Beyond Literal Token Overlap: Token Alignability for Multilinguality
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Abstract

Previous work has considered token overlap, or
even similarity of token distributions, as predic-
tors for multilinguality and cross-lingual knowl-
edge transfer in language models. However,
these very literal metrics assign large distances
to language pairs with different scripts, which
can nevertheless show good cross-linguality.
This limits the explanatory strength of token
overlap for knowledge transfer between lan-
guage pairs that use distinct scripts or follow
different orthographic conventions. In this pa-
per, we propose subword token alignability as
a new way to understand the impact and qual-
ity of multilingual tokenisation. In particular,
this metric predicts multilinguality much better
when scripts are disparate and the overlap of lit-
eral tokens is low. We analyse this metric in the
context of both encoder and decoder models,
look at data size as a potential distractor, and
discuss how this insight may be applied to mul-
tilingual tokenisation in future work. We rec-
ommend our subword token alignability met-
ric for identifying optimal language pairs for
cross-lingual transfer, as well as to guide the
construction of better multilingual tokenisers
in the future. We publish our code and repro-
ducibility details'.

1 Introduction

Highly multilingual language models have received
plenty of research attention in recent years. Cross-
lingual alignment of representations, that is, the
similar representation of similar meanings regard-
less of input language (Libovicky et al., 2020; Him-
merl et al., 2024), as well as good downstream
cross-lingual transfer ability (cf. Huang et al., 2019;
Schuster et al., 2019; Hu et al., 2020; Pham et al.,

1https ://github.com/KathyHaem/
token-alignability
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Figure 1: Eflomal score (bottom), a measure of token
alignability, predicts downstream transfer performance
better than the previous metric of distributional token
overlap (top). The difference is especially stark for
language pairs with different scripts (e), compared to
language pairs with the same script (x). The orange
line shows the linear fit across all included pairs.

2024, etc.), have been considered desirable proper-
ties for such models. Representation alignment is
typically seen as a key contributing factor to trans-
fer ability, which in turn enables efficient handling
of numerous task-language combinations. A num-
ber of papers have asked when and why informa-
tion is shared across language boundaries in multi-
lingual models and enables cross-lingual transfer
(Dufter and Schiitze, 2020; Deshpande et al., 2022;
Limisiewicz et al., 2023; Hua et al., 2024; Schifer
et al., 2024, inter alia).
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Token overlap, i.e., the occurrence of identical to-
kens in the corpora of multiple languages, has been
shown to affect the cross-lingual capabilities of
models (Wu and Dredze, 2019). Another approach
is to compare the distributions of token literals in
parallel corpora (Limisiewicz et al., 2023). Still,
both metrics have a crucial limitation: they cannot
explain why related languages with different scripts
are well-aligned by the models (see § 2.1).

Here, we propose another angle: token alignabil-
ity. This concept captures the intuition that models
may rely on statistical correspondences between
subword tokens (‘token alignment’) that are more
nuanced than literal string matching. From token
alignments produced by a statistical word aligner,
we derive two kinds of roken alignability scores for
any language pair in a multilingual tokeniser: one
directional, one symmetrised (§ 3.2).

We compute correlations of these scores both
to downstream transfer performance on classifica-
tion and sequence labelling tasks (cf. § 3.3), and to
measures of cross-lingual alignment in the model
representations (cf. § 3.4). Our primary object
of study is a set of small encoder models trained
with several different multilingual tokenisers (BPE,
Unigram, and ‘TokMix’). Furthermore, we also
consider recent larger, pre-trained decoder models.
In addition to showing that token alignability is a
better predictor of downstream cross-lingual trans-
fer than distributional overlap (§ 4.1), we consider
the impact of pre-training data size (§ 4.2), and
show the correlation of token alignability with rep-
resentation alignment inside the model (also § 4.1).
Finally, we discuss how this insight may be applied
to future multilingual tokenisers (§ 5).

2 Related Work

Subword tokenisation is currently the standard
input processing approach of language models,
with BPE (Sennrich et al., 2016) and UnigramLLM
(Kudo, 2018) being the most common algorithms
for deriving these tokens. However, there has been
increased interest in recent years in addressing lim-
itations of the subword token paradigm (e.g., Alka-
oud and Syed, 2020; Hofmann et al., 2022; Schmidt
et al., 2024) or even moving beyond it (e.g., Xue
et al., 2022; Mofijul Islam et al., 2022).

2.1 Influence of tokenisers on cross-linguality

Most relevant for our purposes are measurements of
tokeniser properties (e.g., Zouhar et al., 2023; Bat-

suren et al., 2024), particularly for multilingual lan-
guage models. Limisiewicz et al. (2023) measure
the distance of a language pair’s token vocabulary
via divergence of the two token distributions. They
find that this kind of ‘soft overlap’ measure corre-
lates well with downstream transfer performance,
with an important caveat: the observed correla-
tions are strong for language pairs with the same
script, but weaker for pairs with different scripts.
This is because of how the metric is calculated:
The occurrences of subword tokens are counted on
each side of a parallel corpus, giving a distribution
per language. Then, Jensen-Shannon-Divergence
(JSD; Lin, 2006) is calculated, which gives a sym-
metrized distance between the two distributions of
subword tokens. The literal matching limits the
predictive power of their metric for pairs with dif-
ferent scripts—for instance, Hindi and Urdu are
known to be related languages written in different
scripts. Transfer between them works well, while
the computed distance is large.

2.2 Word Alignment in MT

Alignment, in the sense used in statistical Machine
Translation (MT) (Brown et al., 1993) is a mapping
between parallel sentences, showing which tokens
are translations of one another and how often they
correspond across whole corpora. The original
intuition behind attention is that it finds this kind
of mapping in a contextualised manner (Bahdanau
et al., 2015), whereas statistical word aligners (we
use eflomal; Ostling and Tiedemann, 2016) give a
discrete mapping.

3 Methodology

Our central analysis relies on rank correlations,
showing which tokeniser metrics (§ 3.1, § 3.2) are
more predictive of downstream cross-lingual trans-
fer (§ 3.3) and cross-lingual alignment of represen-
tations (§ 3.4). We ensure that within each task, the
metrics are always compared over the same set of
language pairs.

3.1 Distributional/Soft Overlap (JSD)

We measure soft overlap between the token distribu-
tions of two tokenised corpora. We follow the set-
ting used by Limisiewicz et al. (2023) and outlined
in § 2.1, but we compute it on the FLORES-200
corpus (Guzman et al., 2019; Goyal et al., 2022;
Team et al., 2022) for comparison with our pro-
posed metrics. This score is symmetric between
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both directions of a language pair. A lower score
corresponds to a smaller distance and is thus better.

3.2 Token alignability of a language pair

We define the token alignability score for a lan-
guage pair based on the symmetrised word align-
ment of one parallel corpus after training the tool
on another. To train the priors, we use OPUS-100
data (Tiedemann, 2012; Zhang et al., 2020) for en-
xx language pairs, and subsets of MultiCCAligned
(Tiedemann, 2012; El-Kishky et al., 2020) for non-
English language pairs. Seee Appendix A for a
breakdown of language pairs. For each training
corpus, we take up to 300k sentence pairs.

As our test corpus, we use FLORES-200
(Guzman et al., 2019; Goyal et al., 2022; Team
et al., 2022) because of its multi-parallel nature and
less noise compared to MultiCCAligned. Follow-
ing Véazquez et al. (2019), we run a statistical (dis-
crete) word aligner (specifically eflomal; Ostling
and Tiedemann, 2016) on the test corpus with a
single iteration. Based on the final symmetrised
alignment over the test corpus, we can determine:

a) The proportion of 1-1 token alignments
(higher is better), i.e., the rate of subword
tokens in the source language text with a one-
to-one correspondence to subword tokens of
the target language text. We take this measure
per direction, since it can be markedly lower
if the source language is over-segmented.

b) The eflomal score (lower is better), which rep-
resents the tool’s estimation of the “maximum
unnormalized log-probability of links in the
last sampling iteration” (Vazquez et al., 2019),
given the learned priors over the subword vo-
cabulary and corpus. We average this score
over both directions of a language pair.

3.3 Downstream cross-lingual transfer

We were able to obtain model instances with sev-
eral distinct tokenisers (BPE, Unigram, TokMix),
and results for downstream cross-lingual transfer,
from the authors of Limisiewicz et al. (2023). See
Appendix B for brief model descriptions. This
allowed us to run correlation analyses without re-
training the models, instead testing our metrics
against an existing set of experiments. The down-
stream results were obtained by fine-tuning the
models on a given source language (any of the
available languages for the task) and evaluating on
a target language, resulting in many data points.

The tasks tested are XNLI (Conneau et al., 2018),
part-of-speech tagging (POS) and dependency tag-
ging (UD) (both based on Zeman et al., 2019), and
named entity recognition (NER; Pan et al., 2017).
We always use Spearman’s rank correlation to esti-
mate the metrics’ predictive power, following the
previous work.

3.4 Cross-lingual embedding alignment

We measure cross-lingual alignment between a lan-
guage pair as retrieval accuracy on the Tatoeba
dataset (Artetxe and Schwenk, 2019) as well as the
FLORES-200 development set. Following Jones
et al. (2021), we additionally compute average mar-
gin distances on the latter, that is, how much closer
the correct match is to the source sentence than
other target-side sentences are. We do not compute
word-level embedding alignment scores.

For encoder models, we create sentence embed-
dings by feeding the sentence to the model and
averaging the encoder representations from layer
7 (with attention mask applied). The reasoning is
that the middle layers in XLM-R and similar en-
coder models, such as the ones we use, have been
found to be more cross-lingually aligned than the
output layers (e.g. Muller et al., 2021). For decoder
models, we follow Jiang et al. (2023) in using the
prompt “This sentence: {sentence} means in one
word:”, then taking the last token representation of
the last hidden layer as the sentence embedding.

4 Results and Discussion

4.1 Main results

Table 1 shows that eflomal score is better than JSD
at predicting downstream transfer performance in
the multilingual encoder models from Limisiewicz
et al. (2023). This holds across all three tokenisa-
tion types, particularly for the word-level tasks.
XNLI seems to behave differently, possibly be-
cause it is a sentence-level task in contrast with
the other three, or because it has results available
for fewer, mostly higher-resource, language pairs.
Note also that XNLI transfer results were quite low
in absolute terms.

Intuitively, JSD clusters language pairs with dif-
ferent scripts very closely together, even when they
have markedly different transfer performance (see
visualisations in App. Fig. 2-4). Eflomal score is
not confounded by the different scripts, yielding
better rankings within that group, and usually a bet-
ter overall ranking. Meanwhile, the proportion of
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eflomal

all = # all = # al = #

XNLI -.33 -57 -40 .29 .50 .21 -.45 -.60 -.38
POS -45-64-45 32 .36 .29 -.64 -50 -.64
UD -23-25-25 .16 .33 .13 -41 -.36 -.42

Task JSD one-to-one

NER -.63 -25-49 29 .35 .25 -52-21-48
(a) Unigram
JSD one-to-one eflomal

Task
all = # all = # al = #
XNLI -.55 -.45 -40 .11 .46 .05 -.44 -39 -29

POS -.17 -.65 -.08 .35 .44 .33 -49 -52 -.46
ub -16-30-.15 .18 .29 .19 -.33 -.36 -.32

NER -.51 -38 -.30 .30 .53 .28 -.57 -.25 -.52
(b) BPE
Task JSD one-to-one eflomal

al = # al = # al = #
XNLI -45 -44 -43 -.07 .34 -23 -36 -43 -22

POS -21 -.69 -.11 .11 .23 .06 -.54 -.51 -.51

uD -.18 -.17 -.16 .01 .04 -.00 -.38 -.33 -.39

NER -.38 -32-09 .11 .23 .08 -.48 -.27 -.42
(c) TokMix

Table 1: Spearman’s rank correlation of downstream
transfer with JSD, proportion of one-to-one alignment,
and eflomal score, for language pairs with the same (=)
and with a different script (#£).

one-to-one alignments shows weaker or no correla-
tion. This implies that the proportion of one-to-one
alignments may be too simplistic here, while the
eflomal score, as an estimate of log-probability,
captures more nuance.

Table 2 lists correlations of JSD and eflomal
score with three measures of embedding similarity
(retrieval on Tatoeba and FLORES-200, and aver-
age margin on FLORES-200). These results are
for the BPE model. The underlying distributions
are shown in Fig. 5. We see that JSD gives clear
correlations for all three measures in same-script
language pairs, while eflomal score correlates more
strongly on different-script language pairs.

All the correlations are much stronger on the
FLORES dataset, likely because this dataset was
used to calculate the tokeniser metrics in the first
place. We can therefore see these as a kind of
upper bound on how well the tokeniser metrics can
predict cross-lingual alignment. The fact that the
eflomal score is less predictive in the same-script
group may indicate that the model does rely on
more literal token matching when that information
is available. To the extent that the behaviour differs
from what is seen in Table 1, this underscores that
cross-lingual embedding alignment, as measured

Task JSD eflomal
all = # all = #
F1 Flores -79 -70 -.67 -.83 -.62 -.81
Avg mgn Flores -.74 -.72 -.59 -.80 -.45 -.79
Tatoeba -33 -46 -.19 -33 -27 -24

Table 2: Spearman’s rank correlation of embedding
alignment with JSD and eflomal scores, on the BPE
tokenizer/model. We show overall correlations (all),
same-script (=), and different script () pairs.

Model XNLI POS UD NER
Unigram .87 .37 .33 .34
BPE .80 37 49 .33

TokMix 81 .34 .54 .26

Table 3: Rank correlation of downstream transfer from
English with training size of the target language.

by similarity, is just one factor in the cross-lingual
transfer ability of the model.

4.2 Is data size a confounder?

Table 3 shows data size in the trained encoders
(and tokenizers), correlated with downstream trans-
fer performance from English. Here, we consider
only the pairs where English is the source language
because English is generally the most dominant lan-
guage, and there is some research suggesting that
models “work” in English (Wendler et al., 2024).
This correlates very well for XNLI, but much less
in the other tasks. Again, XNLI stands out as a
sentence-level task with fewer overall language
pairs and relatively low transfer performance, so
this result should be taken with a grain of salt. Over-
all, the correlations suggest that there is indeed a
connection between data size and transfer ability,
but data size cannot account for the whole effect.
See also Table 6 in the Appendix.

4.3 What about decoders?

We additionally experiment with Mistral-7B-v0.1,
Aya23-8B, and Llama-3-8B-Instruct, varying the
model type, as well as the amount of multilingual-
ity in pre- and post-training. For these, we cal-
culate alignability scores, JSD, and representation
alignment for a subset of language pairs. Table 4
shows rank correlation results. In Mistral, eflo-
mal is still more predictive of overall represen-
tation alignment than JSD, while in Aya23 and
Llama3, the opposite is true. This may suggest
that cross-linguality in these decoder models works
differently than in encoder models, or that they do
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Model Task JSD eflomal
all = #£ all = #
a3 I -68 .31 -73 -49 -26 -43
Y Avg mgn -.65 .31 -.67 -43 -.26 -.36
F1 -59 -26 -.45 -32 -.50 -.18
LLaMA3 Ve men =33 -.74 5021 -21 -.88 =02
Misral P! -20 =05 .16 -59 -.67 -.55

Avgmgn -22 .24 .13 -.74 -.24 -76

Table 4: Spearman’s rank correlation of embedding
alignment with JSD and eflomal scores, on decoders.
We show overall correlations (all), same-script (=), and
different script () pairs.

rely more on literal token matches for their cross-
linguality. Nevertheless, in Llama3-8B-Instruct,
the eflomal score shows an unusually high correla-
tion for same-script language pairs. Note also that
absolute retrieval performance from the Mistral and
Llama3 representations is quite low—Aya23 per-
forms better. The corresponding visualisations are
shown in Appendix C.4.

5 Future Work

We showed here that good tokeniser alignability
correlates well with crosslinguality, an important
factor for the performance of multilingual language
models. Hence, the eflomal score may be applied to
improve vocabulary learning for fairer multilingual
tokenisers (see also Ahia et al., 2024; Limisiewicz
et al., 2024). However, a naive implementation,
where alignability score is checked at every de-
cision point (merges for BPE, or pruning tokens
for Unigram), is far too intensive. Therefore, fu-
ture work in this area will require finding suitable
approximations, like calculating alignability score
difference for some fraction (e.g., on the order of
10%) of all candidate tokens at a time.

6 Conclusion

We have proposed a new metric for describing the
quality of a multilingual tokenisation, with impli-
cations for cross-lingual alignment in multilingual
pre-trained models: token alignability. This met-
ric is particularly relevant for language pairs with
different scripts and thus no literal token overlap.
We showed correlations with transfer performance
on downstream classification tasks, as well as with
measures of cross-lingual alignment. These find-
ings show the potential of our token alignability
metric to guide the development of robust multilin-

gual tokenisers and to identify suitable language
pairs for cross-lingual transfer.

Limitations

Our study has focused on a relatively small set of
models. We do not have extensive cross-lingual
transfer experiments for decoder models because
fine-tuning each model on any number of lan-
guages would take too much compute. Some of the
downstream results from the previous work (par-
ticularly for XNLI) were quite poor in absolute
terms, so they may not entirely reflect the situation
in a higher-performance model. While alignabil-
ity score for one language pair is not very time-
consuming to compute (and can be done on CPU),
the time adds up quickly for a broader set of lan-
guage pairs. In its present formulation, alignability
is also a corpus-wide score, meaning it would re-
quire reformulating for word-level tasks.
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A Languages Included

We start from a set of 20 languages, namely
the ones used by Limisiewicz et al. (2023) for
their tokenizers: Arabic (ar), Turkish (tr), Chi-
nese (zh), Greek (el), Spanish (es), English (en),
Swabhili (sw), Hindi (hi), Marathi (mr), Urdu (ur),
Tamil (ta), Telugu (te), Thai (th), Russian (ru),
Bulgarian (bg), Hebrew (he), Georgian (ka), Viet-
namese (vi), French (fr), and German (de).

This gives us up to 190 language pairs (before
accounting for direction), but we typically do not
calculate numbers for all pairs, and each down-
stream task only has data available for some subset
of the languages. We do compute all language pairs
with English as either the source or target language.
For non-English pairs, we compute token alignabil-
ity for the product of these languages: ar, tr, zh, hi,
ur, mr, ru, bg, vi, fr, es, ta, he.

B Encoder Details

The encoders were trained by Limisiewicz et al.
(2023). The models’ architecture is based on XLM-
RoBERTa (Conneau et al., 2020). The size of the
embeddings is 768, the number of attention layers
is 8, and the number of attention heads is 6. The
maximum sentence length is 128, and the vocabu-
lary size in each tokenizer is 120000. The number
of parameters is 150M, roughly half the size of
XLM-Rpyse. See Limisiewicz et al. (2023) for train-
ing details. Their training corpus was a 10% subset
of CC-100, with a balancing factor of @ = 0.25
(cf. Conneau and Lample, 2019). The model names
BPE, Unigram, and TokMix are shorthand for their
different vocabulary creation approaches. For BPE
and Unigram, they simply applied the respective al-
gorithm to the training set of all 20 languages, until
reaching the target vocabulary size of 120000. For
TokMix, they trained Unigram LM tokenisers for
each language separately, and merged them by av-
eraging token probabilities across tokenisers, then
sorting and trimming. Our own experiments with
these models were able to run on CPU.

C Additional Detail on Results
C.1 Graphs for Main Results

Figures 2, 3, and 4 visualise the distributions under-
lying Table 1. The sets of same- and different-script
language pairs are colour-coded, and the overall
correlations along with p-values are placed in the
bottom left corner of each graph. Similarly, Fig-
ure 5 shows the distributions behind Table 2.

C.2 Analysis by Language Family

Similarly to our analysis of scripts, we assign lan-
guage pairs to groups of same vs. different macro
language families. We do this because some lan-
guage families have just one representative in our
set, while Indo-European accounts for many of the
languages. We do not subdivide the macro lan-
guage families for this analysis.
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Figure 2: Unigram model: The eflomal score generally correlates better with downstream transfer than JSD. NER is
the exception. Proportion of 1-1 token alignments, while it also breaks up the cluster of different-script language

pairs, shows weaker or no correlations.

Unigram BPE TokMix

all = # all = # al = #

XNLI -.38 -.60 -.22 -.29 -34 -26 -.22 -42 -23
POS -.64 -42 -.69 -46 -23 -48 -51 -38 -.44
UD -42-30-41 -32-08 -37 -39 -33-33
NER -48 -32-52 -52-51-51 -42-33-38

Task

Table 5: Spearman’s rank correlation of downstream

transfer with JSD, proportion of one-to-one alignment,

and eflomal score. This analysis shows only language
pairs that use different scripts, further differentiated by
whether they are in the same (=) or a different (#)
language family.

Table 5 shows the correlations of eflomal
score with downstream cross-lingual transfer, over
different-script pairs. We then split by same and
different language families. In several cases, we
see very similar correlations as on different-script
pairs in general. XNLI stands out again, with pairs
from the same language family tending to be more
correlated across all tokenisers.

C.3 Data Size Correlated with Metrics

Table 6 shows the correlations of target language
pre-training data sizes with our tokeniser metrics.

JSD one-to-one eflomal
Unigram -.30 .49 -.44
BPE -.40 24 -.54
TokMix -48 .30 -.52

Table 6: Spearman’s rank correlation of the target lan-
guage pre-training data size with our metrics. Only pairs
with English as the source language are considered for
this table.

C.4 Graphs for Decoder Results

The underlying distributions of Table 4 are vi-
sualised in Figure 6 for Aya23-8B, Figure 7 for
Llama-3-8B-Instruct, and Figure 8 for Mistral.
Both in Llama3-8B-Instruct and Aya23-8B, JSD
correlates more strongly with cross-lingual align-
ment of representations, but all correlations here
are weaker than is the case in the encoder mod-
els. For Mistral, eflomal score correlates more with
cross-lingual alignment, which is in contrast to the
other two decoder models.

Also, note that Aya23 shows decent retrieval per-
formance, while the representations from Llama3
and Mistral both perform poorly on retrieval F1.
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Figure 3: BPE model: The eflomal score correlates better with downstream transfer than JSD, with the exception
of XNLI. Proportion of 1-1 token alignments, while it also breaks up the cluster of different-script language pairs,
shows weaker or no correlations.
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