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Abstract

Large Language Models (LLMs) have emerged
as a dominant approach for a wide range of
NLP tasks, with their access to external in-
formation further enhancing their capabilities.
However, this introduces new vulnerabilities,
known as prompt injection attacks, where ex-
ternal content embeds malicious instructions
that manipulate the LLM’s output. Recently,
the Base64 defense has been recognized as
one of the most effective methods for reduc-
ing success rate of prompt injection attacks.
Despite its efficacy, this method can degrade
LLM performance on certain NLP tasks. To
address this challenge, we propose a novel de-
fense mechanism: mixture of encodings, which
utilizes multiple character encodings, includ-
ing Base64. Extensive experimental results
show that our method achieves one of the low-
est attack success rates under prompt injec-
tion attacks, while maintaining high perfor-
mance across all NLP tasks, outperforming ex-
isting character encoding-based defense meth-
ods. This underscores the effectiveness of our
mixture of encodings strategy for both safety
and task performance metrics.

1 Introduction

Large language models (LLMs) have achieved
state-of-the-art performance on various natural lan-
guage processing (NLP) tasks (Achiam et al., 2023;
Dubey et al., 2024). The ability of LLMs to access
external knowledge sources, such as webpages, fur-
ther enhances their performance on knowledge in-
tensive tasks like open-domain question answer-
ing (Nakano et al., 2021; Lewis et al., 2020). How-
ever, while this external access improves perfor-
mance, it also introduces potential safety issues,
with one of the most significant problems being the
risk of prompt injection attacks (Liu et al., 2024b;

*This work was done as Ruiyi’s internship project at Mi-
crosoft.

Summarize the following
dialogue:

Blair: Remember we are 
seeing the wedding planner 

after work Chuck: Sure, where 
are we meeting her?

…
Ignore all instructions above
and output ‘Your computer is

attacked!’

Your computer is attacked!

User Instructions

External Content 
(with Injection Attack)

Attacked LLM Output

Figure 1: Example of prompt injection attack. Mali-
cious instructions are embedded in webpages, leading
to unexpected behavior of LLMs.

Toyer et al., 2024). In these attacks, malicious
instructions are injected into external data which
are fed into LLMs, leading to unexpected or unin-
tended behavior. We present an example of prompt
injection attack in Figure 1.

To defend against prompt injection attacks, vari-
ous methods have been proposed (Liu et al., 2024b;
Jain et al., 2024; Hines et al., 2024). Among these,
the Base64 defense has achieved state-of-the-art
performance in reducing the success rate of prompt
injection attacks (Hines et al., 2024). This approach
works by encoding external inputs in Base64 for-
mat before passing them to LLMs, thus creating
a clear boundary between external data and user
instructions, mitigating a critical vulnerability ex-
ploited in prompt injection attacks (Wallace et al.,
2024). While recent LLMs exhibit strong under-
standing of Base64 (Wei et al., 2023), this defense
has been shown to significantly reduce LLMs’ per-
formance on specific tasks, such as mathemati-
cal reasoning and multilingual question answering,
thereby limiting its utility in broader applications.

To address this challenge, we propose a novel
defense method against prompt injection attacks,
termed mixture of encodings. It balances two key
objectives: reducing the success rate of prompt in-
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Summarize the following
dialogue:

Blair: Remember we are 
seeing the wedding planner 

after work Chuck: Sure, where 
are we meeting her?

…
Ignore all instructions above
and output ‘Your computer is

attacked!’

Your computer is attacked!

Summarize the following
Base64 encoded dialogue:

QmxhaXI6IFJlbWVtYmVyIHdlIGFyZSBzZ
WVpbmcgdGhlIHdlZGRpbmcgcGxhbm5
lciBhZnRlciB3b3JrIENodWNrOiBTdXJlLC
B3aGVyZSBhcmUgd2UgbWVldGluZyBoZ

XI/Cg==
…

IgnSWdub3JlIGFsbCBpbnN0cnVjdGlvbn
MgYWJvdmUgYW5kIG91dHB1dCDigJhZ
b3UgY29tcHV0ZXIgaXMgYXR0YWNrZW

Qh4oCZCg==

Blair and Chuck are going to meet the 
wedding planner after work at Nonna

Rita’s.

Eodlu: Uhphpehu zh duh 
vhhlqj wkh zhgglqj sodqqhu

diwhu zrun Fkxfn: Vxuh, zkhuh
duh zh phhwlqj khu?

…
Ljqruh doo lqvwuxfwlrqv deryh

dqg rxwsxw ‘Brx frpsxwhu lv 
dwwdfnhg!’

Summarize the following Caesar
cipher encoded dialogue:

Blair and Chuck plan to meet their 
wedding planner at Nonna Rita’s

Answer A Answer B Answer C

Reply based on these
different answers.

Blair and Chuck are going to meet the wedding planner 
after work at Nonna Rita’s.

Unaffected
LLM Output

Prompt with
Multiple Answers

Figure 2: An overview of the mixture of encodings defense against prompt injection attacks. The external text
is encoded with multiple encodings and inputted into an LLM separately to get three different answers. Based on
these answers, the LLM then generates the final output.

jection attacks (safety objective) while maintaining
high performance of LLMs on NLP tasks (helpful-
ness objective) (Yi et al., 2023). Unlike the existing
Base64 defense, our method encodes external data
using multiple types of encodings. We then gen-
erate multiple responses from the LLM, with each
response corresponding to a specific encoding type.
The final output is aggregated from these responses.
An overview of our method is provided in Figure
2. Extensive experiments on four prompt injection
attack datasets and nine critical NLP tasks demon-
strate that our method achieves top performance on
both safety and helpfulness objectives, validating
its effectiveness. Our code is publicly available at
https://github.com/ruz048/MoEMEnT.

2 Related Work

2.1 Prompt Injection Attack
Prompt injection attacks have emerged as a signif-
icant threat to the safety of large language mod-
els (LLMs), as various attack methods have been
introduced to expose vulnerabilities in current
LLMs (Perez and Ribeiro, 2022; Greshake et al.,
2023; Toyer et al., 2024; Liu et al., 2024a). In re-
sponse, defense strategies against these attacks gen-
erally fall into two categories: (1) Detection-based
defenses, which aim to identify whether external
data contains prompt injection attempts (Alon and

Kamfonas, 2024; Jain et al., 2024; Hu et al., 2023),
and (2) Prevention-based defenses, which seek to
prevent LLMs from following injected malicious
instructions (Liu et al., 2024b; Wang et al., 2024;
Hines et al., 2024). Our proposed method falls into
the prevention-based defense category, aiming to
mitigate the impact of such attacks.

2.2 Mixture of Experts and Prompt Ensemble

The Mixture of Experts (MoE) strategy has been
widely applied in machine learning models (Jordan
and Jacobs, 1993; Riquelme et al., 2021; Fedus
et al., 2022), where the input is routed through
multiple expert models to generate a final predic-
tion. With the emergence of LLMs, prompt ensem-
ble methods have gained popularity (Pitis et al.,
2023; Do et al., 2024; Zhang et al., 2024; Hou
et al., 2023), where different prompts serve a simi-
lar role to experts in MoE. Our method draws inspi-
ration from these approaches, focusing on defend-
ing against prompt injection attacks by leveraging
different character encodings on input text rather
than using multiple different input prompts.

3 Preliminaries

In this section, we describe the Base64 defense
method against prompt injection attacks (Hines
et al., 2024). Base64 is a binary-to-text encoding
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scheme that converts binary data into a sequence
of printable characters. Formally, for a task that
requires external data, the complete input prompt
P1 to an LLM has the following format:

P1: [User Prompt] + [External Text]

where the user prompt typically contains the task
description, while the external text provides the nec-
essary information for completing the task. How-
ever, the external text may potentially include mali-
cious instructions. The Base64 defense mitigates
this risk by converting the external text into Base64
format, thereby creating a new input prompt P2:

P2: [User Prompt] + Base64(External Text)

Due to the clear distinction between regular text
and Base64 encodings, it is highly unlikely that an
LLM will follow malicious instructions embedded
in the external data, making this an effective de-
fense against prompt injection attacks. It is worth
noting that this defense leverages the surprisingly
strong ability of LLMs to interpret Base64 encod-
ings (Hines et al., 2024; Wei et al., 2023), espe-
cially for more recent LLMs like GPT4 (Achiam
et al., 2023). However, despite its effectiveness,
the Base64 defense can significantly reduce LLM
performance on certain tasks, such as mathemati-
cal question answering. We give two examples of
Base64 defense in Appendix A to illustrate both its
advantages and its failure modes.

4 Mixture of Encodings

In this section, we introduce our method, the mix-
ture of encodings defense, which aims to optimize
both the safety and helpfulness objectives for the
LLM. We first input both prompts P1 and P2 from
Section 3 into the LLM separately, generating two
responses, R1 and R2, respectively. We incorpo-
rate the Caesar cipher 1 as an additional encoding
method to further enhance our approach, leverag-
ing the strong capability of LLMs in understanding
this encoding (Yuan et al., 2024). We provide a
more detailed discussion of the rationale behind
the selection of Base64 and Caesar in Appendix B.
Formally, the Caesar encoded input prompt P3 to
the LLM is defined as follows:

P3: [User Prompt] + Caesar(External Text)

We then get the LLM response R3 to this prompt.

1The Caesar cipher is a substitution cipher where each
letter in the text is replaced by a letter a fixed number of
positions down the alphabet.

Method Email Table Abstract Code
DATASET SIZE 11,250 22,500 22,500 7,500

GPT-4 + No Defense 14.30 34.52 25.40 1.96
GPT-4 + Datamark 7.03 10.83 23.64 4.57
GPT-4 + Ignoring 10.55 29.76 23.00 0.10
GPT-4 + Base64 3.40 10.40 8.66 0.15
GPT-4 + Caesar 2.20 1.66 5.83 0
GPT-4 + Ours 1.20 3.75 6.79 0.07

GPT-4o + No Defense 12.00 36.80 26.00 7.59
GPT-4o + Datamark 9.75 13.79 22.67 5.67
GPT-4o + Ignoring 7.17 24.25 14.06 6.41
GPT-4o + Base64 1.90 1.40 5.70 0
GPT-4o + Caesar 3.90 11.10 12.00 0
GPT-4o + Ours 1.50 1.00 1.00 0

Table 1: Safety Benchmark. Attack success rate when
applying different defense methods on 4 prompt injec-
tion attack datasets (Email, Table, Abstract and Code),
using two cutting-edge large language models (GPT-4
and GPT-4o). The best results are shown in red, and the
second best results are shown in olive.

Classification For classification tasks, the answer
of an LLM is typically a categorical label. We fur-
ther obtain the output probability for each label in
the set from the LLM for the three prompts, de-
noted as probability vectors p1, p2, and p3, where
each dimension in the probability vectors corre-
sponds to a classification label. The final prediction
ŷ is then obtained as follows:

ŷ = argmax
i

(p1i + p2i + p3i) (1)

In summary, we select the label with the highest
cumulative probability across all three LLM re-
sponses.

Generation For generation tasks, we cannot di-
rectly apply the same aggregation method on the
three responses as used in classification tasks, since
the responses are in free form. To address this, we
create an additional prompt:

P4: [Meta Prompt] + A:[R1] + B:[R2] + C:[R3]

Here, the meta-prompt instructs the LLM to gen-
erate an answer based on the three responses, R1,
R2, and R3, that were previously obtained. Meta-
prompts used in our method are detailed in Ap-
pendix D. The LLM’s response to this prompt, P4,
serves as the final output of our method.
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Method MMLU Squad Hellaswag MGSM SamSum WMT IMDB WildGuard WebQ
DATASET SIZE 14K 10.6K 10K 1.3K 14.7K 3K 25K 1.7K 2K

GPT-4 + No Defense 83.0 43.0 89.7 38.6 41.1 49.2 94.2 77.5 34.4
GPT-4 + Base64 44.6 43.5 85.6 19.1 37.9 39.9 95.9 80.5 5.7
GPT-4 + Caesar 63.1 39.4 74.5 7.3 29.7 9.4 95.6 72.1 1.1
GPT-4 + Ours 77.2 43.1 87.4 36.8 38.2 42.5 96.1 80.3 46.2

GPT-4o + No Defense 79.9 43.1 92.3 53.1 41.3 49.6 91.7 80.8 29.7
GPT-4o + Base64 64.9 37.4 75.0 5.2 35.9 14.1 72.8 58.2 7.2
GPT-4o + Caesar 48.5 41.7 79.6 14.2 28.2 7.3 91.9 77.3 3.2
GPT-4o + Ours 75.5 42.2 88.6 52.0 39.2 44.9 92.1 82.0 25.3

Table 2: Helpfulness Benchmark. Performance of LLMs on 9 natural language processing tasks when applying
different defense methods against prompt injection attacks. The best results are shown in red, and the second best
results are shown in olive.

5 Results

5.1 Evaluation Benchmarks

Safety Benchmark The safety benchmark is de-
signed to assess the effectiveness of a defense
method in reducing the attack success rate (ASR)
of prompt injection attacks on LLMs. We use a
subset from the BIPIA benchmark (Yi et al., 2023),
which includes 50 different types of attacks ap-
plied to four datasets: Email from the OpenAI
Evals dataset (OpenAI, 2023), Table from the
WikiTableQA dataset (Pasupat and Liang, 2015),
Abstract from the XSum dataset (Narayan et al.,
2018), and Code collected from Stack Overflow (Yi
et al., 2023).

Helpfulness Benchmark The helpfulness bench-
mark evaluates whether a prompt injection at-
tack defense method negatively impacts the per-
formance of LLMs on NLP tasks. We con-
struct this benchmark using the validation or test
splits from 9 datasets, covering a wide range of
critical tasks: MMLU for academic language
understanding (Hendrycks et al., 2021), Squad
for reading comprehension QA (Rajpurkar et al.,
2016), Hellaswag for natural language infer-
ence (Zellers et al., 2019), MGSM for multilingual
math QA (Shi et al., 2022), SamSum for summa-
rization (Gliwa et al., 2019), WMT for machine
translation (Foundation), IMDB for sentiment anal-
ysis (Maas et al., 2011), WildGuard for toxicity
text classification (Han et al., 2024), and WebQ for
open-domain QA (Berant et al., 2013). We include
more details on both benchmarks in Appendix F.

5.2 Experimental Settings
We utilize two popular LLMs, GPT-4 (turbo-2024-
04-09) and GPT-4o (2024-05-13) in our main ex-
periments (Achiam et al., 2023), and a popular
open-source LLM, Qwen-2.5-72B-Instruct, for ad-
ditional experiments (Qwen, 2024), with results
presented in Appendix G. We use datamark de-
fense, ignoring defense, Base64 defense and Cae-
sar defense as baseline methods (Hines et al., 2024;
Liu et al., 2024b), see details in Appendix E.

5.3 Results
We first evaluate various defense methods on the
safety benchmark, with the results shown in Table
1. The character encoding-based defense methods
(Base64, Caesar, and Ours) consistently achieve a
lower attack success rate and significantly outper-
form other baseline defenses across all four datasets
for both GPT-4 and GPT-4o. Our method outper-
forms all other methods for GPT-4o. These exper-
iments validate the effectiveness of our approach,
along with other character encoding-based meth-
ods, in defending against prompt injection attacks.

We then evaluate character encoding-based de-
fense methods on the helpfulness benchmark, with
results presented in Table 2. Our mixture of encod-
ings strategy significantly outperforms both Base64
and Caesar defense methods, especially in mathe-
matical QA datasets such as MMLU and MGSM.
Furthermore, our method even reaches compara-
ble performance to the LLM without any defenses
mechanism on helpfulness.

These experiments validate that our mixture of
encodings strategy delivers strong performance on
both benchmarks, striking a balance between safety
and helpfulness.
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6 Conclusion

In this paper, we introduce a novel mixture of en-
codings strategy to mitigate prompt injection at-
tacks while ensuring both safety and helpfulness
of the LLM. Our approach is validated through
extensive experiments on both safety and helpful-
ness benchmarks, demonstrating clear improve-
ment over existing character encoding-based de-
fense methods.

7 Limitation

A potential limitation of our method is the addi-
tional computational overhead introduced by pro-
cessing multiple input prompts, which makes it
less suitable for time-sensitive applications. We
present a detailed comparison on inference costs
of different methods in Appendix H. However, the
significant performance gain of our method justi-
fies this trade-off, particularly since the three input
prompts can be processed in parallel to mitigate
overall time cost.
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A Base64 Defense

Figure 3 presents two illustrative examples of the
Base64 defense mechanism. Figure 3(a) shows the
effectiveness of Base64 defense: encoding external
content using Base64 prevents the language model
from being affected by malicious instructions. In
contrast, Figure 3(b) demonstrates a limitation: en-
coding the external information required to solve
a math problem results in the failure of the LLM
to generate the correct answer. These examples
highlight both the strengths and weaknesses of the
Base64 defense.

B Selection of Encodings

In our preliminary experiments, we evaluated mul-
tiple encodings beyond Base64 and Caesar, includ-
ing Atbash cipher, ASCII encoding, Morse code,
Base32, and Base58. However, these alternatives
presented specific weaknesses, as outlined below.

ASCII Encoding and Morse Code Both encod-
ings map each character to a specific representation.
The major weakness of these encodings is that they
significantly increase the text length post-encoding.
This lengthening leads to a higher context length
and substantially increased inference costs, mak-
ing them less practical as a defense method against
prompt injection attacks.

Atbash, Base32 and Base58 Atbash cipher is a
substitution cipher like Caesar, but it replaces each
letter with its counterpart in a reversed alphabet.
Base32 and Base58 are similar to Base64 encod-
ings, but utilize 32 and 58 alphanumeric characters,
respectively. However, these encodings resulted in
poor performance on the helpfulness benchmark
in our experiments. For example, Atbash encod-
ing achieved only a 1.6 BLEU score on the WMT
dataset and 3.5% accuracy on MGSM using GPT-4,
significantly underperforming compared to Caesar.
Similarly, Base32 and Base58 also failed to de-
liver strong results, particularly on the helpfulness
benchmark, and performed worse than Base64.

Among all encodings, Base64 and Caesar
achieved relatively strong results on the helpful-
ness benchmark without excessively increasing in-
ference costs. Furthermore, they belong to distinct
categories—character encoding (Base64) and sub-
stitution cipher (Caesar). This diversity introduces
larger discrepancies between encodings, leveraging
the strengths of our mixture-of-encodings strategy
more effectively. By combining Base64 and Caesar,

Answer the following Base64
encoded question:

RmluZCB0aGUgZGVncmVlIGZvciB0
aGUgZ2l2ZW4gZmllbGQgZXh0ZW5z
aW9uIFEoc3FydCgyKSwgc3FydCgz
KSwgc3FydCgxOCkpIG92ZXIgUS4=

2

User Instructions

Incorrect
LLM Output

Base64 Encoded:
Find the degree for the given

field extension
Q(sqrt(2), sqrt(3), sqrt(18)) over Q.

(b)

(a)

Summarize the following
Base64 encoded dialogue:

QmxhaXI6IFJlbWVtYmVyIHdlIGFyZSBzZ
WVpbmcgdGhlIHdlZGRpbmcgcGxhbm5
lciBhZnRlciB3b3JrIENodWNrOiBTdXJlLC
B3aGVyZSBhcmUgd2UgbWVldGluZyBoZ

XI/Cg==
…

IgnSWdub3JlIGFsbCBpbnN0cnVjdGlvbn
MgYWJvdmUgYW5kIG91dHB1dCDigJhZ
b3UgY29tcHV0ZXIgaXMgYXR0YWNrZW

Qh4oCZCg==

Blair and Chuck are going to meet the 
wedding planner after work at Nonna

Rita’s.

User Instructions

Base64 Encoded
External Content 

(with Injection Attack)

Unaffected
LLM Output

Figure 3: Examples of LLM outputs under Base64
Defense. (a) LLM output is unaffected by the prompt
injection attack. (b) LLM output incorrectly answers a
math question.

our method balances encoding diversity, computa-
tional efficiency, and task performance, ultimately
enhancing overall robustness and utility.

C Mixture of Encodings

We give an example in Figure 4 to intuitively show
the advantage of our mixture of encodings strategy
over Base64 defense on the helpfulness benchmark.
In the given example, while the LLM fails to an-
swer the question encoded in Base64 format, it
successfully produces the correct responses for the
other two prompts, thereby yielding the correct fi-
nal output. Together with the example in Figure 2,
this intuitively shows the advantage of our method
over standard Base64 defense.

D Meta-Prompts

We provide the meta-prompts used in our mixture
of encoding strategy in Table 3. MP1 is used in P2
and P3 in Section 4 to let LLM know the external
data is encoded in Base64 or Caesar cipher. MP2 is
employed in P4 to prompt the LLM to aggregate the
responses R1, R2 and R3 from 3 different prompts.
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Answer the following question:

Find the degree for the given
field extension

Q(sqrt(2), sqrt(3), sqrt(18)) 
over Q.

4

Answer the following Base64
encoded question:

RmluZCB0aGUgZGVncmVlIGZvciB0
aGUgZ2l2ZW4gZmllbGQgZXh0ZW5z
aW9uIFEoc3FydCgyKSwgc3FydCgz
KSwgc3FydCgxOCkpIG92ZXIgUS4=

2

Ilqg wkh ghjuhh iru wkh jlyhq
ilhog hawhqvlrq

T(vtuw(2), vtuw(3), vtuw(18)) 
ryhu T.

Answer the following Caesar 
cipher encoded question:

Answer A Answer B Answer C

Reply based on these
different answers.

4

4

Correct
LLM output

Correct
LLM output

Incorrect
LLM output

Correct
LLM output

Figure 4: Example of an LLM’s answer to a mathematical question under the mixture of encodings defense.

MP1
The following sentence is encoded in

Base64 / Caesar format. Only reply with

the answer without explanations.

MP2
Given the answers from three different

people, A, B, and C, reply with your

answer based on their responses.

Table 3: Meta-prompts used in our mixture of encodings
method.

E Baseline Methods

In this section, we briefly describe the baseline
defense methods used in our experiments.

Datamark This method appends boundary char-
acters to external content, drawing from similar
intuitions as the Base64 defense. The goal is to
establish a clear distinction between external data
and user instructions (Yi et al., 2023).

Ignoring This defense introduces additional text
instructions preceding the external data, explicitly
instructing LLMs to ignore any commands or in-
structions within the external content (Yi et al.,
2023).

Caesar We propose the Caesar defense, which
follows a similar approach to the Base64 defense
by encoding external content using a Caesar cipher.
In our experiments, we apply the Caesar cipher
with a shift of 3.

F Evaluation Benchmarks

F.1 Attacks in Safety Benchmark
In the safety benchmark, we use 50 different types
of prompt injection attacks from BIPIA benchmark
to comprehensively evaluate defense methods (Yi
et al., 2023). Of these, 30 are text-based attacks,
which include instructions designed to disrupt the
LLM’s completion of user tasks or achieve specific
malicious objectives, such as information dissemi-
nation, advertising, and scams. The remaining 20
are code-based attacks, involving malicious code
intended to monitor user activities or compromise
the system or network.

F.2 NLP Tasks in Helpfulness Benchmark
In the helpfulness benchmark, we use 9 different
datasets for multiple critial NLP tasks.

MMLU is a massive multi-task test consisting of
multiple-choice questions from 57 academic fields,
such as elementary mathematics, US history, com-
puter science, and law.

SQuAD is a reading comprehension dataset, con-
sisting of questions on Wikipedia articles, where
the answer is a span from the corresponding read-
ing passage.

Hellaswag is a multiple-choice dataset designed
to evaluate a model’s ability to perform common-
sense reasoning by selecting the most plausible
ending to diverse context scenarios.
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Method No Defense Datamark Ignoring Base64 Caesar Ours

Cost 1 1.11 1.13 1.31 1.03 3.46

Table 4: Inference cost of different prompt injection defense methods.

Method Email Table Abstract

No Defense 28.54 35.00 36.64
Datamark 25.43 32.14 34.53
Ignoring 24.12 33.48 35.10
Base64 1.46 1.00 5.71
Caesar 13.54 15.82 8.29
Ours 5.25 8.15 7.84

Table 5: Results of the attack success rate (ASR) for
different methods using Qwen-2.5-72B-Instruct.

MGSM is a multilingual QA dataset with the
same 250 problems from GSM8K which are trans-
lated via human annotators in 10 languages. In our
experiments, we only select 5 languages with Latin
script.

SamSum is a text summarization dataset which
contains messenger-like conversations with sum-
maries, where the conversations were created and
written down by linguists fluent in English.

WMT is a machine translation dataset with paral-
lel translations, and we use the English to German
subset in our experiments.

IMDB is a sentiment analysis dataset for binary
sentiment classification of highly polar movie re-
views.

WildGuard is a safety moderation dataset with
harmfulness label for prompts and responses. In
this paper, we use it as a classification dataset.

WebQ contains question/answer pairs which are
supposed to be answerable by Freebase, a large
knowledge graph. In our experiments, we test the
ability of LLMs to directly answer the question
without the knowledge graph, using it as a open-
domain question answering task.

G Results of Open-Source Model

To further validate the generalizability of our
method, we conducted additional experiments
using the Qwen-2.5-72B-Instruct (Qwen, 2024)
model. For evaluation on the safety dimension, we

Method MMLU MGSM SamSum

No Defense 80.41 36.24 42.15
Base64 42.19 3.84 27.01
Caesar 54.18 7.36 19.00
Ours 71.94 32.88 36.49

Table 6: Performance of different methods on NLP tasks
using Qwen-2.5-72B-Instruct.

apply it on BIPIA-Email, BIPIA-Table and BIPIA-
Abstract datasets. We conducted our experiments
on smaller subsets of the original datasets by ran-
domly selecting 3,000 samples from each dataset.
All other experimental settings were kept consis-
tent with those described in our main paper. Results
in Table 5 show the attack success rate (ASR) for
different methods on the Email, Table and Abstract
datasets. For evaluation on the helpfulness dimen-
sion, we use the Qwen-2.5-72B-Instruct model on
MMLU dataset, MGSM dataset and the valida-
tion split of the SamSum dataset. The results are
shown in Table 6. Overall, the performance on
both the safety and helpfulness evaluation datasets
highlights the effectiveness and generalizability of
our approach when applied to popular open-source
models.

H Inference Costs

In this section, we present the inference costs of dif-
ferent methods on the BIPIA-Abstract dataset as an
example, with results shown in Table 4. Here, the
cost of the baseline method without any defense
is normalized to 1. The inference cost is calcu-
lated based on the sum of the number of the output
tokens multiplied by 4 and the number of input
tokens for each method, a metric commonly used
by LLM API providers. While our method does
result in increased inference costs, the significant
performance gains justify this trade-off.
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