
edits. Deoghare et al. (2023b) adopt a multitask
approach, jointly training on QE and APE tasks to
reduce over-correction. Deguchi et al. (2024) use
a detector-correction framework that first predicts
the type of edit operation each translation token
should undergo, and then the post-edit is generated
based on this information.

We find only a few attempts at handling
over-correction at the decoding stage. Junczys-
Dowmunt and Grundkiewicz (2016) introduce a
‘Post-Editing Penalty’ during decoding to prevent
generating tokens not present in the input, applying
it in an ensemble framework to one model. Chat-
terjee et al. (2017) re-rank APE hypotheses based
on precision and recall using shallow features like
insertions, deletions, and length ratio, rewarding
those closer to the original translation. Lopes et al.
(2019) impose a soft penalty for new tokens not in
the inputs. Lee et al. (2022) experiment with var-
ious decoding methods to generate artificial APE
triplets.

3 Methodology

We use an extension of beam search, called Grid
Beam Search (Hokamp and Liu, 2017), to perform
decoding. While it is originally used for neural
interactive-predictive translations and for MT do-

main adaptation, we adopt the decoding technique
for APE. To mitigate the APE over-correction, we
explicitly provide information about correct trans-
lation segments during the decoding through fine-
grained word-level QE signals.

3.1 Grid Beam Search (GBS)

Grid Beam Search (GBS) extends the beam search
by incorporating lexical constraints into the se-
quence generation process. Unlike traditional meth-
ods that focus purely on maximizing the probability
of the output sequence based on the input, GBS al-
lows specific lexical constraints to be mandatorily
included in the generated output.

GBS works by structuring the search space into
a grid where the rows track the constraints, and the
columns represent the progression of timesteps in
the sequence. Each cell in this grid holds a set of
potential hypotheses, which are candidate output
sequences being considered at that point in time.
At each timestep, once a new token is generated, it
is matched with the start of tokens in the constraint
list. If there is a match, the particular constraint is
added to the hypothesis. The algorithm evaluates
and updates these hypotheses based on whether
they comply with the required constraints and how
well they fit the model’s learned distribution.

The search proceeds by either continuing with a
free generation following the standard beam search
or by initiating the enforcement of constraints. This
balancing act ensures that, by the end of the se-
quence generation, all specified constraints are in-
cluded in the translation. Kindly refer to Appendix
A for more details.

3.2 Word-QE-based Constraints

A word-level QE system (Ranasinghe et al., 2021)
provides fine-grained information about translation
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quality by tagging each translation word with an
‘OK’ or ‘BAD’ tag. An ‘OK’ tag indicates the word
is a correct translation of some word or phrase in
the source sentence. Similarly, a ‘BAD’ tag denotes
the word is an incorrect translation and should be
deleted or substituted.

We utilize this information to know the correct
translation phrases. We first pass the source sen-
tence and its MT-generated translation to the word-
level QE system, which provides tags for each to-
ken in the translation. We simply consider a set
of consecutive tokens with the ‘OK’ tag as a con-
straint that needs to be present in the APE output.
Even though the QE system processes the text at the
subword level, we set the ‘word’ to be the smallest
unit to be considered as a constraint. Kindly refer
to Appendix B for details about the word-level QE
system.

To summarize, the APE decoding process in-
volves using correct translation segments identified
based on the Word-level QE signals and then per-
forming the GBS decoding (Refer Figure 1).

4 Experimental Setup

This section details the different experiments un-
dertaken to assess the effectiveness of the proposed
decoding technique. We use the same datasets,
architecture, data augmentation, and preprocess-
ing and also follow the same training approach
as described by Deoghare et al. (2023b) for train-
ing the APE models to enable direct comparison.
Appendix C details the English-German, English-
Hindi, and English-Marathi datasets used for the
experiments.

Do Nothing A baseline considering original
translations as an APE output.

Baseline 1 (Primary Baseline): Standalone-
APE + BS: In this experiment, we train a stan-
dalone APE system without any QE data or addi-
tionally train the model on QE tasks. The decoding
is done using the standard beam search. We con-
sider Baseline 1 as a Primary Baseline.

Baseline 2: QE-APE + BS: The experiment is
an extension of Baseline 1. In this experiment, the
model is jointly trained on QE and APE tasks as
described in Deoghare et al. (2023b) by adding
QE task-specific heads to the encoders. Similar to
Baseline 1, this experiment uses the beam search
too to perform decoding. This experiment inves-
tigates the effectiveness of using word-level QE
information during the decoding if the APE model

Experiment En-De En-Hi En-Mr
Do Nothing 19.06 47.43 22.93
Standalone-APE + BS 18.91 21.48 19.39
Standalone-APE + GBS (Token) 17.40 19.92 18.48
Standalone-APE + GBS (Word) 17.74 19.43 17.31

Table 1: TER scores on the respective evaluation are set
in the Oracle settings when constraint enforcement is
done based on initial token or word-based matching.

has implicit knowledge of the word-level QE task.
We provide the architecture details and the train-

ing approach for both the baselines in Appendix D
and the hyperparameter information for both APE
and QE systems in Appendix E.

Standalone-APE + GBS In this experiment, we
train the APE model as in the Baseline 1 experi-
ment. However, the decoding is performed using
the proposed Word-QE-based GBS decoding tech-
nique.

QE-APE + GBS The experiment involves
jointly training a model on QE and APE tasks
as in the Baseline 2 experiment. During decod-
ing, instead of standard beam search, the proposed
Word-QE-based GBS decoding technique is used.

5 Results and Discussion

We perform the experiments on English-German
(En-De), English-Hindi (En-Hi), and English-
Marathi (En-Mr) pairs, each of which offers a dif-
ferent level of task difficulty due to different linguis-
tic properties, varied amounts of real and synthetic
datasets, and ‘Do nothing’ baselines with different
complexities. We use TER (Snover et al., 2006)
and BLEU (Papineni et al., 2002) as primary and
secondary evaluation metrics, respectively. Kindly
refer to Appendix F for the BLEU scores.

Table 1 compiles the results of experiments
geared towards answering whether constraint en-
forcement should be initiated based on the first to-
ken match or the entire word match. In Standalone-
APE + GBS (Token),’ we match the generated to-
ken (which is at subword-level, since the ‘senten-
cepiece’ tokenization is used) with the first token
of each constraint, and if a match is found, the
matched constraint is generated. However, in the
case of Standalone-APE + GBS (Word),’ we wait
till the entire word is generated and only then match
it with the starting word of each constraint. These
experiments are performed in the oracle setting,
meaning ground-truth word-level QE tags are used
instead of the word-level QE predicted tags to ex-
tract correct translation segments. Better perfor-
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Experiment En-De En-Hi En-Mr
Do Nothing 19.06 47.43 22.93
Standalone-APE + BS 18.91 21.48 19.39
QE-APE + BS 18.45 19.75 18.30
Standalone-APE + GBS 18.26 19.62 17.95
QE-APE + GBS 18.04 19.20 17.53
Standalone-APE + GBS (Oracle) 17.74 19.43 17.31
QE-APE + GBS (Oracle) 17.50 18.52 16.70
Greedy 19.38 20.04 18.73
Sampling 19.35 19.89 18.46
top-k Sampling 18.43 19.46 18.18
Lopes et al. (2019) 18.38 19.41 18.16
Deguchi et al. (2024) 18.40 19.93 18.92

Table 2: TER scores on the respective evaluation sets
in the Oracle and non-oracle settings when different
decoding techniques are used. Unlike other techniques,
the technique proposed by Deguchi et al. (2024) is not
a decoding technique and uses information about edit
operations during the training phase.

mance in the case of all three pairs when the con-
straint enforcement is done based on word-based
matching indicates the possibility of noise inclu-
sion, as there could be common subword-level pre-
fixes for multiple words that are present across
constraints or even non-constraint words.

A relatively large difference between
Standalone-APE + GBS (Token) and Standalone-
APE + GBS (Word) experiments for En-Hi, En-Mr
pairs, and En-De pair hints the noise illusion goes
up when target languages are morphologically
richer. As we observe consistently better results
in the case of Standalone-APE + GBS (Word)
experiment, further experiments are performed
by using word-based matching for enforcing
constraints during the GBS decoding.

A comparison between different decoding tech-
niques and the proposed technique is depicted in
Table 2. We observe larger improvements with
the proposed decoding technique (Standalone-APE
+ GBS) over the standard beam search decoding
(Standalone-APE + BS) when the underlying APE
system is a standalone system that is not trained
for QE tasks. It shows the effectiveness of enforc-
ing the generation of correct translation segments
during the decoding.

On the other hand, a smaller difference in im-
provements between the two techniques (QE-APE
+ GBS vs QE-APE + BS) when the underlying APE
system is jointly trained on QE and APE tasks un-
derlines that the implicit knowledge of the QE tasks
helps the model perform APE. Yet, we can conjec-
ture from the better performance with the use of the
proposed method over the standard beam search

that a loose coupling of QE with APE but with
explicit information about the translation segment
quality has the potential to improve an APE sys-
tem developed through the stronger QE and APE
coupling.

In both cases, the difference between the pro-
posed technique with oracle and non-oracle word-
level QE information underscores the need for bet-
ter word-level QE systems.

We additionally perform experiments with other
popular decoding techniques like greedy, sam-
pling, and top-k sampling for completeness. The
Standalone-APE model is used in these experi-
ments. The results show that the top-k sampling
decoding performs similarly to the beam search
decoding. The reported results are with the best k
values for each pair (En-De: 25, En-Hi: 30, En-Mr:
25) as per empirical observations.

Comparison with Existing Techniques We also
compare our proposed approach with the work of
Lopes et al. (2019), who apply a soft penalty dur-
ing decoding if APE generates tokens that are not
present in either source or translation vocabular-
ies. For this experiment too, we use the standalone
APE (Standalone-APE) system. While we observe
significant improvements in the case of En-Hi and
En-Mr pairs, the technique shows limited gains
when compared to the proposed approach, suggest-
ing it is more beneficial to inform APE about what
to generate than what not to generate since NMT
outputs are usually of high quality and require min-
imal editing.

Furthermore, even though the key aim of this
work is to develop an over-correction mitigation
technique that could be integrated with any neural
network-based APE system, we still compare our
proposed technique with existing work that uses
the edit operation or QE information at the time
of training the APE models. Due to the experi-
mental setup consistency between this work and
of Deoghare et al. (2023b), the Standalone-APE +
BS experiment represents their technique. Its com-
parison with the Standalone-APE + GBS suggests
QE-assisted constrained decoding could be more
robust in handling the over-correction than rely-
ing on the implicit learning of the QE information
by the model. Similarly, the comparison with the
technique proposed by Deguchi et al. (2024) that
relies on the edit operations prediction capabilities
of the model shows comparable performance im-
provements with the performance of our technique.
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Figure 2: Distribution of percentage of different
decoding-based APE model outputs with poorer quality
than the original translation.

Deterioration Analysis We analyze the number
of translations deteriorated by different decoding
techniques to see whether the proposed decoding
technique can lead to enforcing undesirable con-
straints that could lead to poorer post-edit than
the original translation. Figure 2 depicts relatively
less number of deteriorated translations through
the use of our proposed decoding technique over
the standard beam search decoding, which points
to a reduction in over-correction as the number of
APE outputs with poorer quality than the original
translation reduces.

Retention Analysis To further assess whether the
overall improvement in the TER score is genuinely
attributed to a reduction in over-correction, we con-
duct a retention analysis. Specifically, we compare
post-edits from the Standalone-APE + GBS exper-
iment with those from the Standalone-APE + BS
experiment. Our analysis involves computing the
percentage of improved post-edits (as determined
by TER scores) that contain a higher number of cor-
rectly retained translation words. As illustrated in
Figure 3, the high percentage of post-edits exhibit-
ing better retention highlights the robustness of the
proposed technique in mitigating over-correction.

The statistical significance test (Graham, 2015)
considering the primary metric (TER) and p being
< 0.05 shows Standalone-APE + GBS experiments
show significant gains over their Standalone-APE
+ BS counterparts for all three language pairs. Sim-
ilarly, improvements through QE-APE + GBS over
QE-APE + BS for all three pairs are significant.

Figure 3: Percentage of post-edits with better retention
of correct translation words out of all the improved post-
edits from Standalone-APE + GBS over the post-edits
from Standalone-APE + BS.

6 Conclusion and Future Work

The proposed decoding technique in this work
has demonstrated its effectiveness in enhancing
the quality of APE outputs by enforcing the gen-
eration of provided correct translation segments
during decoding. These segments are extracted
with the help of a word-level QE system, which
offers fine-grained information about translation
quality. Through experiments on three language
pairs, En-De, En-Hi, and En-Mr, the technique
achieved improvements of 0.87 to 2.28 TER points
over baseline APE systems. Notably, the superior
performance of standalone APE systems using the
proposed decoding method compared to QE-APE
systems with traditional beam search decoding un-
derscores the technique’s ability to reduce over-
correction. This result also suggests that inject-
ing word-level QE information exclusively at the
decoding stage is more effective than embedding
it implicitly through joint QE and APE training.
However, the relatively smaller gains when apply-
ing the technique to QE-APE systems imply that
incorporating explicit QE information at the decod-
ing stage addresses remaining gaps even after joint
training with QE and APE.

In the future, we would like to investigate the
impact of the quality of a word-level QE system on
the proposed decoding technique.

7 Limitations

Our technique relies on the availability of a word-
level QE system for the language pair of interest. It
limits its applicability to a wider set of languages.
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Furthermore, the results show performance im-
provements through the proposed technique over
the standard beam search are sensitive to the quality
of the word-level QE system, which is uncontrolled
by nature. The false positives of the word-level QE
system will especially lead to the enforcement of
the decoding technique to include incorrect transla-
tion segments in the output.

8 Ethics Statement

Our models for APE and QE are developed us-
ing publicly accessible datasets cited in this paper.
These datasets have already been gathered and an-
notated, and this study does not involve any new
data collection. Additionally, these datasets serve
as standard benchmarks introduced in recent WMT
shared tasks. The datasets do not contain any user
information, ensuring the privacy and anonymity of
individuals. We acknowledge that all datasets carry
inherent biases, and as a result, computational mod-
els are bound to acquire biased information from
them.

References
Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
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A Grid Beam Search Decoding (Hokamp
and Liu, 2017)

Algorithm 1 describes the steps followed to per-
form the GBS. In the grid, beams are indexed
by variables t and c. The t variable denotes the
timestep of the search, while c indicates the num-
ber of constraint tokens that are included in the
hypotheses for the current beam. It’s important
to note that each increment in c corresponds to
one constraint token. In this context, constraints
form an array of sequences, where individual to-
kens can be referenced as constraintsij , meaning
token j in constraint i. The parameter numC in Al-
gorithm 1 signifies the total count of tokens across
all constraints. We can categorize the hypotheses
in beams as (i) Open hypotheses, which can start a
constraint generation or generate new tokens based
on the distribution over the vocabulary provided by
the model. (ii) Closed hypotheses, which can only
generate tokens for the current constraint.

t each search step, the candidates in the beam at
Grid[t][c] can be generated through three distinct
methods:

• The open hypotheses from the beam to the
left (Grid[t − 1][c]) can produce continua-
tions based on the model’s distribution pθ(yi |
x, {y0, . . . , yi−1}).

• The open hypotheses from both the beam to
the left and the one below (Grid[t− 1][c− 1])
can initiate new constraints.

• The closed hypotheses from the beam to the
left and below (Grid[t− 1][c− 1]) can extend
existing constraints.

The model described in Algorithm 1 provides an
interface that includes three functions: generate,
start, and continue, which create new hypothe-
ses in each of the three specified manners. It is
important to note that the scoring function does
not need to be aware of the constraints’ presence,
although it can include a feature indicating whether
a hypothesis is part of a constraint.

The beams located at the top level of the grid
(where c = numConstraints) hold hypotheses that
encompass all constraints. When a hypothesis at
this top level produces the end-of-sequence (EOS)

Algorithm 1 Grid Beam Search (GBS)
1: procedure CONSTRAINEDSEARCH(model, in-

put, constraints, maxLen, numC, k)
2: startHyp← model.getStartHyp(input, con-

straints)
3: Grid← initGrid(maxLen, numC, k) ▷

Initialize beams in grid
4: Grid[0][0] = startHyp
5: for t = 1 to maxLen do
6: for c = max(0, (numC + t) - maxLen)

to min(t, numC) do
7: n, s, g ← ∅
8: for each hyp ∈ Grid[t-1][c] do
9: if hyp.isOpen() then

10: g ← g∪
model.generate(hyp, input, constraints)
▷ Generate new open hypotheses

11: end if
12: end for
13: if c > 0 then
14: for each hyp ∈ Grid[t-1][c-1]

do
15: if hyp.isOpen() then
16: n ← n∪

model.start(hyp, input, constraints) ▷ Start
new constrained hypotheses

17: else
18: s ← s∪

model.continue(hyp, input, constraints)
▷ Continue unfinished hypotheses

19: end if
20: end for
21: end if
22: Grid[t][c]← k-argmaxh ∈ n∪s∪g

model.score(h) ▷ k-best scoring hypotheses
stay on the beam

23: end for
24: end for
25: topLevelHyps← Grid[:][numC] ▷ Get

hypotheses in top-level beams
26: finishedHyps← hasEOS(topLevelHyps) ▷

Finished hypotheses have generated the EOS
token

27: bestHyp ← argmaxh ∈ finishedHyps
model.score(h)

28: return bestHyp
29: end procedure
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token, it can be included in the collection of com-
pleted hypotheses. The hypothesis with the highest
score from this set is identified as the optimal se-
quence that satisfies all constraints.

B Word-level QE System Description

We approach the word-level QE task as a classifi-
cation problem at the token level. To predict the
word-level labels (OK/BAD), we perform a linear
transformation followed by a softmax function on
each input token derived from the final hidden layer
of the XLM-R model.

ŷword = σ(W T
word · ht + bword) (1)

where t indicates the specific token that the
model is tasked with labeling within a sequence
of length T , Wword ∈ RD×2 represents the weight
matrix, and bword ∈ R1×2 denotes the bias. The
cross-entropy loss function used for training the
model is illustrated in Equation 2, which resembles
the architecture of MicroTransQuest as detailed by
Ranasinghe et al. (2021).

Lword = −
2∑

i=1

(
yword ⊙ log(ŷword)

)
[i] (2)

Architecture and Training Approach: We uti-
lize a transformer encoder to construct the QE
models. For generating representations of the in-
put, which consists of the concatenated source sen-
tence and its translation, we use XLM-R (Conneau
et al., 2020). This model has been trained on an
extensive multilingual dataset totaling 2.5TB, en-
compassing 104 different languages, and employs
the masked language modeling (MLM) objective,
akin to RoBERTa (Zhuang et al., 2021). Notably,
the systems that won the WMT20 shared task for
sentence- and word-level QE incorporated XLM-R-
based models (Ranasinghe et al., 2020; Lee, 2020b).
Consequently, we implement a similar approach
for our word-level QE tasks. To enable token-level
classification for word-level QE, we add a feed-
forward layer atop XLM-R. We train these mod-
els based on XLM-R for each language pair using
their corresponding word-level QE task datasets.
Throughout the training process, the weights of all
layers in the model are adjusted.

C Datasets

For our experiments, we utilize datasets from
the WMT21 (Akhbardeh et al., 2021), WMT241,
and WMT22 (Bhattacharyya et al., 2022) APE
shared tasks for English-German, English-Hindi,
and English-Marathi, respectively. The datasets for
these language pairs comprise 7K, 18K, and 7K
real APE triplets, along with 7M, 2.5M, and 2.5M
synthetic APE triplets. However, to facilitate a di-
rect comparison with previous studies (Deoghare
et al., 2023a), we limit the English-German pair to
4M synthetic triplets. Each pair also has a corre-
sponding development set containing 1K triplets
for evaluation purposes.

In addition, we incorporate parallel corpora dur-
ing the APE training process. For the English-
Hindi and English-Marathi pairs, we draw upon
the Anuvaad2, Samanantar (Ramesh et al., 2022),
and ILCI (Bansal et al., 2013) datasets, which each
contain approximately 6M sentence pairs. For
the English-German pair, we utilize the News-
Commentary-v16 dataset from the WMT22 MT
task, which consists of around 10M sentence pairs.

For the QE tasks, we also leverage datasets from
the WMT21, WMT22, and WMT24 Sentence-level
and Word-level QE shared tasks. The English-
German QE dataset includes 7K instances for train-
ing and 1K for development. The English-Marathi
dataset consists of 26K training instances and 1K
for development. For English-Hindi, we used the
QE-corpus-builder3 to gather annotations for trans-
lations based on their post-edits.

D APE System Description

Architecture: We design the Standalone-APE
system using a transformer-based encoder-decoder
model. For English-Hindi and English-Marathi,
two separate encoders are employed to process the
source sentence and its translation, as these lan-
guages have different scripts and vocabularies. The
outputs from both encoders are fed into two se-
quential cross-attention layers in the decoder. In
contrast, the English-German APE system utilizes
a single-encoder, single-decoder architecture due
to the shared script and vocabulary between these
languages. Here, the source and translation are
concatenated with a ‘<SEP>’ tag, and this is en-

1WMT24 QEAPE Shared Subtask
2Anuvaad Parallel Corpus
3https://github.com/deep-spin/

qe-corpus-builder
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coded by a single encoder, which is passed to a
cross-attention layer in the decoder. For both lan-
guage pairs, the encoders are initialized with In-
dicBERT (Kakwani et al., 2020) weights.

The only change in terms of the architecture for
QE-APE is the addition of task-specific (Sentence-
level QE and Word-level QE) heads on top of a
shared representation layer that takes inputs from
the last encoder layers. The representation layer
has twice as many neurons for the English-Hindi
and English-Marathi pairs compared to the English-
German pair, whose size matches that of the fi-
nal encoder layer. While the Standalone-APE is
trained only for the APE task with cross-entropy
loss, the QE-APE is trained jointly for sentence-
level sentence-level QE (regression), Word-level
QE (token-level classification) and APE tasks, with
the Nash-MTL (Navon et al., 2022) algorithm used
for the optimization.

Data Augmentation and Preprocessing We en-
hance the synthetic APE data by incorporating au-
tomatically generated phrase-level APE triplets.
Initially, we train phrase-based statistical ma-
chine translation (MT) systems for both source-
to-translation and source-to-post-edit tasks using
Moses (Koehn et al., 2007). In the subsequent
step, we extract phrase pairs from both MT systems.
APE triplets are then created by aligning the source
sides of the extracted phrase pairs. To ensure the
quality of the synthetic APE triplets, including the
phrase-level ones, we apply LaBSE-based filter-
ing (Feng et al., 2022) to eliminate low-quality en-
tries from the synthetic APE dataset. This filtering
process involves calculating the cosine similarity
between the normalized embeddings of a source
sentence and its corresponding post-edited transla-
tion, retaining only those triplets with a cosine sim-
ilarity exceeding 0.91. We obtain approximately
45K phrase-level triplets for the English-Hindi pair,
around 50K for English-Marathi, and about 60K
for the English-German pair.

Training Approach We employ a Curriculum
Training Strategy (CTS) for training our APE sys-
tems, similar to the approach described by Oh et al.
(2021). This strategy involves progressively adapt-
ing the model to increasingly complex tasks. The
steps of the CTS are outlined as follows.

Initially, we train a single-encoder single-
decoder model for translating between the source
and target languages using the parallel corpus.
Next, we enhance the encoder-decoder model

Experiment En-De En-Hi En-Mr
Do Nothing 68.79 38.08 64.51
Standalone-APE + BS 68.91 64.79 68.35
QE-APE + BS 69.53 66.56 69.72
Standalone-APE + GBS 69.78 66.52 69.99
QE-APE + GBS 70.04 66.91 70.47
Standalone-APE + GBS (Oracle) 70.37 66.62 70.68
QE-APE + GBS (Oracle) 70.66 67.72 71.31
Greedy 68.42 66.25 69.29
Sampling 68.43 66.43 69.56
top-k Sampling 68.35 66.60 69.84
Lopes et al. (2019) 69.52 66.66 69.89
Deguchi et al. (2024) 69.55 66.41 69.14

Table 3: BLEU scores on the respective evaluation sets
in the Oracle and non-oracle settings when different
decoding techniques are used. Unlike other techniques,
the technique proposed by Deguchi et al. (2024) is not
a decoding technique and uses information about edit
operations during the training phase.

for the English-Hindi and English-Marathi APE
systems by adding an additional encoder while
maintaining the same architecture for the English-
German APE. We train the resulting model for the
APE task using synthetic APE data in two phases
for English-Hindi and English-Marathi and one
phase for English-German. In the first phase, the
model is trained using out-of-domain APE triplets.
The second phase involves training with in-domain
synthetic APE triplets. Finally, we fine-tune the
APE model with in-domain real APE data.

E Training Details

Our APE models were trained with a batch size
of 32 and allowed a maximum of 1000 epochs,
incorporating early stopping with a patience of 5.
We utilized the Adam optimizer with a learning
rate of 5 x 10−5, where β1 is set to 0.9, and β2 is
set to 0.997. Additionally, we implemented 25,000
warm-up steps. For decoding, we used beam search
with a beam size of 5. In the QE experiments, a
batch size of 16 was employed, starting with a
learning rate of 2e−5 and using 5% of the training
data for warm-up. We also applied early stopping
with a patience of 20 steps in the QE and all MTL-
based experiments, using WandB for hyperparame-
ter searches. All experiments were conducted on
NVIDIA A100 GPUs. The APE model comprises
approximately 40 million parameters, with training
using the CTS taking around 48 hours, while the
QE model contains about 125 million parameters
and requires roughly 2.25 hours for training. For
preprocessing the English and German datasets, we
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used the NLTK library4, and the IndicNLP library5

was used for processing Marathi text. Model train-
ing and inference were carried out using Pytorch6.
To compute the TER scores, we utilized the of-
ficial WMT APE and QE evaluation script7, and
for BLEU scores, we employed the SacreBLEU8

library.

F BLEU Scores

Table 3 reports BLEU scores for the experiments
presented in Table 2.

4https://www.nltk.org/
5https://github.com/anoopkunchukuttan/indic_

nlp_library
6https://pytorch.org/
7https://github.com/sheffieldnlp/

qe-eval-scripts
8https://github.com/mjpost/sacrebleu
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