
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 2: Short Papers), pages 623–640

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Auto-Cypher: Improving LLMs on Cypher generation via LLM-supervised
generation-verification framework

Aman Tiwari∗, Shiva Krishna Reddy Malay*, Vikas Yadav,
Masoud Hashemi, Sathwik Tejaswi Madhusudhan

ServiceNow Research

{aman.tiwari, shivakrishnareddy.ma, vikas.yadav,
masoud.hashemi, sathwikt.madhusudhan}@servicenow.com

Abstract

Graph databases like Neo4j are gaining pop-
ularity for handling complex, interconnected
data, over traditional relational databases in
modeling and querying relationships. While
translating natural language into SQL queries
is well-researched, generating Cypher queries
for Neo4j remains relatively underexplored. In
this work, we present an automated, LLM-
Supervised, pipeline to generate high-quality
synthetic data for Text2Cypher. Our Cypher
data generation pipeline introduces LLM-as-
Database-Filler, a novel strategy for ensur-
ing Cypher query correctness, thus result-
ing in high quality generations. Using our
pipeline, we generate high quality Text2Cypher
data, SynthCypher, containing 29.8k instances
across various domains and queries with vary-
ing complexities. Training open-source LLMs
like LLaMa-3.1-8B, Mistral-7B, and QWEN-
7B on SynthCypher results in performance
gains of up to 40% on the Text2Cypher test split
and 30% on the SPIDER benchmark, adapted
for graph databases.

Keywords: Synthetic Data, Text2Cypher, Large
Language Models, Graph Databases, Cypher Query
Generation, Knowledge Graphs, Neo4j, Natural
Language Interfaces.

1 Introduction

As the use of graph databases like Neo4j (neo,
2024) grows, converting natural language into
Cypher queries (Text2Cypher) is becoming increas-
ingly important. Cypher (Francis et al., 2018),
designed for querying and analyzing graph data,
is well-suited for applications such as social net-
works, recommendation systems, and knowledge
graphs (Ji et al., 2021). However, generating

*Co-first authors with equal contribution.
The dataset used in this work is available

at: https://huggingface.co/datasets/ServiceNow-
AI/SynthCypher.

Node properties: EnergySource {name: STRING, 
type: STRING} Utility {name: STRING, type: 
STRING} Employee {name: STRING, position: 
STRING, start_date: DATETIME, end_date: 
DATETIME, salary: INTEGER} ... [TRUNCATED]

Relationship properties: PRODUCES {start_date: 
DATETIME, end_date: DATETIME} ... [TRUNCATED]

The relationships: 
(EnergySource)-[:PRODUCES]->(Utility) 
(Utility)-[:USES]->(EnergySource) ... 
[TRUNCATED]

Shema

MATCH (e:Employee) WITH DISTINCT e.position 
AS position RETURN COUNT(position) AS 
uniquePositions

[{'uniquePositions': 2}]

How many unique positions are there among 
Employee nodes?

Simple Retrieval Queries

Natural Language Query

Synthetic Ground Truth

Query Type

Expected Cypher Query (Synthetically Generated)

Natural Language Query

Synthetic Ground Truth

Query Type

Expected Cypher Query (Synthetically Generated)

Shema

What are the top 3 assets affected by alerts 
of severity 'high' that are generated by 
incidents caused by vulnerabilities exploited 
by threats of type 'phishing'?

Multi-Attribute and Multi-Relationship 
Queries

Node properties: Threat {id: STRING, type: 
STRING, severity: STRING} Vulnerability {id: 
STRING, description: STRING, status: STRING} 
Incident {id: STRING, description: STRING, 
status: STRING} Mitigation {id: STRING, 
description: STRING, type: STRING} ... 
[TRUNCATED]

The relationships: 
(:Threat)-[:EXPLOITS]->(:Vulnerability) 
(:Vulnerability)-[:CAUSES]->(:Incident) 
(:Incident)-[:GENERATES]->(:Alert) 
(:Alert)-[:AFFECTS]->(:Asset) …
[TRUNCATED]

[{'assetId': 'asset1', 'assetName': 'Server 
1', 'assetType': 'Server'}, {'assetId': 
'asset2', 'assetName': 'Database 1', 
'assetType': 'Database'}, {'assetId': 
'asset3', 'assetName': 'Network 1', 
'assetType': 'Network'}]

MATCH (t:Threat {type: 
'phishing'})-[:EXPLOITS]->(v:Vulnerability)-[
:CAUSES]->(i:Incident)-[:GENERATES]->(a:Alert 
{severity: 'high'})-[:AFFECTS]->(asset:Asset) 
WITH asset ORDER BY asset.id LIMIT 3 RETURN 
asset.id, asset.name
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Figure 1: Example showing an input Natural Language
Query converted to Cypher Query for the given Schema. The
example on top shows an easy retrieval question while the
bottom example shows complex Multi-Attribute and Multi-
Relationship Query.

Cypher queries from natural language poses chal-
lenges due to the complexity of graph structures,
which surpasses that of relational databases. Large
language models (LLMs) have shown promise in
Text2Cypher tasks. However, unlike Text2SQL,
which benefits from extensive datasets and bench-
marks (Deng et al., 2021; Li et al., 2023; Shi et al.,
2024), resources for training LLMs to generate
accurate Cypher queries are limited.

To address these limitations, we introduce an
automated data generation pipeline specifically
designed for Text2Cypher tasks. Our proposed
pipeline generates high-quality synthetic Cypher
queries to enable supervised fine-tuning of LLMs
for Text2Cypher task, ensuring more precise nat-
ural language to Cypher translation. The pipeline
begins by generating diverse graphical schemas
across a wide range of domains and complexity.
For these schemas, we generate natural language
questions covering substantial taxonomies (such as
simple retrieval, complex aggregation, path-finding,
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etc.), which are then used to create corresponding
Cypher queries. A key feature of our pipeline is
the LLM-as-Database-Filler which generates syn-
thetic Neo4j databases. Finally, in the validation
step only executable queries that produce correct
results are retained. This results in SynthCypher,
a robust and diverse dataset for Text2Cypher tasks.

Using SynthCypher, we trained LLMs includ-
ing Qwen 2.5 (Hui et al., 2024), Llama 3.1 (Van
Der Maaten et al., 2024), and Mistral (Jiang
et al., 2023), along with their code-specialized
versions. Moreover, due to the lack of a widely
accepted benchmark for Cypher, we adapted the
SPIDER (Deng et al., 2020) benchmark, originally
designed for Text2SQL, to serve as a benchmark
for graph databases.

Our contributions are threefold: (1) We intro-
duce a pipeline for Cypher code generation that
ensures valid queries via robust validation, pro-
ducing the high-quality dataset SynthCypher with
29.8k training and 2k test samples, covering 109
query taxonomies and 700 domains. The LLM-as-
Database-Filler method generates synthetic Neo4j
databases to verify query correctness. (2) We fine-
tune state-of-the-art LLMs (Qwen, Llama 3.1, Mis-
tral) on text2Cypher tasks. Models fine-tuned with
SynthCypher show up to 40% accuracy improve-
ment on 7B & 8B models and 30% on a modified
SPIDER benchmark. (3) We adapt the SPIDER
benchmark for Cypher query generation, address-
ing the lack of Cypher benchmarks.

2 Related Work

Prior works on natural language querying of
knowledge graphs using Cypher has mostly fo-
cused on traditional NER based extraction (Liang
et al., 2021; Hains et al., 2023) or manual anno-
tation (Guo et al., 2022) approaches which make
them both limited in scope, and cumbersome to
write. LLMs have shown promising potential for
Text2Cypher task where recently, Neo4j Labs pub-
lished a GPT-4o generated dataset (tom, 2024), ini-
tiating first efforts on Text2Cypher data generation.
Importantly, this Text2Cypher data without any val-
idation steps on a limited domain set, with only
6 query types on HuggingFace (Wolf et al., 2019)
results only in 50% correctly executable cyphers.
Concurrent (peer-reviewed unpublished) Synth2C
(Zhong et al., 2024) generates Cyphers using GPT-
4o similar to Neo4j Labs as well as a templatized
pipeline with traditional NLP techniques and llm-

as-judge to validate generated cypher descriptions
against original questions. However, this technique
again does not check for execution correctness
and is furthermore limited only to Medical domain
(with datasets not publicly available).

The Text2SQL problem has been extensively
studied in the literature, with numerous bench-
marks and datasets (Zhong et al., 2017; Deng et al.,
2020; Li et al., 2024; Chang et al., 2023; Yu et al.,
2018b; Deng et al., 2022). Among these, SPI-
DER (Deng et al., 2020) is specially a prominent
dataset covering a broad range of real-world scenar-
ios. However, its real-world applicability remains
uncertain, as evidenced by the SPIDER-V2 (Cao
et al., 2024) benchmark, where GPT-4 achieves
only a 6% pass@1.

3 Data Generation Pipeline

Synthetic data generation (Xu et al., 2023; Luo
et al., 2023; Ouyang et al., 2022) have proven
highly effective. We use LLMs such as Llama 3.1
70B (Van Der Maaten et al., 2024), Mixtral 8x22B
(Jiang et al., 2024), and GPT-4 (OpenAI, 2023) to
automatically generate diverse domains, schemas,
natural language queries, and Cypher queries. Our
pipeline covers a broad range of domains and query
types, ensuring diversity across topics and diffi-
culty. From data generation to validation, all steps
are autonomously managed by models and scripts,
allowing the process to run at scale. Generated
Cypher queries are executed and validated against
expected results to ensure quality.
Step 1: Schema Generation: We begin by random
selection of the seed domains (e.g., e-commerce,
inventory management) from Neo4j (neo, 2024)
example databases. We then use Mixtral to ex-
pand these domains to cover 700 distinct domains.
A skeleton schema is generated for each domain,
outlining the nodes and relationships (Block 1 in
Figure 2). These schemas are validated with GPT-4
for correctness and manually reviewed for coher-
ence and real-world utility in 25% of cases. See
Appendix B for more details on schema generation.
Step 2: Natural Language Question and Ground
Truth Generation For each schema, we generate
questions based on 109 predefined query types,
such as “Simple Retrieval” or “Sub-Graph Queries”
(Block 2 in Figure 2). A dummy ground truth
answer for each query is also generated. In the next
stage, we fill the database with entries including
this dummy answer as the right answer for the
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Domains
e.g., ecommerce

Query Type
e.g., aggregation

Schema
(nodes and relations)

(1, 2) Query & Synthetic Ground Truth Generation (3) Python-based Neo4j Database Generation

Natural 
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generation and filling 
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Python Code
Populate empty 
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<“NL Query”,
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“Schema”>

Cypher Query
MATCH (c:Client)-[:PERFORMED]->(d:Debit)
RETURN AVG(d.amount) AS AverageDebit

Neo4j DB
<“NL Query”,

“Ground 
Truth”,

“Schema”>

Query Response
{'AverageDebit':2500.0}

<“NL Query”,
“Ground 
Truth”,

“Schema”, 
“Cypher”>

Correct

Reject X

Incorrect

(5) Validation
LLM Judge

LLM

Saved Data

Python Shell

Neo4j Engine

Figure 2: Overview of the SynthCypher data generation pipeline, illustrating domain and schema creation, query and ground
truth generation, database population, Cypher query generation, and validation steps.

question. See Appendix C for further details on
question generation and query types.
Step 3: Neo4j Database Population An empty
Neo4j database for each question is created which
is populated with synthetic data that fits the schema,
question, and ground truth. Python-based code,
generated by GPT-4, is used to create and pop-
ulate the database with nodes, relationships, and
data, ensuring consistency between the schema and
ground truth (Block 3 in Figure 2). To the best of
our knowledge, this strategy of filling the database
conditioned on a arbitrarily chosen dummy ground
truth has not been explored in literature before.
Reverse filling the database in this way enables
execution of Cypher queries to check for execu-
tion success and Cypher-code correctness. Ap-
pendix E(8,9) provides more details on the data
population process.
Step 4: Cypher Query Generation Next, the LLM
generates Cypher queries for each question (Block
4 in Figure 2). Following latest work in inference
time scaling, we allow the LLM to amply rea-
son through various aspects of the Cypher query,
such as relevant nodes, relationships, properties,
nuances of the question as well as best coding prac-
tices. This iterative chain-of-thought reasoning
process coupled with execution checks against the
synthetically filled database ensures only the high-
est quality data is generated. See Appendix F for
details on query generation.
Step 5: Validation of Cypher Queries To ensure
accuracy, we validate the generated Cypher queries
by executing them on the synthetic Neo4j database
from Step-3 (Block 5 in Figure 2). The results are
compared to the expected ground truth, and only
queries that return correct results are retained and
others retried up to 5 times before discarding. GPT-

4 is used as a judge to validate the retrieved data
against the ground-truth and ensure correctness of
the Cypher query (Prompt 14 in appendix).

At the end of this process, we have a
high-quality dataset, SynthCypher, that includes
schema, Neo4j database, natural language ques-
tions, Cypher queries, and execution results. This
dataset can be used for training and evaluating
models aimed at converting natural language into
Cypher code.

Split Dataset Count Schema Validation

Train Ours 29,838 528 ✓
Train Neo4j 7,735 15 ×

Labs

Test Ours 2,000 165 ✓
Test Neo4j - - -

Labs

Table 1: Comparison of datasets across training and testing
splits

4 Experimental Setup

Data Setup: We used our dataset consisting of
25.8k samples spanning 109 query types and 528
schemas (Table 1) for training. The 109 query
types in our SynthCypher represent diverse real-
world Cypher use cases. For testing, we employed
a separate dataset of 4k samples, covering all 109
query types across 165 schemas not included in
train. This split ensures that the model is evaluated
on a broad range of query complexities and schema
variations. As an additional test dataset, we also
adapt the popular SPIDER-SQL (Yu et al., 2018a)
for Text2Cypher by modeling each table as a node
and foreign key relationships.1

1Junction tables where all columns are foreign keys are
still modeled as nodes for ease of data filling.
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Setup Model SynCy-test SPIDER
B

as
e

IF
T

Llama-3.1-8B 30.9 30.8
Mistral v0.2 7B 31.1 38.3
Qwen2-7B 14.6 16.6
Code-Llama-7B 38.5 37.3
Code-Qwen-2.5 50.85 57.3

In
st

ru
ct

Llama-3.1-8B 40.2 37.9
Mistral v0.2 7B 27.7 25.2
Qwen2-7B 29.2 33.5
Code-Llama-7B 34.0 32.8
Code-Qwen-2.5 29.2 50.8
GPT-4o* 71 73.3

B
as

e
+

Sy
nC

y

(O
ur

s)

Llama-3.1-8B 71.4 62.2
Mistral v0.2 7B 69.4 61.3
Qwen2-7B 67.1 55.2
Code-Llama-7B 67.1 61.2
Code-Qwen-2.5 70.1 62.1

Table 2: Last block shows Finetuning when our Syn-
thCypher SFT data is mixed with UltraChat for text
models/MagiCoder for code models. *gpt4o-2024-08-
01-preview

Experiment Setup: We begin our experimen-
tation by analysing the capabilities of the current
state of the art 7B/8B models on Text2Cypher. We
initially fully finetune three general base models,
i.e. Llama 3.1 model(Van Der Maaten et al., 2024),
Mistral-v0.2-7B(Jiang et al., 2023) and Qwen-2-
7B(Hui et al., 2024), along with two code based
models CodeLlama-7B and QwenCoder-2.5-7B.
We use UltraChat-200K(Ding et al., 2023) for
instruction-finetuning (IFT) the general models
and MagiCoder-117K(Luo et al., 2023) for fine-
tuning code models. These instruction finetuned
model would highlight effectiveness of existing
IFT datasets on Text2Cypher task. Next, we also
benchmark off-the-shelf instruct versions of these
models on both SynthCypher and SPIDER-Cypher.
In our last setup, we concatenate our generated
SynthCypher data with UltraChat for finetuning
the general LLMs (LLaMa and Mistral) and with
MagiCoder for finetuning the code LLMs (CodeL-
LaMa and QwenCoder). We use learning rate of
1e-05, batch size of 128 over three epochs for train-
ing and take the best one based on a sub-sampled
validation set. To the best of our knowledge, there
is only one other dataset for this task, i.e. Tomas-
njo_gpt4o(tom, 2024) which is a created by naively
prompting GPT-4o and checking only the cypher
produces some results. The authors indicate that
only 50% of the cypher passed the test cases on a
small (27 samples) human generated benchmark.
We show comparison of Tomasnjo_gpt4o with our
subsampled SynthCypher data (to match the train-
ing size of 7.7K instances) in fig. 3. We chose our

Figure 3: Evaluation on SynthCypher and SPIDER test splits
from Llama3.1-8B fine-tuned with equal train size of down-
sampled SynthCypher (ours) data and Neo4j Text2Cypher
data.

best performing base LLM (LLaMa-3.1-8B) for
this comparison.

Metric: We use an LLM-as-a-Judge variant of
Exact Match (prompt 14), where GPT-4o assigns a
score of 1 if all requested information in the ques-
tion is present in the execution results, and 0 other-
wise.

5 Results

As shown in Table-2, our SynthCypher dataset
leads to significant improvements on both bench-
marks across models. We draw several key obser-
vations:
(1) Need of Text2Cypher datasets - Both off-the-
shelf instruct LLMs and our finetuned LLMs on
base IFT datasets achieve very low performance.
Thus, highlighting lack of Text2Cypher alignment
of code LLMs and need of more Text2Cypher IFT
datasets.

(2) Effectiveness of SynthCypher - LLMs fine-
tuned with IFT data mix containing SynthCypher
achieve 40% absolute improvement over the base
IFT datasets and 30% over off-the-shelf instruct
LLMs. These encouraging improvements highlight
effectiveness of SynthCypher and directions for
future works.

(3) SynthCypher pipeline - Comparison shown
in fig. 3 clearly highlights effectiveness of our
pipeline and SynthCypher over other existing
dataset generated using GPT-4o. This highlights
benefits of step-by-step controlled data generation
for Text2Cypher.

6 Conclusion

In this work, we highlight and address the
Text2Cypher gap in current open source models,
and introduced a novel pipeline to automatically
generate and validate high quality Text2Cypher
data. Our presented dataset SynthCypher from our

626



pipeline leads to substantial performance improve-
ments across multiple LLMs. We also provide two
evaluation benchmarks for future works in this di-
rection.

7 Limitations

While synthetic data generation strategies have
played a crucial role in open source LLM models,
these strategies may pose risks in terms of reinforc-
ing model biases, thereby resulting in a data distri-
bution that may not model real world scenarios, or
worse yet, cause real world harm (especially when
applied to social graph networks). Furthermore, we
have limited this research to smaller models and
it is not clear if the same strategy would work on
larger models.

SPIDER test dataset has been publicly released
as of Feb-2024 and it is not clear if any of that data
went into the pre-training of base models or the
Instruct models we considered.
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A Appendix-1

B Schema Generation Process

We start with a seed list of 10 domains (e-
commerce, IT Management, finance etc) as well
as the domains in the Neo4J example databases
on their website (neo, 2024). Then we prompt a
Mixtral-822B model with higher temperature (0.8)
to generate more such domains. Pooled together
this yeilds 693 schemas which are split into Train
and Test as shown in Table-1.

B.1 Nodes and Relationships
We start of by contructing a skeleton schema which
includes the nodes and relationships that are plau-
sible in the given domain. We elicit responses by
conditioning on varying number of nodes and rela-
tionships, as well as various query taxonomies to
cover a wide range of complexity in the graph as
shown in Figure-4

B.2 Final Schema
Once we obtain the nodes and relationships sets, we
come up with the full schema along with datatypes,
properties and directed edges as shown in Figure-5.
We elicit the model to reason through matching
the nodes with the generated relationships and ob-
tain a final schema. We manually vet 25% of the
schemas to ensure diversity, coherence and real
world usefulness.

C Question Generation

For every schema, 20 elicit questions at a time
from Mixtral-8*22B by sequentially conditioning
it on a randomly selected 7 query types. This en-
sured a diverse question set covering all domains
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and query types. We pass these questions through
an simple LLM validation to ensure they are not
too vague, for.e.g “How many employees report
to ’John Doe’? rather than How many employees
report to a specific manager?

D Synthetic Ground Truth Generation

For each question, we generate a dummy ground
truth, which is of the expected structure, data-type
and is plausibly true for that question. The prompt
for the same is given in Figure-7 For e.g.

Question: “What is the total sales in USD for
Apples in the California market and who made the
most sales?”

Dummy answer: {“total_sales_usd”: 10000,
“employee”: “John Doe”}

E Database Infilling

To fill the database with in such a way that the
dummy answer is the right answer for the question,
we come up with both positive (relevant to the
question, and dummy answer) and negative data
points (irrelevant to the question). The prompt is
given in Figure-8 and Figure-9. A full example is
given as well.

F Cypher Generation

We do this in four detailed steps so as to give the
model ample reasoning and planning tokens. These
include

• Analysing the user’s question - Figure-10

• Identifying the pertinent nodes, relationships,
and properties for the question. Figure-11

• Recalling the best practices and coding guide-
lines for Cypher, including performance con-
cerns. 12

• Generating the final Cypher query. 13
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Skeleton Schema Generation

You are an expert in Neo4j databases. You are given a Neo4J database name. Your job is to come
up with a possible list of nodes and relationships in the database. The nodes and
relationships should be in such a way that they could exist in a real-world scenario
based on the database name provided.

Database Name: {database_name}

INSTRUCTIONS:
You need to design {num_nodes} nodes and {num_relationships} relationships that could be

present in the database.

Relationships should be in the format of "RELATIONSHIP_NAME", i.e. all uppercase with spaces
replaced by underscores.

** The same relationship can be SHARED by different kinds of nodes. So you should design these
relationships such that they can connect various pairs of nodes. **

The nodes and releationships should be in such a way that we can ask the following kinds of
queries on them:

{taxonomies}

You MUST explain how the queries of the above taxonomies can be used in the context of the
nodes and relationships you have provided.

Return your response as JSON with the following format:
{{
"nodes": {node_examples},
"relationships": {relationship_examples}
}}

Output your result as:

Explanation: <your explanation here>

Json response: <your json response here>

Figure 4: Skeleton schema generation step using Mixtral-8*22B
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Complete Schema Generation

You are an expert in Neo4j databases. You are given a Neo4J database name.
Your job is to come up with a possible schema for nodes and relationships in
the database.

# Instructions:
- Note that the node and relationship properties can have any of the
following types:
BOOLEAN, DATE, DURATION, FLOAT, INTEGER, LIST, LOCAL DATETIME, LOCAL TIME,
POINT, STRING,
ZONED DATETIME, and ZONED TIME.

- It is important that the generated schema can be used to create queries
such as the following:
Taxonomies:
{taxonomies}
The nodes should be formatted as given in the example below.
Example: If the node is 'Person', you should write it as:
Person {{name: STRING, age: INTEGER, date_of_birth: DATETIME}}
The relationship properties should be formatted as given in the example
below.
Example: If the relationship is 'WORKS_AT', you should write it as:
WORKS_AT {{ employee_id: STRING, since: DATETIME, salary: INTEGER}}
The relationships should be formatted as given in the example below.
Example: If the relationship is 'WORKS_AT', you should write it as:
(:Person)-[:WORKS_AT]->(:Employer)

# Example:
Database Name: movies
NODES: [Movie, Person]
RELATIONSHIPS: [ACTED_IN, REVIEWED, DIRECTED, PRODUCED, WROTE, FOLLOWS]
Schema:
```
Node properties:
Movie {{title: STRING, votes: INTEGER, tagline: STRING, released: INTEGER}}
Person {{born: INTEGER, name: STRING}}

Relationship properties:
ACTED_IN {{roles: LIST}}
REVIEWED {{summary: STRING, rating: INTEGER}}

The relationships:
(:Person)-[:ACTED_IN]->(:Movie)
(:Person)-[:DIRECTED]->(:Movie)
(:Person)-[:PRODUCED]->(:Movie)
(:Person)-[:WROTE]->(:Movie)
(:Person)-[:FOLLOWS]->(:Person)
(:Person)-[:REVIEWED]->(:Movie)
```
# Task:
Database Name: {database_name}
NODES: [{nodes_list}]
RELATIONSHIPS: [{relationships_list}]

Explanation: <Explain how the nodes, releationships, and properties can be used to frame
queries

as per the taxonomies provided>.
Schema:
```
Node properties:
<your node properties here>
Relationship properties:
<your relationship properties here>
The relationships:
<your relationships here>
```
MAKE ABSOLUTELY SURE THAT SCHEMA IS IN THE ABOVE FORMAT WITH ```<schema>``` tags.

Figure 5: Complete schema generation step using Mixtral-8*22B
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Question Generation

You are an expert in Neo4j databases. I will provide you with a schema, and
your task is to generate 20 unique questions directly related to that
specific graph schema.

## Task:
Generate 20 questions that focus on the schema's nodes and relationships.

## Steps for Question Generation:
1. Analyze the Schema: Examine the provided schema and identify relevant
nodes and relationships.
Select Nodes and Relationships: Based on the query type, choose nodes and
relationships to form
the questions.
2. Generate Diverse Questions: Create 20 questions, each addressing
different aspects of the schema. Ensure no two questions are similar.
3. Cover Key Aspects: Each question should focus on distinct parts
of the schema, such as relationships between nodes, node properties, or
node types.
4. Vary Complexity: Ensure the questions range from basic to advanced,
covering various levels of query complexity.
Random Selection: Randomly select nodes or relationships when forming
each question, ensuring diversity in the coverage.
5. Specific Values: When generating questions involving values like date,
time, money, name, or location, use appropriate placeholder values
(e.g., "2024-01-01" for a date. "John Smith" for name etc). Be creative!
6. Clarity and Relevance: All questions should be clear, unambiguous, and
reflective of what a human would ask.

Important:
* Ensure each question includes all the information necessary for a
meaningful answer.
* Generate exactly 20 questions, ensuring they cover different aspects
of the schema and that
none are repetitive.

Type of query for which questions need to be generated are:
{Query Type}

Schema:
{Schema}

Figure 6: Question generation step using Mixtral-8*22B
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Synthetic ground truth generation

You are an expert in Neo4j databases and creating test data. I have a Neo4j schema and a user
query. I am creating a test dataset to validate my Neo4j Cypher queries. Your task is to
analyze both the schema and the user question to determine which nodes, fields, and
relationships are involved.

Based on your analysis, generate a dummy answer that closely mirrors what would be returned
from a Neo4j query, without any post-processing. The fields in the dummy data should
directly reflect the schema and be relevant to the user query.

**
Do not include fields unrelated to the question or absent from the schema.
**
The generated dummy data must:
- Be complete, concise, and accurate.
- Match the format returned by a Neo4j database.
- Use appropriate fields from the schema, without any unnecessary data.
- Reflect counts (votes, followers, etc.) as realistic and generally below
50, unless otherwise specified.
- Use correct ranges and units for numerical values
(e.g., convert "1 million" to "1000000").
- Ensure unique values for fields like IDs, timestamps,
or other attributes that require uniqueness in the database.

The output must be in valid, properly formatted JSON:
```json
{"Answer": <Dummy ANSWER>}
```
Before generating the answer, clearly define the nodes and relationships essential for

covering the user question. If there are multiple records in the dummy data, ensure
unique values for attributes such as IDs, timestamps, and steps.

Example user question:
Which Disney character laughed how many times, and what is their favorite color?

```json
{
"Answer": [
{

"characterid": "b92",
"characterName": "Mini",
"laughed": 100,
"favorite_color": "Red"

},
{

"characterid": "d989",
"characterName": "Jimmi",
"laughed": 10,
"favorite_color": "Blue"}]}

```
Schema:
{SCHEMA}

User Question:
{USER_QUESTION}

Figure 7: Synthetic ground truth generation step using Mixtral-8*22B
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Code plan generation for database infilling

You are an expert in writing Python code. I am working on creating test data to validate Neo4j
Cypher queries.

You will be provided with the Neo4j schema, a user question, and a ground truth answer.
Your task is to generate test case data that will populate an empty Neo4j database.

This will allow me to check if the Cypher query, based on the user's question, retrieves the
correct result as per the ground truth answer. To ensure robust validation, the data you
create must return the exact ground truth answer when queried, but the database should
also include additional "negative" data points. These negative points must not interfere
with the correct answer and will test the accuracy of the query.

Follow these steps:
Steps:
1. Analyze the User Question and Schema: Identify relevant nodes, relationships, and fields

based on the schema and user question. Understand which entities are crucial to construct
the ground truth answer.

2. Plan Data Population: Develop a structured plan that describes how the data will be
populated. Include both the ground truth data and additional negative data points.

3. Write Cypher Queries:
Provide the exact Cypher queries for:
- Creating nodes and relationships for the ground truth answer.
- Creating negative data points that do not match the answer but help ensure the test is
comprehensive.

4. Comprehensive Negative Data: For the negative data points, ensure the information is random
, and distinctly different from the ground truth. Include details like names, summaries,
and other fields, making sure the negative data does not overlap with the ground truth.

5. Limit Negative Data Points: Do not create more than 5 negative data points. This ensures
that the negative data is limited and doesn't overwhelm the test case.

6. Unique Fields for Negative Data: Fields like IDs, names, locations, or titles should be
unique, especially in negative data points. Specify which fields require unique values,
using UUIDs or similar approaches. Ensure this applies only to negative data; the ground
truth must not use UUIDs.

7. UUID Usage in Negative Data: Assign UUIDs to variables before using them in the queries for
negative data.

8. Relationship Creation: Create relationships between nodes using their IDs. Use the `MATCH`
statement before creating relationships to ensure that the nodes exist and the correct
connections are established.

9. Correct Range of Values: When populating fields like money, votes, or similar data, ensure
they align with the question. For example, if the question mentions 1 million, use
1000000; for 1.2 million, use 1200000.

Key Points to Remember:
- Order of Execution: Ensure that nodes are created before relationships.
- Use `MATCH` to verify node existence before establishing relationships.
- Correctness of Identifiers: Double-check that identifiers (like IDs) match between node

creation and relationship creation queries. For instance, if a fruit node is created with
`id = fruit1`; the same ID should be used in relationships.

For example:
```cypher
// Example for creating nodes and relationships
CREATE (fruit:Fruit {id: 'fruit1', name: 'apple'});
CREATE (juice:Juice {id: 'juice1', name: 'apple juice'});
MATCH (fruit:Fruit {id: 'fruit1'})
MATCH (juice:Juice {id: 'juice1'})
CREATE (fruit)-[:JUICED]->(juice);
```
- Ground Truth Accuracy: The ground truth answer must be present in the data.
This ensures the test works as expected, and only the ground truth will produce a valid answer

.
- Proper Relationship Creation: Ensure relationships are established correctly by matching

node IDs before creating the relationship.

Schema:
{SCHEMA}

User Question:
{USER_QUESTION}

Ground Truth Answer:
{SYNTHETIC_ANSWER_RESPONSE}

Figure 8: Code plan generation step using Gpt-4
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Python code generation for database infilling

You are an expert in writing Python code. I am developing a test set of data to verify Neo4j
Cypher queries. I will provide the Neo4j schema, user question, ground truth answer, and
a code plan. Your task is to create test case data that populates an empty Neo4j database
so that when

Cypher is executed based on the users question, it returns the correct answer from the
database.

The data must ensure that querying the DB returns only the ground truth answer for the given
question. Additionally, the database should contain negative data points that do not
satisfy the query, ensuring the robustness of the test case. Follow these steps carefully:

Steps:
1. Analyze the schema and user question: Identify relevant nodes, fields, and relationships

needed to answer the question.
2. Refer to the code plan: Follow the provided plan for structuring the data generation code.
3. Create relationships and nodes: Ensure all required relationships and nodes are generated

in the database.
4. Write the Python code in a function `create_data()`: Return a list of Cypher queries that

populate the DB to support the query validation.
5. No execution logic required: The function should return only the list of queries, not

execute them.
6. Use real timestamps: Any fields like timestamps must reflect actual values.
7. Ground truth must satisfy the query: Ensure that only the ground truth data satisfies all

conditions, and negative data does not.
8. Generate up to 5 negative data points: Each negative example should differ entirely from

the ground truth (e.g., UUIDs, random names, summaries). Ensure negative data points are
not more than five.

9. Use `MATCH` to ensure relationship correctness: Ensure relationships are created by
matching node IDs before defining relationships.

Code Writing Suggestions:
- Avoid errors with f-strings by using string concatenation or `.format()` when needed.
- Assign UUIDs to variables before using them in queries to prevent errors.
- When creating relationships, first use `MATCH` to ensure nodes exist, then define the
relationships by their node IDs.

Key Points:
- Order of execution: Ensure nodes exist before creating relationships.
- Correctness of identifiers: Verify that `MATCH` statements correctly reference nodes created

earlier.
- Consistency: Ensure the actual answer data perfectly satisfies the question, and negative

examples do not match the query.

Example:
```
// Create fruit and juice nodes
CREATE (fruit:Fruit {id: 'fruit1', name: 'apple'});
CREATE (juice:Juice {id: 'juice1', name: 'apple juice'});

// Create the "Juiced" relationship
MATCH (fruit:Fruit {id: 'fruit1'})
MATCH (juice:Juice {id: 'juice1'})
CREATE (fruit)-[:JUICED]->(juice);
```
Important:
- Relationships: Ensure relationships are properly created by matching node IDs first.
- Correctness: Only the ground truth data should match the query conditions. Negative data

should
never fulfill the query.
- Return format: Return the Python code wrapped in ```python ``` tags.

Schema:
{SCHEMA}
User Question:
{USER_QUESTION}
Ground Truth Answer:
{SYNTHETIC_ANSWER_RESPONSE}
Code Plan:
{CODE_PLAN}

Figure 9: Python code generation step using Gpt-4
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Cypher generation - Analyse user request

You are helpful and expert Neo4j and generating Cypher queries assistant.
You will be given
- Neo4j schema
- User question related to the given schema

<neo4jschema>
{SCHEMA}

</neo4jschema>

<question>
{USER QUESTION}

</question>

YOUR INSTRUCTIONS:-
You are a Neo4j expert. Follow these STEP BY STEP:

1. **Identify Nodes and Relationships**:

- Examine the schema to identify the different types of nodes (entities) and relationships
(edges) between them.

2. **Node Properties**:
- Note the properties (attributes) of each node type.

3. **Relationship Properties**:
- Note the properties of each relationship type.

4. **Indexes and Constraints**:
- Check for any indexes or constraints that might be relevant for query optimization.

5. **Break Down User Question**:
- Analyze the users question step by step, using the provided schema as grounding.
- Understand what the user needs, keeping in mind the eventual answer.
- For units like 1 million or 1 dozen, convert them to their base forms (e.g., 1 million to
1000000, 1 dozen to 12) when generating Cypher queries.

6. **Formulate the Response**:
- Use the identified nodes, relationships, and their properties to inform your understanding

of
the users question.
- Ensure that any indexes and constraints are considered when formulating your response.
- Formulate a clear breakdown of the user question and the analysis of the schema.

DO NOT GENERATE THE CYPHER QUERY, JUST FOLLOW THE GIVEN INSTRUCTIONS!

Figure 10: Cypher generation: Analyse question step using Gpt-4
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Cypher generation - Relate user request to schema

You are helpful and expert Neo4j and generating Cypher queries assistant.
You will be given
- Neo4j schema
- User question related to the given schema
- Analysis of the Neo4j schema, the nodes and the relationships, entities between them, and

the
user question.

<neo4jschema>
{SCHEMA}
</neo4jschema>

<question>
{USER QUESTION}
</question>

<schema_and_question_analysis>
{STEP 0 RESPONSE}
</schema_and_question_analysis>

YOUR INSTRUCTIONS:-
Follow these step by step:
1. Identify which nodes (entities) from the given schema are important in answering the user
question and forming the correct Cypher query. Keep track of these nodes. Whenever any kind of

ID
is present in a node, make sure to add it so the final answer includes it along with other
important properties needed to answer the question. Do not make up any properties that are not
present in the schema.
2. For all identified important nodes, list all relationships related to those nodes and

entities
individually. Do not create imaginary relationships; only consider the relationships that are
present in the schema.
3. For all identified important nodes and relationships, list and filter all properties

related
to those nodes and entities individually. Do not create imaginary properties; only consider

the
properties that are present in the schema. Whenever any kind of ID is present in a node, make
sure to add it as a property so the final answer includes it along with other important
properties needed to answer the question. Do not make up any properties that are not present

in
the schema.
4. Identify and filter out only the nodes, relationships, and properties which are important

and
relevant to answering the user's question and creating the correct Cypher query, given the
schema. List out all the important nodes, relationships, and properties that are required to
answer the user's question in the end. Whenever any kind of ID is present in a node, make sure

to
add it as a property so the final answer includes it along with other important properties

needed
to answer the question. Do not make up any properties that are not present in the schema.

DO NOT GENERATE THE CYPHER QUERY, JUST FOLLOW THE GIVEN INSTRUCTIONS!

Figure 11: Cypher generation: Relate user request to the schema step using Gpt-4
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Cypher generation - Incorporate Cypher best practices

You are helpful and expert Neo4j and generating Cypher queries assistant.
You will be given 1) Neo4j schema 2) User question related to the given schema 3) Analysis of

the Neo4j schema, the nodes and the relationships, entities between them, and the user
question.

- Filtered list of nodes, relationships, and properties which are important and relevant to
answering the user's question.
<neo4jschema>
{SCHEMA}
</neo4jschema>
<question>
{USER QUESTION}
</question>
<schema_and_question_analysis>
{STEP 0 RESPONSE}
</schema_and_question_analysis>
<important_nodes_relationships_properties>
{STEP 1 RESPONSE}
</important_nodes_relationships_properties>

YOUR INSTRUCTIONS:-
STRICTLY FOLLOWING THE GIVEN INFORMATION from <filtered_nodes_relationships_properties> and <

convoluted_relationships>, think step by step out loud and create a explicit and detailed
verbose STEP BY STEP "Cypher generation plan" for how a cypher query can be formulated
to achieve what the user wants.

Make sure to explicitly mention nodes, relationships, conditions in your plan.
You MUST NOT WRITE CYPHER STATEMENTS, but instead verbally step by step generate a plan, which

will help in forming the correct Cypher query.
During question analysis, for entites with shortforms, for example 1 million, or 1 dozen.

Represent them in numbers, for e.g. 1000000 instead of 1 million and 12 instead of dozen.

Additionally, consider all of the following:
-- conditions which are required to filter the identified nodes and relationships (WHERE)
-- aggregation functions (COUNT, SUM, AVG, MIN, MAX, COLLECT, STDDEV, VARIANCE,

PERCENTILE_CONT,
PERCENTILE_DISC, MODE, MEDIAN, ARRAY_AGG)
-- ordering (ORDER BY ASC, ORDER BY DESC)
-- limits (LIMIT, SKIP)
-- return statement, what should be returned. Avoid aggregation with RETURN statements. (

RETURN,
DISTINCT, CASE, apoc.do.when)
-- matching patterns (MATCH, OPTIONAL MATCH)
-- creating nodes and relationships (CREATE, MERGE)
[Truncated]
-- conditional operations (CASE, FOREACH, WITH, apoc.do.when)
-- union operations (UNION, UNION ALL)
-- handling indexes and constraints (CREATE INDEX, CREATE CONSTRAINT, DROP INDEX,
DROP CONSTRAINT)
-- full-text search (CALL db.index.fulltext.queryNodes, CALL
db.index.fulltext.queryRelationships)
-- pagination (SKIP, LIMIT)
-- handling transactions (BEGIN, COMMIT, ROLLBACK)

ADDITIONAL CYPHER PRACTICES YOU MUST FOLLOW STRICTLY, so make sure this is followed in you
cypher

generation plan:-
[Truncated.]

Figure 12: Cypher generation: Incorporate Cypher best practices step using Gpt-4
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Cypher generation: Final cypher generation

You are helpful and expert Neo4j and generating Cypher queries assistant.
You will be given
- Neo4j schema
- User question related to the given schema
- Analysis of the Neo4j schema, the nodes and the relationships, entities between them, and

the user question.
- Filtered list of nodes, relationships, and properties which are important and relevant to

answering the user's question.
- A comprehensive Cypher generation plan, which will help you in forming the correct Cypher

query.

<neo4jschema>
{SCHEMA}
</neo4jschema>

<question>
{USER QUESTION}
</question>

<schema_and_question_analysis>
{STEP 0 RESPONSE}
</schema_and_question_analysis>

<important_nodes_relationships_properties>
{STEP 1 RESPONSE}
</important_nodes_relationships_properties>

<cypher_generation_plan>
{STEP 2 RESPONSE}
</cypher_generation_plan>

YOUR INSTRUCTIONS:-
STRICTLY FOLLOWING THE GIVEN 'cypher_generation_plan' and other gathered given knowledge about

required nodes and relationships, your task is to write me a detailed brief on the plan
in way like what is question asking, what are the important details in schema, and other
relevant info (Assume I don't have access to the plan so I will be relying on your
writeup) and explain how you will generate the cypher then generate the syntactically
correct final cypher query, which will give the desired result, in ansering the user's
question.

Generated Cypher should be surrounded by ```cypher```.
For entites with shortforms, for example 1 million, or 1 dozen. Represent them in numbers, for

e.g. 1000000 instead of 1 million and 12 instead of dozen.

Figure 13: Cypher generation: Final cypher generation step using Gpt-4
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Execution Match - LLM-as-Judge

As an AI model, your task is to evaluate the student's answer based on the given question and
the correct answer. The student's answer may not contain all the fields mentioned in the
correct answer or vice versa, but it should address the specific elements asked in the
question. If the main elements asked in the question are correctly answered, consider it
correct.

For example:
Example_Question: "Which employees earn more than 40K in salary that live in USA?"
Example_Correct_Answer: [{{'name': 'John', 'employee_id': 1234, 'salary': 45K, 'country':
'USA'}}, {{'name': 'Adam', 'employee_id': 2763, 'salary': 90K, 'country': 'USA'}}]
Example_Student_Answer: [{{'emmployee_name': 'Adam'}}, {{'employee_name': 'John'}}]

In this example, student's answer is CORRECT because the question asks for employee and the
student gave the employee names (which uniquely determine the employees). And all the
values match. So the student's answer is correct.

For example:
Example_Question: "Which employees earn more than 40K in salary that live in USA?"
Example_Correct_Answer: [{{'name': 'John', 'employee_id': 1234, 'salary': 45K, 'country':
'USA'}}, {{'name': 'Adam', 'employee_id': 2763, 'salary': 90K, 'country': 'USA'}}]
Example_Student_Answer: [{{'emmployee_name': 'Adam'}}, {{'employee_name': 'John'}}, {{'
employee_name': 'Victor'}}]

In this example, student's answer is INCORRECT because although the student gave the requested
items, i.e, employee name, there is an additional value "Victor" which is incorrect.

Question:
{task}

Correct Answer:
{ground_truth}

Student's Answer:
{predicted}

Think step by step and finally return your final answer as: FINAL_ANSWER: CORRECT/INCORRECT

Figure 14: Execution Match - LLM-as-Judge
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