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Abstract

Developing video captioning models is com-
putationally expensive. The dynamic nature
of video also complicates the design of multi-
modal models that can effectively caption these
sequences. However, we find that by using
minimal computational resources and without
complex modifications to address video dynam-
ics, an image-based model can be repurposed
to outperform several specialised video cap-
tioning systems. Our adapted model demon-
strates top-tier performance on major bench-
marks, ranking 2nd on MSR-VTT and MSVD,
and 3rd on VATEX. We transform it into a
competitive video captioner by post-training
a typical image captioning model BLIP-2 with
only 6,000 video-text pairs and simply concate-
nating frames—significantly fewer data than
other methods, which use 2.5 to 144 million
pairs. From a resource optimization perspec-
tive, this video captioning study focuses on
three fundamental factors: optimizing model
scale, maximizing data efficiency, and incorpo-
rating reinforcement learning. This extensive
study demonstrates that a lightweight, image-
based adaptation strategy can rival state-of-the-
art video captioning systems, offering a practi-
cal solution for low-resource scenarios.

1 Introduction

Vision-language pretraining significantly advances
multimodal tasks such as captioning, question an-
swering, retrieval and broader video understand-
ing (Liu et al., 2023b,a; Li et al., 2023b; Dai et al.,
2023a; Chen et al., 2023b; Kuo et al., 2023; Xu
et al., 2023; Diao et al., 2023, 2024, 2025; Zhang
et al., 2022a; Liu et al., 2024; Han et al., 2024; Jian
et al., 2023, 2024). Among these, video caption-
ing stands out as it narrates visual concepts and
their temporal interactions, reflecting the intricate

∗Equal contribution and random order.

multimodal processes as humans to perceive and
articulate dynamic visual experiences.

Current video-text methods often incorporate
intricate designs tailored to video inputs. For in-
stance, some models extend existing frameworks
by integrating frame samplers to capture temporal
dynamics (Alayrac et al., 2022; Yang et al., 2021;
Xu et al., 2021). Other approaches, such as AL-
PRO (Li et al., 2022a) and VIOLET (Fu et al.,
2023), propose end-to-end models that are metic-
ulously trained on large-scale video-text datasets
sourced from the Web (Zellers et al., 2021; Bain
et al., 2021). Despite their success, video caption-
ing models remain highly resource-intensive, often
hitting performance bottlenecks when (i) compu-
tational resources are constrained, or (ii) the task
requires specialized priors without clear guidance
for model design and training. This raises a critical
question: for simplicity and efficiency, how can
we repurpose existing image captioning models
for video captioning, without relying on com-
plex, hand-crafted video-specific designs?

To address this, we revisit fundamental factors
in training—model scale, data efficiency, and su-
pervision—that critically influence video caption-
ing while being agnostic to the variants of video-
specific designs: First, we find that moderate-sized
language models (LMs) when fine-tuned for spe-
cific tasks, can meet the demands of video caption-
ing efficiently. This challenges the common belief
that larger models are always superior, demonstrat-
ing that targeted optimization can outperform sheer
model size. Second, using extensive pretraining on
image-text pairs, as demonstrated with BLIP-2, is
transferable to video tasks. This allows the model
to achieve high performance with minimal video us-
age, offering an efficient alternative to training from
scratch. Third, instead of relying on traditional
cross-entropy loss, we optimize directly for non-
differentiable CIDEr with reinforcement learning,
ensuring that the generated captions better align
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Figure 1: Key factors in recycling BLIP for video captioning: Model – assessing the scale and trainability of
components like the ViT, LLM, and Q-Former; Data – examining the volume, quality, and fusion strategies for
image and video-text pairs; Supervision – employing reinforcement learning to align generated captions with
human language quality standards (CIDEr).

with human-standard video descriptions.
By bypassing complex, specialized video input

designs, our experiments demonstrate that BLIP-2
straightforwardly derived from image captioning,
can be effectively optimized to deliver competi-
tive video captioning performance. This study
underscores the potential of simplicity and effi-
ciency in advancing multimodal video caption-
ing, providing a streamlined yet stable solution.
The codes are released: https://github.com/
chunhuizng/mllm-video-captioner.

2 Recycling BLIP-2 for Video Captioning

As shown in Fig. 1, we adapt BLIP-2, a typical
image-text model (details in App. B), for video
captioning without any additional parameters. Each
video frame is encoded by ViT, which generates
visual tokens that are concatenated to form a unified
representation (e.g., an 8-frame video produces a
token sequence of size 8×256). This unified token
sequence is then processed by the Q-former and
passed to the LM to generate captions.

3 Training Recipes: Model, Data, and
Supervision

According to Tab. 1, our solution has top-level per-
formance on important benchmarks (particularly
on the CIDEr metric-the primary ranking measure
on Paperswithcode), ranking 2nd on MSR-VTT
and MSVD, and 3rd on VATEX, among models
with publicly available code. More importantly, it
proves to be highly efficient without any video ar-
chitecture design, using only 6k video-text pairs—
significantly less than the million-level datasets
required by competing baselines.

Additional background is in App. A. The settings
are detailed in App. C, and further experiments
(ablations, other datasets, and other video tasks)
supporting the following analysis are in App. D.

3.1 Model Scale

Trainability: modal connector > LLM > ViT
To evaluate the adaptability of various components
within the video captioning model, we conducted
ablation studies using three setups: training all com-
ponents, freezing the ViT only, and training the
Q-Former only. The results, illustrated in Fig. 2(a)
and supported by training curves in Fig. 4 (see
App. D.1.1 for detailed discussions), reveal a clear
performance hierarchy: freezing the ViT (config-
urations ii and iii) yields higher performance than
training all components (configuration i).

Configurations with a frozen ViT allow the Q-
Former and LLM to effectively leverage the pre-
trained visual features, leading to better alignment
in video captioning tasks. Conversely, training the
ViT alongside other components introduces poten-
tial overfitting and alignment issues, resulting in
suboptimal performance. The analysis establishes
a hierarchy of trainability: Q-Former > LLM >
ViT. The Q-Former shows the highest adaptability
during training, followed by the LLM, which bene-
fits from fine-tuning language data. In contrast, the
ViT demonstrates the least trainability, as updating
its parameters often disrupts the alignment between
visual features and language output.

Supporting figures indicate that the Q-Former
configuration achieves the most stable performance,
reaching peak validation CIDEr scores without sig-
nificant overfitting (Fig. 4). This pattern aligns with
additional observations in App. D.1.1, confirming
that focusing on training the modal connector and
LLM while freezing the ViT optimizes the model’s
performance on video captioning tasks.

Mid-sized LLMs offer trainability for video
captioning We analyzed the impact of LM size
on video captioning by comparing three models:
OPT-2.7B, Flan-T5-XL-3B, and Vicuna-7B (see
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Model
MSR-VTT (Xu et al., 2016) MSVD (Chen and Dolan, 2011) VATEX (Wang et al., 2019)

Code
# msr v.-
t. pairsC. M. R. B4. P. C. M. R. B4. P. C. M. R. B4. P.

IcoCap 60.2 31.1 64.9 47.0 - 110.3 39.5 76.5 59.1 - 67.8 25.7 53.1 37.4 - No -

MaMMUT 73.6 - - - 77.5 195.6 - - - 85.6 - - - - 79.9 No -

VideoCoCa 73.2 - 68.0 53.8 - - - - - - 77.8 - 54.5 39.7 - No 144.7M

VALOR 74.0 32.9 68.0 54.4 81.0 178.5 51.0 87.9 80.7 83.7 95.8 29.4 57.4 45.6 73.3 Yes 1.18M

VLAB 74.9 33.4 68.3 54.6 - 179.8 51.2 87.9 79.3 - - - - - - No 10.7M

GIT2 75.9 33.1 68.2 54.8 75.4 - - - - - - - - - - Yes -

VAST 78.0 - - 56.7 77.2 - - - - - 99.5 - - 45.0 81.9 Yes 27M

mPLUG-2 80.0 34.9 70.1 57.8 82.7 165.8 48.4 85.3 70.5 82.5 - - - - - Yes 2.5M

Ours 79.5 34.2 68.3 52.4 81.2 168.0 48.3 85.8 73.5 84.4 87.1 29.1 56.7 43.3 82.1 Yes 6K

Table 1: Overall comparison. The results for MSR-VTT, MSVD, and VATEX are from the PaperswithCode
open leaderboard. The abbreviations C., M., R., B4., and P. stand for CIDEr, METEOR, ROUGE-L, BLEU-4,
and PAC-S (Sarto et al., 2023), respectively. We choose CIDEr as the most referential metric, following the
PaperswithCode. Tab. 2 has details about configs and references.
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Figure 2: Comparisons of different setups for models on the MSR-VTT dataset: (a) freezing modules, (b) scales of
LLMs, (c) usage of image-text pairs in pretrained BLIP-2, and (d) supervision with and without SCST. We also
replicate the comparisons and ablations on other datasets (e.g., MSVD and VATEX) in App. D.4.

Fig. 2(b) and Fig. 5). The BLIP-2 framework was
selected for its state-of-the-art performance on the
MSCOCO image captioning benchmark, which re-
mains the most canonical dataset for captioning
evaluation. The chosen language models—OPT-
2.7B, Flan-T5-XL-3B, and Vicuna-7B—are all ex-
tensively used within BLIP-2 for vision-language
tasks and represent a range of architectures and pa-
rameter sizes. Their open-source nature and com-
munity adoption further enhance their relevance
and comparability in this domain. The results
demonstrate that Flan-T5-XL-3B, a mid-sized
model, achieves superior performance in gen-
erating video captions, outperforming both the
smaller OPT-2.7B and the larger Vicuna-7B on
key metric CIDEr. This challenges the notion that
larger LMs always yield better results in multi-
modal tasks.

Training dynamics further support the advan-
tages of mid-sized LLMs. As shown in Fig. 5,
the smaller OPT-2.7B model requires 20 epochs to
reach peak performance and fails to overfit, indi-
cating limited expressiveness. On the other hand,
Vicuna-7B converges rapidly within 5 epochs but
quickly shows signs of overfitting, suggesting that
its added complexity may not translate into mean-
ingful improvements for video captioning. Flan-T5-

XL-3B strikes a balance, reaching peak validation
within 14 epochs and maintaining a better trade-off
between generalization and overfitting.

These findings and training procedure analysis in
App. D.1.2 indicate video captioning tasks benefit
more from models capable of descriptive process-
ing rather than advanced conversational or reason-
ing abilities. Thus, mid-sized LMs like Flan-T5-
XL-3B effectively balance trainability, efficiency,
and performance in video captioning tasks.

3.2 Data Efficiency

Image-Text pretraining offers transferability to
video tasks We examine the effect of image-text
pretraining on video captioning by comparing the
performance of two BLIP-2 models pre-trained on
different dataset sizes: one on 129 million pairs (of-
ficially released) and the other on 4 million pairs
(reproduced in-house). As depicted in Fig. 2(c),
the model pre-trained with 129M pairs achieves a
significantly higher CIDEr score (71.3) compared
to the model trained with only 4M pairs (65.7), un-
derscoring the advantages of using a larger dataset.

Fig. 6 (in App. D.2.1) further reveals that the
model trained on 129M pairs converges faster and
achieves higher performance than the model trained
on fewer pairs. This suggests that video captioning

294



20

40

60

80

CIDEr METEOR ROUGE-L BLEU-4

Average Concat

Comparison of fusion mechanisms

20

40

60

80

CIDEr METEOR ROUGE-L BLEU-4

224 x 224 364 x 364

Train with videos in different resolutions

Figure 3: (a) temporal fusion by average v.s. concatena-
tion; (b) different resolutions.

tasks require robust grounding, with larger datasets
significantly enhancing the model’s ability to map
visual concepts to language.

These results further underscore the effi-
ciency of reusing extensively pre-trained image-
text models for video tasks. Large-scale data ex-
posure improves the model’s comprehension of
visual content, making it more suitable for generat-
ing accurate video captions. For a detailed analysis
of the training process, refer to App. D.2.1.

Lower resolution efficiently supports video cap-
tioning We examined the impact of video resolu-
tion on training video captioning models by com-
paring two settings: 224×224 and 364×364. As
shown in Fig 3(b) and 7, models trained with lower-
resolution videos (224×224) achieve competitive
performance compared to those trained with higher
resolution (364×364), despite exhibiting slightly
more fluctuating training curves.

The results reveal that when basic frame aggrega-
tion techniques such as averaging or concatenation
are used, lower resolution proves to be not only
sufficient but also more efficient for generating ac-
curate captions. The competitive CIDEr obtained
with 224×224 resolution indicates that coarse vi-
sual information is adequate for the model to per-
ceive and generate descriptive captions effectively.

Moreover, Fig. 7 demonstrates that while higher
resolution (364×364) can lead to more stable train-
ing dynamics, the benefits are minimal when so-
phisticated frame aggregation is not applied. These
findings suggest that adopting lower resolution of-
fers practical advantages, including reduced com-
putational requirements, without compromising
captioning performance. For further insights, see
the detailed analysis in App. D.2.2.

Frame concatenation effectively captures tem-
porality We evaluate two approaches for tempo-
ral fusion in video captioning: frame averaging
and frame concatenation. Frame averaging com-
putes the average of visual tokens across sampled
frames, maintaining a fixed dimension. In contrast,
frame concatenation extends the token sequence
by concatenating visual tokens from each sampled

frame, preserving more granular temporal infor-
mation. These fused tokens are subsequently pro-
cessed by the Q-Former for caption generation.

The training dynamics, illustrated in Fig. 8 and
Fig. 3 (a), show that models using frame concatena-
tion consistently outperform those using frame av-
eraging on CIDEr. The model with frame concate-
nation reaches peak validation performance around
epoch 8 (Fig. 8), indicating that this method effec-
tively retains temporality. In contrast, frame aver-
aging shows significant performance oscillations
after epoch 5, suggesting that it fails to capture
sufficient temporal details for stable training.

These findings indicate that frame concatenation
is more effective for capturing temporal informa-
tion in video captioning, as it retains detailed visual
context across frames. This approach allows the
LM to access a richer set of visual concepts, result-
ing in more accurate and coherent captions. For
additional analysis, see App. D.2.3.

3.3 Training Supervision

Reinforcement learning aligns captioning with
human preference Traditional video captioning
methods often rely on cross-entropy loss, which
fails to fully align with human preferences for
natural sentence generation. To address this, we
use SCST (Rennie et al., 2017), which directly
optimizes toward the human-like CIDEr metric.
SCST leverages policy gradients from the non-
differentiable CIDEr objective to guide updates to
the Q-Former, LLM, and LoRA layers, enhancing
alignment with human evaluation standards.

Fig. 2(d) and 9 show that SCST improves CIDEr
scores by approximately 6.5% for Flan-T5-XL-3B
and 3.4% for Vicuna-7B, while also boosting other
metrics such as METEOR and ROUGE-L. Addi-
tionally, Fig. 9 illustrates a decoupling effect be-
tween training loss and validation CIDEr; models
trained with SCST achieve higher CIDEr scores
despite fluctuations in training loss. This shift re-
flects a prioritization of metrics aligned with human
judgment over mere loss minimization.

The smaller improvement for Vicuna-7B likely
results from its prior alignment training, which al-
ready incorporates reinforcement-based methods.
Overall, SCST effectively aligns the training pro-
cess with human-centered metrics, demonstrating
its value for improving video captioning models.
See App. D.3 for further details.
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4 Discussion and Conclusion

This study stands out from existing video caption-
ing research by identifying three factors—model
scale, data efficiency, and training supervision—
that are critical for effectively adapting image cap-
tioning models to video tasks. By using these in-
sights to reuse the image-based BLIP-2 model for
video tasks, our solution with minimal resource us-
age ranks 2nd, 2nd, and 3rd on MSR-VTT, MSVD,
and VATEX. This open-source guide provides a
foundation for future research aimed at optimizing
resource allocation in video captioning and refining
post-training techniques.

Limitations

Our open-source solution is currently tailored
specifically for video captioning tasks due to the
page constraints of this short track. While this
focus allows for a detailed and resource-efficient
guide, it has not shown immediate applicability to
other tasks. However, the methods presented can
still be extended to broader applications, in par-
ticular to facilitate large-scale pseudolabeling for
videotext datasets.

This approach is particularly valuable in spe-
cialized domains where annotated data is scarce,
providing an efficient way to significantly expand
video-text data resources. Similar to how the
LAION dataset has advanced the image-text field
by leveraging BLIP-1 for large-scale pseudolabel-
ing (Li et al., 2022b; Schuhmann et al., 2022), our
work aims to bring comparable improvements to
video-text integration, enabling further research
and development in this area.
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A Related Work and Background

Image-Text Models Large-scale pretraining has
revolutionized the field of image-text models, en-
abling significant advances. Models such as
CoCa (Yu et al., 2022) and SimVLM (Wang et al.,
2022b), which are trained from scratch on billions
of image-text pairs, have set new benchmarks in
generative tasks such as open-ended visual question
answering (VQA) and visual captioning. BLIP-2
addresses the computational demands of pretrain-
ing from scratch by reusing existing pre-trained pa-
rameters from Vision Transformer (ViT) and LLMs
and integrating them with a frozen pre-trained state.

298

https://arxiv.org/abs/2212.04979
https://arxiv.org/abs/2212.04979


A key innovation in BLIP-2 is the introduction of
the Q-former connector, carefully designed to en-
hance the interaction between visual and language
modalities (Li et al., 2023b). This methodology has
inspired subsequent innovations in visual-lingual
tuning, with newer models often incorporating
the pre-trained Q-former alongside the eva-vit-g
model from BLIP-2, demonstrating the lasting im-
pact of this methodology (Dai et al., 2023b; Zhu
et al., 2024; Yang et al., 2024; Li et al., 2023c).

Video-Text Models Video-text models typically
extend the capabilities of image-text models by
integrating temporal feature aggregation to cap-
ture dynamic content, as exemplified by Video-
CoCa (Yan et al., 2022). In addition, special-
ized models such as Video-LLaMA enhance the
processing of temporal dynamics by embedding
multiple temporal Q-former layers, facilitating nu-
anced interactions across modalities. Such ad-
vances refine the synergy between video Q-formers
and LLMs within the model architecture, build-
ing on the foundation of BLIP-2 (Zhang et al.,
2023). Building on these developments, recent
studies, including VideoChat, PandaGPT, Valley,
and Video-ChatGPT, investigate the embedding of
frozen LLMs into video LMs, pushing the bound-
aries of the field (Li et al., 2023c; Su et al., 2023;
Luo et al., 2023; Muhammad Maaz and Khan,
2023). In our study, we use BLIP-2 as a basic
model for captioning, first pre-trained on images
and then adapted to video by incorporating a video
frame merging mechanism that effectively captures
temporal nuances. This simplicity allows us to fo-
cus on evaluating the effects of model size, data
volume, and training strategies on video captioning
performance as we scale.

Difference between Image and Video Caption-
ing The fundamental difference between image
and video annotation stems from their source in-
puts: image annotation processes a single static im-
age, while video annotation requires an understand-
ing of the temporal dynamics over a sequence of
frames. When adapted to video, pre-trained image
models such as GIT (Wang et al., 2022a), Video-
CoCa (Yan et al., 2022), and IcoCap (Liang et al.,
2023) show remarkable adaptability to video with
only moderate modifications, demonstrating their
transferability. Conversely, video-specific models,
including Video-LLaMA (Zhang et al., 2023) and
VideoChat (Li et al., 2023c), use different sam-
pling techniques to effectively capture temporal

dynamics. Furthermore, models such as ALPRO
(Li et al., 2022a) and VIOLET (Fu et al., 2023)
utilize extensive web-crawled datasets to achieve
end-to-end training, enriching their learning pro-
cess. In our study, instead of emulating the complex
adaptations typical of specialized video models, we
adopt a streamlined approach that uses averaging or
concatenation to merge temporal information from
sampled video frames. This method allows us to
focus on evaluating the effects of model size, data
volume, and training strategies on video captioning
performance as we scale.

B Preliminary

To effectively analyze the impact of specialized
video adaptations without the confounding effects
of architectural design variations, we base our
methodology on BLIP-2, a basic image captioning
model. We then describe the rationale for selecting
BLIP-2 for our study.

Architecture of BLIP-2 BLIP-2 is originally de-
signed to convert images into captions through
a simple pipeline consisting of three main com-
ponents: Vision, Connector, and Language:
(i) Vision ViT serves as the entry into the BLIP-
2 architecture, encoding images into a series of
visual tokens. For example, a 224×224 im-
age is transformed into 256 different visual to-
kens, laying the foundation for subsequent process-
ing; (ii) Modal connector Q-former, positioned
between ViT and LLM, bridges the gap between
visual and language modalities. Its primary func-
tion is to project the sequence of the visual tokens
generated by the ViT into a format compatible with
language processing. A distinctive feature of the
Q-former is its ability to condense the visual to-
ken array to a predetermined size, typically 32
tokens, regardless of the original number. This
token reduction is not simply a numerical compres-
sion, but involves a sophisticated transformation
into a language modality, resulting in so-called soft
prompts. These soft prompts, now in tensor form,
are then passed to the LLM for caption generation;
(iii) Language LLM is responsible for generating
the textual captions. It interprets the soft prompts
from the Q-former and weaves them into a coherent
caption that accurately reflects the visual content.
This step is the culmination of the BLIP-2 pipeline,
which transforms visual input into descriptive lan-
guage.
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Rationale for Choosing BLIP-2 as the Base
Model In the field of vision language genera-
tive learning, many pre-trained image-based vision
LMs are possible candidates besides BLIP-2, such
as the LLaVA series, miniGPT-4, OpenCoCa, and
OpenFlamingo, each offering different capabilities
and features. Given the wide range of options avail-
able, our selection of pre-trained BLIP-2 is guided
by specific criteria:

First, LLaVA uses a linear projection layer to
project visual tokens from ViT and then feeds the
projected tokens into LLMs. However, this lin-
ear projection layer keeps the visual tokens con-
sistent, which means that this connector does not
compress the visual token into fewer numbers. Al-
though this redundant representation format does
not meet the efficiency bottleneck on a single im-
age as we extend the input modality to a single
video containing multiple frames, it may exhaust
the maximum token length capacity of an LLM.
In contrast, BLIP-2 can reduce the number of to-
kens for each image/frame to a fixed number (e.g.,
32). This efficient design avoids placing additional
significant demands on the token length capacity
of an LLM. Second, mini-GPT4, an instruction-
tuned BLIP-2, also uses a linear projection layer
to project visual tokens from ViT and then feeds
the projected tokens into LLMs. Therefore, it also
faces a similar limitation as LLaVA: when pro-
cessing video frames, mini-GPT4’s LLM token
capacity also quickly hits a forward-backward bot-
tleneck, limiting the number of frames that can
be effectively captioned. Third, while Flamingo
is easily adapted to video data due to its cross-
modal attention design, its open-source reproduc-
tion, OpenFlamingo, underperforms BLIP-2 ac-
cording to Li et al. (2023b)’s experiments. Third,
Flamingo’s design, which features cross-modal at-
tention, facilitates its straightforward adaptation to
video data; however, experiments conducted by Li
et al. (2023b) imply that OpenFlamingo, an open-
source version of Flamingo, does not perform as
well as BLIP-2. Therefore, compared to LLaVA
and mini-GPT4, BLIP-2 can be easily applied to
video data to process multiple frames by averag-
ing or concatenating the tokens of multiple frames
(with a short length for the token of each frame, e.g.
32 tokens). We find that the BLIP-2 is character-
ized by its generality and simplicity, making it par-
ticularly well suited to the task of video captioning.
Its design allows for minimal modification, allow-
ing us to focus on the core factors that contribute to

the effectiveness of video captioning models. This
strategic choice is consistent with our goal of isolat-
ing and understanding the key elements that drive
effective video captioning.

C Additional Experimental Details

C.1 Setup
Video Dataset Overview Our study uses the
MSR-VTT dataset (Xu et al., 2016), a compre-
hensive open-domain video captioning resource. It
includes 10,000 video clips across 20 different cat-
egories, with each clip annotated with 20 unique
English sentences by contributors via Amazon Me-
chanical Turk. The dataset contains approximately
29,000 different words within the captions. For
our experiments, we adhere to the conventional
dataset partitioning: 6,513 clips for training, 497
for validation, and 2,990 for testing.

Training Configuration Training is conducted
on eight NVIDIA RTX A6000 GPUs, utilizing the
MSR-VTT dataset. Optimization is performed us-
ing the AdamW algorithm, with a setup that in-
cludes a weight decline of 0.05, an initial learning
rate of 5× 10−5, and a minimum learning rate of
1 × 10−5. The models are trained with a batch
size of 32 over 32 epochs, with learning rate adjust-
ments governed by a cosine annealing scheduler.

C.2 Model Information
Our video captioning model uses the image pre-
trained BLIP-2 as its foundation. The BLIP-2
model itself is initially trained from scratch us-
ing the MSCOCO (Lin et al., 2014) and Cap-
Filt (Li et al., 2022b) datasets, with additional
data from the pseudo-labeled Conceptual Caption-
ing (Sharma et al., 2018), SBU (Ordonez et al.,
2011), and LAION (Schuhmann et al., 2022) col-
lections. Our study employs ViT (eva-vit-g re-
leased from (Fang et al., 2023)) due to its proven
effectiveness. In the realm of LM decoders,
we investigate the capabilities of OPT (Zhang
et al., 2022b), Flan-T5 (Chung et al., 2022), and
vicuna-7b (Chiang et al., 2023), as the large pre-
trained LM decoders have shown their capabili-
ties (Zhang et al., 2024). To adapt BLIP-2 for video,
we utilize bert-base-uncased for the q-former ar-
chitecture, maintaining parameter consistency with
the image-trained version of BLIP-2. Additionally,
we implement a frame token concatenation mech-
anism for aggregating temporal information from
videos without increasing the parameter count. We
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provide the detailed structures, pre-train data, and
language backbones in Tab. 2.

D Training Analysis and Results on Other
Datasets

D.1 Model Scale

D.1.1 Trainability: modal connector > LLM
> ViT

Fig. 4 presents the training curves of the video cap-
tioning model on MSR-VTT for different module
freezing configurations: (a) ViT frozen, (b) only Q-
Former trainable, and (c) all components trainable.
The curves highlight the differences in trainabil-
ity between the modal connector (Q-Former), the
LLM, and the vision transformer (ViT).

The training curves indicate that setting (b),
where only the Q-Former is trainable, shows
the most stable performance, reaching peak val-
idation CIDEr at epoch 14 without significant
overfitting. In contrast, when additional compo-
nents are trainable—such as the LLM in setting (c)
or the ViT in setting (a)—the models reach peak
performance earlier, at 6 and 4 epochs, respectively,
but exhibit rapid overfitting afterward. This pattern
suggests that increasing the number of trainable
components complicates the optimization process,
leading to quicker convergence but also accelerated
overfitting. Consequently, setting (b) achieves the
highest test CIDEr score (73.6), followed by setting
(c) (73.0), and setting (a) (68.4).

Training the LLM also proves to be effective
for video captioning, as reflected by the higher
CIDEr score in setting (c). LLMs benefit from
extensive pre-training on structured text, which
enhances their ability to reason and assemble con-
cepts. This capability allows them to align seam-
lessly with other modalities and reorganize visual
inputs into coherent captions, making them a cru-
cial component for video captioning tasks.

In contrast, training the ViT module ap-
pears suboptimal (or even counterproductive)
for video captioning, as shown by the lower perfor-
mance in setting (a). While large-scale pre-trained
vision models like CLIP can capture fine-grained
visual details, they often lack the structured rep-
resentations necessary for composing visual infor-
mation into coherent descriptions. This limitation
affects the ability of the model to generate accu-
rate captions when the ViT is a primary trainable
component.

D.1.2 Mid-sized LLMs offer trainability for
video captioning

To validate the advantages of mid-sized LLMs, we
present the training dynamics for three different
LM sizes in Fig. 5. The training curves indicate
that larger models converge more quickly: OPT-
2.7B requires 20 epochs to reach peak performance,
Flan-T5-XL-3B takes 14 epochs, and Vicuna-7B
converges in just 5 epochs. Although OPT-2.7B
undergoes the longest training process, it fails to
overfit the data, indicating limited model complex-
ity. In contrast, both Flan-T5-XL-3B and Vicuna-
7B show signs of overfitting soon after reaching
peak performance, reflecting their greater model
expressiveness for the video captioning task.

Flan-T5-XL-3B, with fewer parameters than
Vicuna-7B, demonstrates sufficient complexity
for video captioning tasks while requiring less
computational power. Its moderate size avoids the
additional burden of excessive parameters, leading
to a more balanced and efficient learning process.
In conclusion, mid-sized LMs, such as Flan-T5-
XL-3B, provide the optimal balance of trainabil-
ity and complexity for video captioning, offering
more efficient learning and better performance
compared to their larger counterparts.

D.2 Data Efficiency

D.2.1 Image-Text pretraining offers
transferability to video tasks

Fig. 6 illustrates that BLIP-2, when pre-trained
on a larger image-text dataset (129M pairs, offi-
cially released by the BLIP-2 group), converges
faster and achieves a higher performance limit
compared to the model trained with 4M image-
text pairs. This difference suggests that video
captioning, while not as demanding in reasoning
as tasks like VQA, still requires a strong ability to
understand and describe visual content accurately.
Extensive exposure to large-scale image-text data
significantly improves the model’s grounding pro-
cess, enabling it to better understand and articulate
visual content in video tasks. Thus, pre-training on
extensive image-text datasets enhances the model’s
ability to map visual concepts from the vision do-
main to the language domain, making it more ef-
fective for video captioning. These results further
highlight the effectiveness of reusing extensively
pre-trained image-text models for video captioning
tasks.
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Model # pretrain
image-text

#video-text Vision
Backbone

Language
Backbone

IcoCap (Liang et al., 2023) - - CLIP-V Transformer

MaMMUT (Kuo et al., 2023) 1.8B - ViT Transformer

VideoCoCa (Yan et al., 2022) 3B 136M+8.7M CoCa-V CoCa-T

VALOR (Chen et al., 2023a) 1.18M 1.18M CLIP-V/VideoSwin BERT

VLAB (He et al., 2023) 5M+12M 10.7M ViT giant Transformer

GIT2 (Wang et al., 2022a) 12.9B - CoSwin Transformer

VAST (Chen et al., 2023b) - 27M ViT BERT

mPLUG-2 (Xu et al., 2023) 14M 2.5M ViT-L/14 BERT-L

Ours 129M 6K EVA-ViT-G Flan-T5-XL

Table 2: The number of pre-train image-text and video-text pairs, vision backbone, and the language backbone for
each video captioning model.
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Figure 4: Training curves of the video captioning model on MSR-VTT, with different module freezing configurations.
The vision backbone is ViT, and the language backbone is FLAN-T5. The curves represent three settings: (a) ViT
frozen, (b) only Q-former trainable, and (c) all components trainable.
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Figure 5: Training curves of a video captioning model with different sizes of LLMs. (a), (b), and (c) show training
curves of LLMs with sizes 2.7B, 3B, and 7B respectively.

D.2.2 Lower resolution efficiently supports
video captioning

Fig. 7 compares the training dynamics of mod-
els using different video resolutions, showing that
higher resolution videos (364×364) exhibit slightly
more stable performance when combined with a
stronger frame aggregator. However, when the
video frame aggregator is not highly sophisti-
cated, lower resolution (224×224) proves to be
efficient and effective, providing sufficient vi-

sual information for the model to perceive and
generate accurate captions. These findings indi-
cate that lower resolution is not only sufficient but
also more efficient for video captioning, especially
when using basic frame aggregation techniques.

D.2.3 Frame concatenation effectively
captures temporality

Fig. 8 illustrates the training dynamics for two fu-
sion mechanisms: frame concatenation and aver-
aging. The model using concatenation reaches
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Figure 6: Training curve of a video captioning model
with different sizes of pre-trained image-text pairs. (a)
and (b) show training curves of models pre-trained with
4M and 129M image-text pairs respectively.
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Figure 7: The training dynamics of a video caption-
ing model with videos in different resolutions. (a)
and (b) shows training curves of models trained with
videos in 364×364 (up-sampling from original resolu-
tion 320x240 from MSR-VTT) and 224×224 respec-
tively.
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Figure 8: The training dynamics of a video caption-
ing model with different fusion mechanisms for video
frames. (a) and (b) show training curves of models that
adopt the average and concatenation mechanisms re-
spectively.

peak validation performance at epoch 8, suggest-
ing that the complex visual tokens retain suffi-
cient temporal information for effective learning.
In contrast, the averaging mechanism demonstrates
weaker performance, with significant oscillations
after epoch 5, indicating that it fails to provide
enough temporal information for stable training.
These results indicate that frame concatenation is
essential for effectively preserving temporal in-
formation, making it a more suitable approach
for capturing visual concepts in video caption-
ing.

D.3 Training Supervision

D.3.1 Reinforcement learning aligns
captioning with human preference

Fig. 9 shows the training dynamics for the Flan-
T5-XL-3B and Vicuna-7B models with and with-
out Self-Critical Sequence Training (SCST). The
plots illustrate how SCST affects the relationship
between training loss and validation CIDEr score.
When SCST is applied, the training loss shows
more variation, but the validation CIDEr score re-
mains higher compared to models without SCST.
For example, Flan-T5-XL-3B with SCST achieves
a validation CIDEr score of about 0.82 despite in-
creasing training loss, while Vicuna-7B with SCST
maintains a CIDEr score of about 0.77.

Without SCST, both models follow a more con-
ventional pattern where a steady decrease in train-
ing loss corresponds to a plateau in validation per-
formance. In contrast, SCST introduces a decou-
pling effect: fluctuations in training loss are no
longer directly correlated with changes in vali-
dation CIDEr, suggesting that SCST promotes
learning focused on optimizing human-centered
metrics. These results show that reinforcement
learning via SCST effectively aligns the training
process with human evaluation standards, prioritiz-
ing high-quality label generation that aligns with
human judgment over simply minimizing training
loss.

D.4 Experiments on MSVD and VATEX
dataset

The ablation results on the MSVD and VATEX
dataset are provided in Fig. 10 and 11. The ex-
periments on the MSVD and VATEX dataset are
primarily aligned with the analysis based on MSR-
VTT presented in Sec. 2, App. D.1, D.2, and D.3.

Fig. 10 and 11 present detailed comparisons of
different training setups for video captioning mod-
els on the MSVD and VATEX datasets. We use
Fig. 10 as the example, and the results provide the
following key patterns across four configurations:

• Module freezing (Fig. 10(a)): The results
show that freezing various modules has a sig-
nificant impact on performance. Models with
no frozen components achieve the highest
CIDEr scores, indicating the benefit of fine-
tuning all parts. However, freezing both LLM
and ViT results in the lowest performance,
suggesting that the trainability of the connec-
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(d)Figure 9: The training dynamics for the model when trained with/without SCST in LLM.
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Figure 10: Comparative analysis of different training setups for video captioning models on MSVD dataset: (a)
freezing modules, (b) scales of LLMs, (c) amount of pre-trained image-text pairs, and (d) models trained with and
without SCST.

tor (Q-Former) and LLM is essential for opti-
mal fitting.

• LLM scales (Fig. 10(b)): Moderate-size
LLMs, such as the Flan-T5-XL-3B, provide
strong performance across all metrics. Al-
though larger models such as Vicuna-7B offer
slight improvements, the gains are modest,
likely reflecting MSVD’s higher text quality
requirements. This finding supports the use
of mid-range LLMs as a balanced choice for
video captioning tasks.

• Pre-training of image-text pairs (Fig. 10(c)):
Models pre-trained on larger datasets (129M
image-text pairs) outperform those trained
on smaller datasets (4M pairs), especially
in terms of CIDEr scores. This result un-
derscores the importance of extensive pre-
training for capturing diverse visual-linguistic
relationships and improving video captioning
performance.

• SCST (Fig. 10(d)): Applying SCST improves
the model’s ability to generate human-like cap-
tions by optimizing directly for the CIDEr
metric. Models trained with SCST show no-
ticeable improvements in all evaluation met-
rics, highlighting its effectiveness in aligning
speech generation with human preferences.

Overall, the ablation results confirm that flexible
tuning of the connector and LLM components is
critical for adapting image-text models like BLIP-2
to video captioning tasks. While moderate-sized

Category MSRVTT-QA MSVD-QA

Module Trainability
All modules trainable 18.1 36.2
Unfreeze Q-former only 23.9 38.8
Freeze ViT only 22.5 38.5

RL to Human Standard
SCST Disabled 23.9 38.8
SCST Enabled 24.1 41.0

Pretrained Image-Text Pairs
129M 23.9 38.8
4M 18.8 36.2

Language Model Size
OPT-2.7B 16.5 35.7
FLAN-T5-XL-3B 23.9 38.8
Vicuna-7B 20.2 38.5

Table 3: Top-1 accuracy comparison for different con-
figurations on MSR-VTT and MSVD VQA datasets.

LLMs offer a balanced trade-off between perfor-
mance and computational efficiency, extensive pre-
training on large datasets significantly improves
model performance. In addition, reinforcement
learning via SCST effectively improves the quality
of generated captions by aligning the training goal
with human-centric evaluation metrics.

D.5 Experiments on MSR-VTT and MSVD
Video Question-Answering Datasets

The experiments on video question-answering
(VQA) tasks using the MSR-VTT and MSVD
datasets are summarized in Table 3. We extend
the instruction tuning recipe from LAVIS (Li et al.,
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Figure 11: Comparative analysis of different training setups for video captioning models on VATEX dataset: (a)
freezing modules, (b) scales of LLMs, (c) amount of pre-trained image-text pairs, and (d) models trained with and
without SCST.

2023a) and InstructBLIP (Dai et al., 2023b) by
30K steps to test whether our findings from video
captioning are applicable to VQA. The results in
Table 3 show that many of the patterns observed
in video captioning extend well to video question
answering:

• Similar to video captioning, keeping more
modules trainable leads to better performance.
Specifically, models with all components
trainable achieve the highest top-1 accuracy,
while freezing only the ViT results in lower
performance. This underscores the impor-
tance of fine-tuning all components for effec-
tive adaptation to VQA tasks.

• Applying SCST slightly improves the model’s
ability to generate human-like responses by
directly optimizing the metrics used in scor-
ing. This is consistent with our findings in
video captioning, where SCST helped im-
prove CIDEr scores by aligning model outputs
with human preferences.

• The use of moderately sized LLMs, such as
FLAN-T5-XL, achieves strong performance
on both datasets. Although larger models,
such as Vicuna-7B, provide slight improve-
ments, the gains are modest, suggesting that
mid-range LLMs also provide a good bal-
ance between accuracy and computational ef-
ficiency for VQA.

• Similar to video captioning, extensive pre-
training on large datasets (129M image-text
pairs) leads to better performance than on
smaller datasets (4M pairs). This reinforces
the importance of diverse visual-linguistic pre-
training for improving generalization in both
video captioning and VQA tasks.

Overall, our experiments show that the key find-
ings from our video captioning experiments are
transferable to video question-answering tasks.

The tuning of trainable Q-formers and LLMs, the
reuse of extensive image-text pre-trained BLIP-2,
and the use of reinforcement learning all contribute
to improving the performance of video-based mod-
els across tasks. This transferability suggests that
our summarized guidelines provide a basic but gen-
eral handbook for building effective multimodal
models for video captioning and potentially even
other extended tasks.
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