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Abstract
Large language models (LLMs) have become
standard for natural language generation tasks,
with instruction-tuning enhancing their capabil-
ities. However, the lack of instruction-tuning
datasets in languages other than English lim-
its their application to diverse languages. To
address this, researchers have adapted English-
centric LLMs to other languages by append-
ing English tuning data with its translated pair.
However, we observe negative interference be-
tween the two. To resolve this, our contribution
is identifying English as an internal pivot lan-
guage, which disentangles the use of English
and target language data. Moreover, to bet-
ter generalize for under-represented languages,
we regulate the proposed objective. Experi-
ments across 9 different languages demonstrate
the effectiveness of our approach on multiple
benchmarks. The code is publicly available for
further exploration.1

1 Introduction

Recently, large language models (LLMs) became a
de-facto standard for various natural language gen-
eration tasks (OpenAI, 2023; Touvron et al., 2023;
Jiang et al., 2024). Moreover, careful instruction-
tuning (Wang et al., 2023) improves the LLMs to
be more powerful.

However, due to the lack of instruction tuning
datasets in other languages, most of instruction-
tuned LLMs remain English-centric, hindering the
application to 6500+ existing languages (Austin
and Sallabank, 2011). Existing solutions thus pro-
pose to adapt English-centric LLMs into a mono-
lingual target language model: Instructions in
the target language are either unseen, or under-
represented in pretraining, for which the existing
solution translates a high-quality English instruc-
tion tuning, to pair with its translation in the target
language (Zhu et al., 2023; Ranaldi et al., 2023).

* Corresponding author
1https://github.com/thnkinbtfly/PROM
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Figure 1: Language on the left shows pivoted behavior,
as argued in Wendler et al. (2024). However, we find
that argument does not hold in some languages (right).

Despite the expected performance gain from ex-
panding the training set, our first contribution is ob-
serving otherwise, that negative interference (Con-
neau et al., 2020; Wang et al., 2020) exists between
the original and translated pair. (Section 3.2).

To overcome this, we devise a pivoted objective
that disentangles English and target language data
in training, to alleviate such interference. Specif-
ically, we are inspired by a recent finding that
English-centric LLMs generate in English first
and then convert the output into the target lan-
guage (Wendler et al., 2024; Zhao et al., 2024).
This implies that we can design two separate ob-
jectives, the first objective using English data for
generating the representation corresponding to the
English version of the next token at the middle of
the layers, then another objective using target data
for gradually converting into the representation for
the target language.

While such disentangled objectives are effective
in many languages, we find they fail to general-
ize well to under-represented languages, where we
observe the pivoted behavior reported by Wendler
et al. (2024) may not hold. To illustrate, Figure 1
contrasts language where pivoted assumption holds
(left) and not (right), selected for illustration from
our empirical studies reported in Appendix: Fol-
lowing (Wendler et al., 2024), the x-axis in the
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figure represents layer index, from each of which,
the y-axis shows the probability (according to log-
its) of correct target language next token (blue) or
English as pivot (orange). While the left figure
shows English pivot probability higher than the tar-
get token in Greek, such behavior is not observed
in the right (Arabic). Inspired, we propose a regu-
lated version, classifying between the two cases, to
selectively apply pivoted objective.

Our proposed method, PROM (Pivoted and Reg-
ulated Optimization) is shown to be effective on
MGSM, XQuAD, MLQA, IndicQA across 9 lan-
guages. PROM dominates the baselines in most
cases, improving the QA exact match score by 50%
overall. The code is publicly available.1

2 Pivoted and Regulated Optimization

Preliminaries: Adapting LLM to the Target
Language We first formalize the training of
LLM architecture as follows:

h0 = f(s), s ∈ S (1)

hi = Li(hi−1) (2)

where Li is the ith transformer layer in LLM, and f
is the embedding layer, S is the set of given inputs.
For instruction tuning, typically, only English in-
struction tuning data sample se constructs the input
S. The final hidden representation hN is used for
updating the model, where N is the total number
of layers.

To enhance the set S for adaptation to the tar-
get language, we typically augment each existing
English instruction and response se ∈ S with its
translated counterpart st. Moreover, an additional
English to target language translation task sample
se→t can be added to further align English and the
target language (Zhu et al., 2023; Ranaldi et al.,
2023; Kuulmets et al., 2024).

2.1 Motivation: Negative Interference

While ‘bigger is better’ is commonly believed, that
adding English instruction tuning samples se along
with other samples (st, se→t) to construct S is ex-
pected to be beneficial (Zhu et al., 2023; Ranaldi
et al., 2023), our observation in Section 3.2 indi-
cates the contrary. To explain, we analyze negative
interference between two languages, in the latter
layers, especially the last layer, which is most rel-
evant to generating the target language (Wendler
et al., 2024; Zhao et al., 2024).
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Figure 2: Gradient similarity in the last layer. Lower
gradient similarity implies higher negative interference.
Ours shows low interference while utilizing both En-
glish and the translated data.

Specifically, negative interference (Wang et al.,
2020) is quantified using cosine similarity between
gradients from two batches composed of different
languages (Wang et al., 2020).2 When such sim-
ilarity is low, negative interference is considered
high, indicating that the gradients are conflicting
and pointing in opposite directions.

Figure 2 (blue vs. green) demonstrates that ap-
pending English data to the target language results
in high negative interference, i.e., low cosine sim-
ilarity between gradients from two batches. We
attribute the suboptimality of appending English
data (Section 3.2) to this negative interference.

Our goal is to benefit from English data while
avoiding negative interference (orange line in Fig-
ure 2). The following subsection introduces how
we achieve this.

2.2 Pivoted Objective
We first disentangle the roles of English and target
language data. According to Wendler et al. (2024),
when generating in non-English using an English-
centric LLM, English serves as a pivot language. In
other words, forwarding hn through the LM head
for some n < N generates the English version of
the next token. This implies that English data is
crucial for semantics in the pivot language, while
target language data is essential for generating out-
put in the target language.

Next, we devise separate training objectives for
each role. To retain semantics while utilizing En-
glish data, we design a loss function that considers
English as a pivot language. Specifically, we use
hn passed through an LM head for instruction tun-
ing with English data and denote the loss for this
as Ln,e. Since we are not aiming for exact gen-

2Our observation of negative interference is consistently
supported in Section 4.
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eration, we apply label smoothing with α to Ln,e.
For language generation using target language data,
we use hN passed through another LM head for
instruction tuning and denote the loss for this as
LN,t. Finally, we optimize the weighted sum of the
two objectives:

L = λ · Ln,e + LN,t (3)

2.3 Regulated Objective for
Under-represented Languages

While the effectiveness of the objective Ln,e de-
pends on the validity of Wendler et al. (2024), re-
call that their assertion does not apply universally,
particularly for under-represented languages in Fig-
ure 1, contrasting the scenarios following pivoted
assumption (left; Greek) and not (right; Arabic). 3

We propose to classify such cases by setting
λ = 0 if Pn,e < Pn,t, where denotes the av-
erage, e denotes English, and t denotes the target
language. Pn,l denotes the probability of the lan-
guage l version of the next token in the nth layer,
following the definition by Wendler et al. (2024).

3 Experiments

3.1 Experimental Settings
We use LLaMA2-7B (Touvron et al., 2023) as the
representative English-centric LLM.
Tasks and Datasets For the English-centric
instruction tuning data, we use the ALPACA

dataset (Taori et al., 2023). We use Google Trans-
late API to obtain the target language counterpart.
For the parallel data for the translation task in-
struction tuning, we use the WMT23 development
dataset,4 the NTREX (Federmann et al., 2022) and
the FLORES (Goyal et al., 2021). We only use
these high-quality parallel data, since only high-
quality parallel dataset guarantees the performance
increase for diverse tasks (Kuulmets et al., 2024).

We evaluate our model on LM-EVALUATION-
HARNESS (Gao et al., 2021). We use the avail-
able multilingual generative tasks: MSGM (Shi
et al., 2023), MLQA (Lewis et al., 2020), and
XQuAD (Artetxe et al., 2020). We additionally im-
plement IndicQA (Doddapaneni et al., 2023) eval-
uation. For QA evaluation, we use the extended
version of LM-EVALUATION-HARNESS.5

3We translated the cloze task in Wendler et al. (2024) for
this analysis. We ran in a 5-shot manner. See our results for
all languages in Appendix

4https://www2.statmt.org/wmt23/translation-task.html
5https://github.com/OpenGPTX/lm-evaluation-harness

Language Selection Total 9 languages are avail-
able in the given datasets:6 Arabic (ar), Bengali
(bn), Greek (el), Malayalam (ml), Marathi (mr),
Swahili (sw), Tamil (ta), Telugu (te), and Thai (th).
Implementation Details To perform instruc-
tion tuning, we largely follow the setting from Al-
paca (Taori et al., 2023).7 We use learning rate of
2e-5; warmup for 3% of total steps; and train for 3
epochs. We use batch size of 32, sequence length
of 1024 or 2048, depending on the GPU consump-
tion. We use n = 24, α = 0.1, λ = 0.1.8 Training
is done on 8 A100-80GB, taking less than six hours.
We evaluate the LLMs with a batch size of 8, in
a zero-shot manner. We use the prompts given in
the target languages. Evaluation is conducted on
an A100, which takes less than two hours.
Comparisons We compare the following meth-
ods: a) LLaMA2: The baseline English-centric
LLM. b) Bactrian+(t): Use the target language
data only (Li et al., 2023), enhanced with transla-
tion data (Kuulmets et al., 2024), i.e., S consists
of st, se→t. c) xLLAMA2(t+e): Add english lan-
guage data (Zhu et al., 2023), i.e., S consisting of
se, st, se→t, d) PROM: Our proposed method.

3.2 Experimental Results

Negative Interference Drops Performance The
final row of Table 3 highlights the positive impact
of excluding English instruction tuning data from
xLLAMA2(t+e). Across all 11 cases of MGSM
and QA evaluation, its exclusion results in supe-
rior performance in 8 instances. This supports our
claim that naïvely appending translated instruction
tuning data incurs negative interference, thereby
impairing performance.
Superiority of PROM Tables 1 and 2 show
that PROM successfully outperforms the baseline,
xLLAMA2(t+e). For example, overall, the ex-
act match score of QA increases by about 50%
compared with the baseline. Additionally, as de-
picted in Table 3, xLLAMA2(t+e) never outper-
forms PROM, implying PROM is a reliable method
for leveraging English instruction tuning data.
Importance of Pivoted Objective The third row
in Table 3, identical to the removal of Ln,e entirely,
emphasizes the beneficial nature of the proposed
Ln,e when contrasted with the first row.

6We use languages whose task performance improves by
the baseline adaptation method.

7https://github.com/tatsu-lab/stanford_alpaca
8We describe the hyperparameter choice in the Appendix.
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XQuAD MLQA IndicQA
th ar el ar ta mr ml avg

em f1 em f1 em f1 em f1 em f1 em f1 em f1 em f1
PROM 10.7 22.5 3.4∗ 16.8∗ 5.3 22.9 2.5∗ 16.6∗ 0.7∗ 4.0∗ 1.3 12.3 3.7∗ 13.9∗ 3.9 15.6
xLLAMA2(t+e) 2.4 14.9 4.2 16.6 4.1 20.5 3.1 16.4 0.3 3.4 0.3 11.7 3.3 13.1 2.5 13.8
LLaMA2 1.6 9.8 0.1 5.2 1.8 11.4 1.0 7.1 0.0 0.7 0.2 4.3 0.0 0.8 0.7 5.6

Table 1: Exact match and F1 score of diverse QA benchmarks. (∗: λ = 0 for under-represented languages.)

sw th bn te avg
PROM 5.6 4.4 4.0 0.4∗ 3.6
xLLAMA2(t+e) 5.2 4.0 3.2 0.4 3.2
LLaMA2 2.4 1.6 0.0 0.0 1.0

Table 2: MGSM Accuracy of comparisons. (∗: λ = 0
for under-represented languages.)

lose to t+e wins t+e
PROM 0/11 9/11

- regulation 2/11 8/11
Bactrian+(t) 1/11 8/11

Table 3: Lose and win counts compared with
xLLAMA2(t+e). We deal with 11 QA and MGSM
results in Table 1,2. We consider losed or winned if the
score of one dominates the other.

Importance of Regulated Objective A compar-
ison between the first and second rows in Table 3
highlights the necessity of regulation.

3.3 Analysis

In this analysis, we show that PROM also deepens
the English-pivoting behavior of the LLM. Apply-
ing PROM soars up the probability of the English-
version of the next token as depicted in the right
of Figure 3. This means PROM not only mitigates
negative interferce, but also improves the pivot-
ing behavior –resulting in a performance increase
(Table 1,2).

4 Related Work

Instruction-tuned LLMs for Non-English To
extend the capabilities of instruction-tuned LLMs
to languages other than English, early attempts
involved human annotation of instruction-tuning
datasets (Zhang et al., 2023), which lacks scalabil-
ity.

Wei et al. (2023); Li et al. (2023) leverage LLMs
to generate synthetic data for instruction-tuning,
however the quality would plummet as the gener-
ation ability of LLM for that language decreases
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Figure 3: Pivoting behavior (en probability) before (left)
and after (right) applying PROM.

than English.
Alternatively, machine-translated instruction-

tune datasets (Chen et al., 2023; Holmström
and Doostmohammadi, 2023; Santilli and Rodolà,
2023; Cui et al., 2023) paired with higher-quality
English instruction-tune data (Zhu et al., 2023;
Ranaldi et al., 2023) gained popularity.

Our distinction is observing a possible negative
interference between English and target data, and
mitigating it by disentangling the roles of the two.
English as a Pivot Language Wendler et al.
(2024) explicitly observed pivoting behavior in
LLaMA2, an English-centric LLM that the LLM
first generates representations for the next token
in English at the middle layer before converting
them to representations of the target language at
the final layer. Our work is inspired by this ob-
servation but goes beyond passive observation by
(1) recognizing the limitations of their findings for
under-represented languages and (2) extending into
optimization objectives to mitigate negative inter-
ferences.

5 Conclusion

In this paper, we found that appending the English
instruction sets along with its translated pairs is not
always beneficial, for instruction-tuning in multiple
languages. To overcome this, we proposed PROM,
where we devised pivoted objective and regulated
objective. Experimental results across 9 languages
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show the effectiveness of our proposal.

Limitation

We conducted our experiment on only one English-
centric LLM, LLaMA2 (Touvron et al., 2023).
However, we are following the convention of pre-
vious studies (Zhao et al., 2024; Zhu et al., 2023;
Kew et al., 2023) that focus on LLaMA for study-
ing English-centric LLMs. We leave applying
PROM to other English-centric LLMs, such as Mis-
tral (Jiang et al., 2023), as a future work.
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Figure 4: Probability of generating English and the target language tokens per layer.

MGSM XQuAD
n α λ acc em f1

Bactrian+(t) 4.4 9.0 21.1
ours 24 0.1 0.1 4.4 10.7 22.5
label smooth comparison 24 0.03 0.1 1.6 11.9 24.4
label smooth comparison 24 0.3 0.1 3.6 9.4 21.5
label smooth comparison 24 0 0.1 1.2 8.5 19.5
layer id comparison 22 0.1 0.1 1.6 10.5 22.2
layer id comparison 23 0.1 0.1 2.4 8.3 19.2
layer id comparison 25 0.1 0.1 2.4 9.2 20.6
layer id comparison 26 0.1 0.1 2.8 6.9 18.3
loss weight comparision 24 0.1 0.3 1.2 7.9 19.3
loss weight comparision 24 0.1 0.5 2.8 8.2 21.1
loss weight comparision 24 0.1 1 3.6 4.0 17.2

Table 4: Comparison on thai (th) language varying hyperparameters.

A Appendix

A.1 Full Results for Figure 1
Figure 4 reports our results for nine languages, with
and without pivoted behaviors.

A.2 The Choice of Hyperparameters
We tuned N,α, λ on thai language as Table 4. Only
our setting is on par or outperform the best baseline,
Bactrian+(t). Note that removing the thai columns
from Table 1, 2 does not change the trend or analy-
sis.
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