AMPS: ASR with Multimodal Paraphrase Supervision

Abhishek Gupta®* Amruta Parulekar”

Sameep Chattopadhyay Preethi Jyothi

Indian Institute of Technology Bombay, Mumbai, India
{abhishekumgupta,amrutaparulekar.iitb, sameep.ch.2002}@gmail.com, pjyothi@cse.iitb.ac.in

Abstract

Spontaneous or conversational multilingual
speech presents many challenges for state-of-
the-art automatic speech recognition (ASR) sys-
tems. In this work, we present a new tech-
nique AMPS that augments a multilingual mul-
timodal ASR system with paraphrase-based su-
pervision for improved conversational ASR in
multiple languages, including Hindi, Marathi,
Malayalam, Kannada, and Nyanja. We use
paraphrases of the reference transcriptions as
additional supervision while training the multi-
modal ASR model and selectively invoke this
paraphrase objective for utterances with poor
ASR performance. Using AMPS with a state-
of-the-art multimodal model SeamlessM4T, we
obtain significant relative reductions in word
error rates (WERs) of up to 5%. We present
detailed analyses of our system using both ob-
jective and human evaluation metrics.

1 Introduction

Automatic speech recognition (ASR) systems have
shown considerable progress in recent years but
still falter when subjected to spontaneous conversa-
tional speech containing disfluencies, loosely artic-
ulated sounds, and other noise factors (Gabler et al.,
2023). This degradation in ASR performance could
be largely attributed to the unavailability of labeled
spontaneous speech in most languages. How can
we effectively utilize the limited quantities of exist-
ing labeled spontaneous speech? Towards this, we
propose AMPS (ASR with Multimodal Paraphrase
Supervision) that augments an existing multilingual
multimodal ASR system with paraphrase-based su-
pervision to improve ASR performance on sponta-
neous speech in multiple languages.

Unlike standalone ASR models that are exclu-
sively trained to perform ASR, multimodal models
(such as SpeechT5 (Ao et al., 2022), MAESTRO
(Chen et al., 2022), etc.) are trained on multiple

“These authors contributed equally to this work.

tasks including ASR using speech and text data
in various paired (and unpaired) forms. We fo-
cus on one such multilingual multimodal model,
SeamlessM4T (Communication et al., 2023), that
consists of dual encoders for speech and text and a
shared text decoder, thus creating both speech-to-
text and text-to-text pathways.

AMPs! leverages the multimodal nature of Seam-
lessM4T by introducing a paraphrasing objective
jointly with ASR. Along with using spontaneous
speech and its corresponding transcription to train
the speech-to-text pathway in SeamlessM4T, AMPS
also uses paraphrases of the reference transcrip-
tions as additional supervision to train the text-to-
text pathway. We selectively employ paraphrase-
based augmentation during training when the ASR
loss is high (as determined by a predetermined
threshold); high ASR loss is typically triggered by
noise or poorly enunciated words in spontaneous
speech. This selective intervention offers the model
an alternate path of opting for semantically close
words and phrases when the audio is not very clear.
It is important that the paraphrases should not sig-
nificantly differ in word order from the original
transcripts, thus enabling the model to easily align
representations of speech, text, and its paraphrase.

With AMPS, we derive significant improvements
in ASR for spontaneous speech in Hindi, Marathi,
Malayalam, Kannada, and Nyanja compared to
strong ASR-only finetuned baselines. We report
improvements not only in terms of word error rate
(WER) reductions but also using semantic evalu-
ation metrics. We also conduct a detailed human
evaluation comparing the outputs of AMPS with the
outputs from finetuning only with the ASR objec-
tive and show consistent improvements in human
scores. We also present many ablations, including
different paraphrasing techniques, the influence of

!Code for AMPS is available at https://github.com/csalt-
research/amps-asr.
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varying thresholds on the performance of AMPS,
and using varying amounts of training data. We
envision that techniques like AMPS could be used
to improve ASR of atypical speech for people with
speech impairments where comprehensibility of
the transcripts is critical (more than faithfulness of
transcripts to the underlying speech, as highlighted
in very recent work by Tomanek et al. (2024)).

2 Related Work

In recent years, multimodal models for speech
recognition have gained significant recognition (Ao
et al., 2022; Chen et al., 2022; Rubenstein et al.,
2023; Zhang et al., 2023). These models are ca-
pable of processing both speech and text inputs
and can be adapted for tasks such as translation
and speech generation. A notable example is Meta
AI’s SeamlessM4T (Communication et al., 2023),
which can support nearly 100 languages. One of
the key advantages of such models is their ability to
exploit text-only training to fine-tune shared param-
eters in the ASR pipeline. Some of the recent work
on text-based adaptation for ASR models include
Vuong et al. (2023); Bataev et al. (2023); Chen et al.
(2023); Mittal et al. (2023). One potential approach
for leveraging text-only data for ASR finetuning
is through training the text decoder with a para-
phrasing objective. Emerging research (Yu et al.,
2023) has shown that text paraphrasing can be used
to augment LLM performance but we are the first
to show how paraphrases can be used to improve
ASR. Tomanek et al. (2024) is a recent study focus-
ing on meaning preservation in disordered speech
transcription, but do not offer any technique to help
improve meaning preservation in ASR outputs.

3 Methodology

AMPS scaffolds on a multimodal base model com-
prising a speech encoder, a text encoder, and a
shared decoder that takes inputs from both en-
coders. SeamlessM4T is an example of such a
model, capable of performing multiple tasks includ-
ing text-to-text translation (T2T), and speech-to-
text transcription/translation (S2T). We introduce
a new auxiliary task of text-to-text paraphrasing.
This allows the model to predict words that are
semantically similar and fit within the context of
the sentence, without significantly altering its word
order. The shared decoder architecture of Seam-
lessMA4T allows us to exploit common parameters
of both S2T and T2T pipelines and enhance the
ASR performance of the model.
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Figure 1: Multimodal AMPS.- Pipeline. AMPS.. ap-
plies a dual pass through the S2T pipeline with an ASR
objective and the T2T pipeline with a paraphrasing ob-
jective. The paraphrasing loss is only incorporated when
the ASR loss exceeds a predefined threshold.

Formally, consider a speech utterance X =
{x1,X9,...,X1 |x; € R} with its correspond-
ing transcript Y = {yi1,%2,...,yn}. For a
transcript Y, we generate a paraphrase Y' =
{v1,v5, ...,y }. Given a labeled instance
{X,Y,Y’}, the ASR, paraphrase, and the AMPS
loss functions are as follows.

N

LAsR = Z log po (vt | y<t, X),
=1

M
Loar = > _logps(y} | yer, Y),
=1

Lamvps = Lasr + Lpar-

For each batch, we pass the audio through the
S2T pathway and compute the ASR loss between
the predicted and ground-truth transcriptions. We
also pass the ground-truth transcriptions as input
through the T2T pathway with paraphrase-based
supervision to compute Lpar. Figure 1 illustrates
a schematic of our proposed architecture.

AMPS: Loss Function Thresholding. We aim
at improving the model’s performance in noisy re-
gions where the ASR loss is high by selectively
triggering the paraphrase objective only when the
ASR loss exceeds a predefined threshold 7.

Thus, the loss for the system is given by

otherwise,

if
Caves, = {EASR + Lpar  if Lasr > T, 0
ASR
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Language Evaluation Type | Direct Inference All Data Hard 100 A = AMPS,— ASR
Configuration - ASR  AMPS AMPS - ASR  AMPS, AHard AAll
WER | 38.65 21.18  21.58 20.20 | 4891 42.79 -6.12 -0.98
Marathi METEOR 1 59.84 7332 77.67 76.62 | 54.13 58.45 432 3.30
BERTScore 1 81.01 90.40  92.31 91.92 | 84.73 85.82 0.99 1.52
WER | 29.16 20.63  20.83 20.12 | 49.09 45091 -3.18 -0.51
Hindi METEOR 1 72.25 81.04 81.38 81.56 | 57.66 6091 3.25 0.52
BERTScore 1 88.55 93.60  93.65 93.76 | 84.46 85.44 0.98 0.16
WER | 56.15 42.06  42.09 39.97 | 74.86  64.66 -10.2 -2.09
Malayalam METEOR 1 43.69 60.39  60.31 62.01 3248  40.58 8.10 1.62
BERTScore 1 84.35 91.50  91.56 92.02 | 85.40 87.41 2.01 0.52
WER | 69.29 4141  40.10 39.50 | 72.23 67.58 -4.65 -1.91
Kannada METEOR 1 31.13 60.84  61.27 61.68 | 33.44 3830 4.86 0.84
BERTScore 1 76.65 89.84  90.21 90.41 82.36 85.54 3.18 0.57

Table 1: Comparing the performance of pure ASR, AMPS, and AMPS.- systems using 50 hours of training data with
round-trip translated paraphrases. Best overall scores for each metric are highlighted in

where 7 is a hyperparameter chosen based on ASR
validation losses. Henceforth, AMPS with the best
threshold will be referred to as AMPS.. 7 values
for various experiments are in Appendix A.

4 Experimental Setup

For all our experiments, we use the SeamlessM4T
multilingual multimodal model (Communication
et al., 2023). The text encoder and decoder mod-
ules are initialized using Meta’s No Language Left
Behind (NLLB) model (Team et al., 2022). The
speech encoder in SeamlessM4T uses Wav2Vec-
BERT 2.0 (Kessler et al., 2021), which is trained
on over a million hours of unlabeled speech data.
Further model details are in Appendix B.1.

Datasets. The IndicVoices dataset (Javed et al.,
2024b) is a large collection of natural speech (74%
extempore, 17% conversational and 9% read) in 22
Indic languages. Among the languages we chose,
Marathi, Kannada, and Malayalam are classified
as low-resource by SeamlessM4T (Communica-
tion et al., 2023), while Hindi is medium-resource.
IndicVoices is the only multilingual open-source In-
dian speech corpus containing spontaneous speech
and amongst the very few sources published after
SeamlessM4T’s release.” We also performed exper-
iments on Nyanja (a low-resource language from
Zambia) from the Zambezi-Voice dataset (Sikasote
et al., 2023).

We use roughly 50 hours of (predominantly con-
versational, henceforth referred to as mixed) train-
ing data for each of the four Indian languages. For

This dataset was chosen also to ensure that there was no
data leakage between the SeamlessM4T training data and the
evaluation sets.

Hindi, we also simulate a very low-resource setting
with random 5-hour samples of mixed and read
training speech. For Nyanja, we used 5 hours of
training data. (For Indic languages, our test sets
are the validation sets that are part of IndicVoices.
For Nyanja, we use the existing test set.) Given the
limited amount of training data, we use parameter-
efficient finetuning of adapter layers (Houlsby et al.,
2019) in the speech encoder and text decoder layers
of the SeamlessM4T model; more implementation
details are in Appendix B.2.

Paraphrasing. We translated the reference tran-
scriptions into English using IndicTrans-2 (Gala
et al., 2023) for the Indic languages and
NLLB (Team et al., 2022) for Nyanja before trans-
lating them back to their original languages. For
the Hindi mixed 5-hr setting, we experimented with
top-K, K = 50, and nucleus (top-P, P = 0.95)
sampling during round-trip translation to produce
more diverse paraphrases. We also explored gen-
erating paraphrases using the multilingual LLM
Aya-23 (Ustiin et al., 2024). The exact prompt
and other details are in Appendix C and D.2. We
used round-trip translation-based paraphrases for
all the 50-hour experiments due to poor-quality
LLM paraphrases for low-resource languages like
Malayalam.

Evaluation Metrics. Evaluation metrics used
were Word Error Rate (WER), METEOR and the
F1 score provided by BERTScore. More details are
provided in Appendix E.

5 Experiments and Results

Table 1 shows the main results for all the 50-hour
Indian-language experiments. AMPS,; consistently
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Paraphrase Direct Read Speech Mixed Speech
Type Inference RT Trans RT Trans LLM-Para TK+Nuc RT Trans
Language
Configuration - ASR  AMPS  AMPS, ASR | AMPS  AMPS, | AMPS  AMPS, | AMPS  AMPS,
WER | 29.16 28.19 2894 28.57 23.14 | 23.14 22.80 22.35 22.20 22.58 22.81
Hindi METEOR 1 72.25 74.36  73.58 73.91 79.10 | 78.86 78.93 79.25 79.28 79.27 79.11
BERTScore 1 88.55 90.39 89.86 90.13 92.60 | 92.59 92.78 92.89 92.90 92.63 92.62

Table 2: Comparing ASR, AMPS and AMPS; systems using 5 hours of mixed (conversational and read) speech with
round-trip translations (RT Trans), LLM paraphrasing and top-K + nucleus paraphrasing.

Language ASR  AMPS  AMPS;
Marathi 4.199 4271 4.314
Hindi 3.608  3.625 3.689
Malayalam | 3.635  3.688 3.902
Kannada 3433 3.542 3.597

Table 3: Comparison of human annotation results for
ASR, AMPS and AMPS on a scale from O to 5.

performs best compared to ASR, and the WER re-
ductions are statistically significant (at p < 0.05
using the mapsswe test).> Apart from the overall
scores in All Data, we sorted the transcriptions in
descending order of WER using pure ASR and av-
eraged metrics were calculated for both pure ASR
and AMPS.- for the first 100 (hardest) sentences.
Improvements from ASR to AMPS. for these hard-
est 100 predictions are labeled AHard in Table 1.
We see that AHard consistently exceeds AAll in-
dicating that the most improvement is observed in
cases where pure ASR performs poorly. This sup-
ports the thresholding approach that triggers the
paraphrase loss only when pure ASR predictions
fall below a threshold. From our manual inspec-
tion of Hindi samples in the hardest-100 subset,
we observe examples where pure ASR tends to
produce acoustically similar but incorrect words,
while AMPS, correctly identifies the words. For
example, pure ASR misrecognized “hua" (mean-
ing ’is’) as “ugwa" (meaning ’grows’) in a Hindi
example; AMPS,, gets this example right.

5.1 Comparing Paraphrase Techniques

Table 2 shows results from training on 5 hrs of
read/mixed Hindi speech and different paraphras-

3We also trained a variant where instances with a ASR loss
were downweighted and instances with a high ASR loss were
upweighted, thus forcing the model to focus more on the latter.
This performed comparably to our baseline ASR model.

ing techniques with mixed speech. Here, by mixed
speech, we refer to a mixture of both read and
conversational speech. Unsurprisingly, training
on mixed speech yields significantly lower WERs
compared to training on read speech. The highest
performance gains were obtained using LLM para-
phrasing for Hindi, suggesting that the LLM is a
good option for medium-resource languages like
Hindi. LLM outputs are subpar for low-resource
languages like Kannada, and hence are not an op-
tion. Comprehensive results comparing the para-
phrase techniques for other languages are given in
Appendix F and G.

5.2 Human Evaluation

The transcription capabilities of ASR, AMPS, and
AMPS; models were verified through extensive
human evaluation of the utterances with differing
model outputs. The annotators reviewed 172, 153,
216, and 229 instances for Hindi, Marathi, Kan-
nada, and Malayalam, respectively, giving a max
score of 5 for a perfect transcript and penalizing
them for minor errors (spellings, etc.) and ma-
jor errors (incorrect semantics). The annotators
were asked not to penalize a semantically identical
word that differs from the speech. More details
and scoring guidelines are provided in Appendix
H and qualitative examples are in Appendix D.1.
Table 3 shows the averaged scores with AMPS, con-
sistently performing the best across all languages.

5.3 AwmPS for Nyanja

Table 4 shows overall results* on Nyanja with 5
hours of training data and round-trip translated
paraphrases. Again, AMPS; performs the best,
showing that AMPS could be applied to diverse
languages across language families.

*Only WER and METEOR are reported. BERTScore does
not support Nyanja.
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Direct

Language Config. Inference ASR  AMPS  AMPS,
WER | 42.34 22.16 2190 21.59
Nyanja
METEOR 1 66.71 7925 7930  80.10

Table 4: Comparison of WER (%) and METEOR for
ASR, AMPS and AMPS; for 5 hours Nyanja speech with
round-trip translated paraphrases.

5.4 Conclusion

This work introduces a novel paraphrase-based su-
pervision technique AMPS to improve the ASR
performance of spontaneous speech in multimodal
models. This auxiliary supervision makes the
model more robust and helps the model general-
ize better, especially in utterances with large ASR
errors. We show significant ASR improvements
on multiple and diverse languages and further val-
idate these improvements via a thorough human
evaluation.

The broader idea of using textual supervision, as
we did with paraphrases, to improve speech under-
standing is an interesting avenue to explore further.
Future work will investigate how techniques like
AMPS could be used to improve ASR for atypical
speech. Also, we used a predefined threshold on
the ASR loss to trigger the paraphrase objective;
this could be made a learnable quantity.
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Limitations

The primary limitation of our study was the lack of
any appropriate pre-existing evaluation metric for
the task. When supervising with paraphrases, the
model often predicts semantically similar words
or phrases that do not exactly match the tran-
script, making traditional metrics like Word Error
Rate (WER) overly harsh for such cases. While
BERTScore addresses semantic similarity, recent
research suggests using LLMs to directly assess
whether sentence meaning is preserved (Tomanek
et al., 2024). In the future, we plan to adopt LLM-
based evaluation alongside human reviews to im-
prove assessment.

A second limitation was the occurrence of
transliterated English words caused minor spelling

errors in the model. We plan to mitigate this in
the future by introducing code-switched words in
our paraphrases to teach the model to associate
the transliterated English words with their Latin
script counterparts. Multilingual models like Seam-
lessM4T possess the unique ability to link semanti-
cally similar words across languages, thus compre-
hending code-switched speech easily and we aim
to leverage this ability as future work.

Additionally, the threshold value 7 is manually
defined and not a dynamic value that is learned
across languages. In future work, we plan to make
this threshold a learnable parameter.
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Appendix
A Thresholds for AMPS .-

Table 5 contains the iteratively obtained best thresh-
olds for the training sets for our experiments. In
case of inconsistency between different metrics,
the best threshold was chosen using the validation
WER for the pure ASR system.

Laneuage Read | Mixed | Mixed | Mixed Mixed
guag BT | BT BT | LLM | Top-K BT

Hours <5 50 5 5 5
Marathi 3.5 3.8 3.6 - 3.6
Hindi 32 32 3.6 3.6 3.6
Malayalam | 3.8 3.8 34 - 34
Kannada 3.8 3.6 34 - 32
Nyanja - - 3.8 -

Table 5: Iteratively obtained threshold values for all the
experimental datasets for AMPS .

B AwMPS for SeamlessM4T

For all our experiments, we used the SeamlessM4T
medium model along with IndicVoices (Javed et al.,
2024a), and Zambezi-voice (Sikasote et al., 2023)
datasets. Both the data and the models are free and
open-sourced.

B.1 Adapting SeamlessM4T

The SeamlessM4T (Medium) consists of 1.2B pa-
rameters. Full fine-tuning of these components
using limited amounts of labeled data for low-
resource languages may result in overfitting and
degradation of ASR performance. To address
these issues, parameter-efficient fine-tuning meth-
ods, such as the adapter framework, have become
widely adopted in natural language processing
tasks. Adapters have proven effective in low-
resource ASR tasks, including accent and cross-
lingual adaptation.

Formally, the operations performed in the i
speech encoder layer can be described as follows:

H=MHAM"! h"! h' 1)
C = Convolution(H)
hi = FFN(C)
h’ = Adapter(h)
Similarly, the operations in the i decoder layer
can be summarized as:
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D = MHA(d* !, 4L, d"Y)
D = MHA(d"!, h’, h)

di = FFN(D)

d’ = Adapter(d’)

Here, ¢ refers to the final encoder layer, and
MHA(Q, K, V) denotes the standard multi-head
attention mechanism (Vaswani, 2017), where Q,
K, and V are the queries, keys, and values, respec-
tively.

B.2 Implementation Details

The architecture of the SeamlessM4T medium in-
corporates a speech encoder that has 12 conformer
layers, while both the text encoder and text de-
coder consist of 12 Transformer blocks, with a
model dimension of D; = 1024. In our experi-
ments, adapters were introduced after each encoder
conformer layer and the decoder Transformer layer.
These adapters project the original D;-dimensional
features into a reduced intermediate space of di-
mension Dy, apply a GeLU non-linear activation
function (Hendrycks and Gimpel, 2023), and then
project the features back to D;. The projected
layer dimension on the adapters is Dy = 2048.
The value of Dy controls the number of trainable
parameters, with smaller values of Dy reducing
parameter count. With D5 set to half of Dy, this
setup introduced 100M trainable parameters while
keeping the rest of the model frozen.

All the fine-tuning experiments were conducted
using the SeamlessM4T codebase (Communication
et al., 2023) released by Meta Al using NVIDIA
RTX A6000 GPUs. The experiments were con-
ducted over 20 epochs, utilizing a batch size of 8
and a learning rate of 5 x 1076, All the reported
results throughout this study are based on a single
fixed random seed.

The paraphrase generation using IndicTrans2
and NLLB employs a beam width of 5, while Top-
K and Nucleus sampling utilize K = 50 and P =
0.95, respectively.

C LLM Prompts for Paraphrasing

The paraphrasing prompt given to the Aya model
for our very specific paraphrasing task has been
stated below:

Paraphrase the following sentence in lang, strictly
adhering to these guidelines:

1. Maintain the original sentence structure and
word order as much as possible.
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. Replace at least one word, and aim to replace
as many words as feasible with Hindi syn-
onyms or words with similar meanings.

. Do not add extra words or elaborate on the
description.

N

. Preserve named entities (e.g., proper names,
places) in their original form.

. Convert ALL numbers to their Hindi word
equivalents. This includes dates, years, per-
centages, and any other numerical values.

. Ensure that all replacements are common
Hindi words, avoiding obscure or highly tech-
nical terms.

. If a direct Hindi synonym is not available, use
a phrase that conveys the same meaning.

. Maintain the original tense and grammatical
structure of the sentence.

. If the original sentence contains English
words commonly used in Hindi, you may keep
them unchanged.

IMPORTANT: Double-check that NO numerical
digits remain in your paraphrase. All numbers
must be written out in Hindi words.

Examples: Some Hindi examples with the re-
quired paraphrases were provided

D Some Qualitative examples

D.1 Model Outputs

Table 6 depicts examples of phrases that were ac-
ceptable for human annotation but would have in-
curred penalties on the use of other metrics. It
can be observed that the model outputs differ from
the ground truth due to native spellings of English
words, whether compound words are connected or
not, and semantically similar but linguistically dif-
ferent words and phrases. Such errors get penalized
harshly by metrics like WER.

D.2 Paraphrases

Table 7 shows examples of sentences and their cor-
responding paraphrases generated via round-trip
translation, where word order has been preserved
to ensure semantic alignment. These were used
as a guideline to create the paraphrasing prompt
of the LLM. We require paraphrases where word
order does not change much and where synonyms
and semantically similar but linguistically different
phrases are used frequently.



Language ASR AMPS - Meaning Explanation
aaiskrim aayskrim icecream Different native spelling of english word
Marathi aplya sarkhya aplyasarkhya like ours Compound words joined together
tyoob tyub tube Different native spelling of english word
baaki kuch nahi aur kuch nahi nothing else Semantically similar phrases
Hindi bhajansangraha  bhajan sangraha  prayer collection Compound words separated
manobhavon bhavanaon sentiments Semantically similar words

Table 6: Examples of semantically similar and linguistically different phrases and words

Language Ground Truth Paraphrase
plij mala sagla informashun dya krupaya tumhi mala sarva mabhiti dya
Marathi
aani ashya bimarina rokhne aani ashya roganpasun bachav karne
draiving karte samay mobail fon ka yuj nahi kare gaadi chalate samay mobail fon ka upyog na kare
Hindi
kareer banana pasand karunga iska pramukh kaaran kareer banana chahunga jiska mukhya kaaran

Table 7: Examples demonstrating the ideal paraphrases for AMPS.

Paraphrase Evaluation Metrics

1. Word Error Rate (WER) measures the num-
ber of mistakes in transcription as a ratio of
the number of words. These errors could be
substitutions, insertions or deletions.

Substitutions+Inclusions+Deletions
WER =

Words in Reference Text )

2. METEOR (Banerjee and Lavie, 2005) is used
for evaluating of machine translation quality.
It has also previously been used for evaluat-
ing paraphrase quality(Shen et al., 2022b). It
aligns words in the candidate and reference
translations based on word level matches, in-
cluding same meaning words and stemming.

3. BERTScore (Zhang et al., 2020) evaluates
the similarity between two texts by using
BERT embeddings(Devlin et al., 2019) (Bidi-
rectional Encoder Representations from Trans-
formers). It captures contextual meaning and
semantics by computing the cosine similar-
ity between token embeddings from a refer-
ence sentence and a candidate sentence. We
used Al4Bharat’s IndicBERT (Kakwani et al.,
2020)for our BERTScores.

4. Other metrics like PARAScore (Shen et al.,

2022b), BBScore (Shen et al., 2022a), LAT-
TEScore (Tomanek et al., 2024) and ROUGE
(Patil et al., 2022) have been used in the past
for evaluation of paraphrases.

F AmPs for Read Speech

Table 8 depicts AMPS for Marathi, Malayalam,
and Kannada using all the read speech of the In-
dicVoices (Javed et al., 2024a) dataset. Training
sets of Kannada, Malayalam, and Marathi were of
duration 2.64, 2.01, and 4.84, respectively. All val-
idation sets were of a half-hour duration. It can be
observed that AMPS,; performs the best for Marathi,
Malayalam, and Kannada round-trip translated read
speech.

G 5 hour AMPS for Other languages

Table 9 depicts the two different round-trip trans-
lation methods used for AMPS for 5 hours each of
mixed Marathi, Malayalam and Kannada speech.
It can be observed that the two methods have com-
parable performance, with normal round-trip trans-
lation performing slightly better than the top-K and
nucleus (top-P) setting.

H Details of Human Evaluation

Human evaluation was outsourced to an annotation
company based in India, and INR 45 was paid for
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Paraphrase Baseline Read Speech

Language Type RT Trans
Configuration - ASR  AMPS  AMPS,
WER | 38.65 34.04 3230 31.25
Marathi METEOR 1 59.84 67.26  68.83 70.04
BERTScore 1 81.01 87.71  88.65 89.18
WER | 56.15 5538  55.17 54.58
Malayalam | METEOR 1 43.69 4585  45.59 46.22
BERTScore 1 84.35 85.72  86.01 85.99
WER | 69.29 61.86 61.3 59.64
Kannada METEOR 1 31.13 38.95  39.80 40.63
BERTScore 1 76.65 8248 8252 83.04

Table 8: Comparison of ASR performance for pure ASR,
AMPS and AMPS, with round-trip translated (RT Trans)
read-speech data for Marathi, Malayalam and Kannada

every audio. Each sentence was given a maximum
score of 5 for perfect transcription. In cases of er-
roneous transcriptions, 0.5 points were deducted
for every instance of a minor error, and 1 point was
deducted for every instance of a major error. Mi-
nor errors included small character errors or tense
changes that led to wrong grammar. Major errors
included wrong transcriptions, missed words, and
wrongly spelled native words. The annotators were
instructed to give no penalty for incomprehensible
audio, varying native spellings of English words
or proper nouns, semantically similar but linguis-
tically different words, and broken or connected
compound words.

I Paraphrase Supervision for Purely
Speech-to-Text Models

To provide a comparison for our multimodal model
technique, we propose an alternative approach
involving pretraining and finetuning for purely
speech-to-text ASR models. The hypothesis is
that training an ASR model first on speech paired
with paraphrased transcripts, followed by finetun-
ing it on speech with original transcripts, will result
in a model that is more robust to mispronuncia-
tions and noisy inputs. By learning to associate
unclear or imprecise utterances with semantically
similar phrases, this model should outperform one
trained exclusively on ground-truth labels when
evaluated on noisy test sets despite exposure to
similar amounts of data. To support our hypothesis,
we used the Whisper ASR model trained sequen-
tially using paraphrased transcripts followed by the

Paraphrase Mixed Speech Mixed Speech

Type ) RT Trans TK+Nuc RT Trans
Language
Configuration | ASR | AMPS AMPS AMPS AMPS
WER | 2470 | 24.44 24.60 24.56 2475
Marathi METEOR 1 | 76.66 | 76.80 7711 76.50 76.74
BERTScore T | 91.77 | 91.83 92.01 91.59 91.83
WER | 47.90 | 47.11 46.06 46.41 46.27
Malayalam | METEOR 1 | 5529 | 55.86 55.82 56.84 56.92

BERTScore T | 89.82 | 90.18 89.96 90.27 90.25

WER | 46.77 | 46.53 46.35 46.24 46.22

Kannada METEOR 1 | 53.77 | 54.49 54.80 54.34 54.47

BERTScore T | 87.90 | 87.78 87.92 87.86 87.99

Table 9: Comparison of ASR performance for pure ASR,
AMPS and AMPS, for normal round-trip translated
(RT Trans) and top K + Nucleus sampled round-trip
translated (TK+Nuc RT Trans) mixed data for Marathi,
Malayalam, and Kannada

ground truth, with an ASR training objective.

I.1 Whisper

Whisper (Radford et al., 2022), developed by Ope-
nAl, utilizes a transformer-based encoder-decoder
framework suitable for a range of speech-related
tasks. The model comprises an audio encoder that
processes raw audio inputs, transforming them into
log-mel spectrograms. This input is fed into mul-
tiple transformer layers designed to capture long-
range dependencies within the audio data. The
text decoder, operating autoregressively, generates
transcriptions from the processed audio features
while integrating task-specific tokens for seamless
task-switching among any auxilliary tasks.

1.2 Experiment and Results

The Whisper model was trained sequentially with
5-hour round-trip translated read speech data in
three different ways - training with ground truth
training followed by paraphrased training, para-
phrase training followed by ground truth training,
and finally, ground truth training repeated twice.
The WER (%) values for Hindi read speech were
87.68 for direct inference, 42.33 for ground truth -
ground truth training, 47.34 for paraphrase - ground
truth training and 43.78 for ground truth - para-
phrase training. Since pure ground truth training
WER is the best, we chose not to proceed with
this experiment as this strongly supports that multi-
modality of a model is essential for AMPS.
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