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Abstract

Current machine translation (MT) systems for
low-resource languages have a particular fail-
ure mode: When translating words in a given
domain, they tend to confuse words within that
domain. So, for example, lion might be trans-
lated as alligator, and orange might be ren-
dered as purple. We propose a recall-based
metric for measuring this problem and show
that the problem exists in a dataset comprising
122 low-resource languages. We then show
that this problem can be mitigated by using a
large language model (LLM) to post-edit the
MT output, specifically by including the entire
GATITOS lexicon for the relevant language as
a very long context prompt. We show gains in
average CHRF score over the set of 122 lan-
guages, and we show that the recall score for
relevant lexical items also improves. Finally,
we demonstrate that a small dedicated MT sys-
tem with a general-purpose LLM as a post-
editor outperforms a generalist LLM translator
with access to the same lexicon data, suggest-
ing a new paradigm for LLM use.

1 Introduction

Machine translation systems have recently ex-
panded to cover many previously unsupported lan-
guages (Bapna et al., 2022b; NLLB et al., 2022).
However, MT systems for low-resource languages
(LRLs) still face many challenges. One particular
difficulty is learning the correct mapping of words
between two languages. This paper is motivated by
the observation that some LRL MT models tend to
confuse certain lexical items belonging to similar
domains. This problem is first reported in Bapna
et al. (2022b), who report this issue with unsuper-
vised, sentence-level NMT, giving the following
examples from their models. Examples from their
paper are reproduced in Table 1.

These examples show that the model consistently
errs by confusing lexical items that share similar
distributions, such as using crocodile to translate

other animal terms. This pattern is observed in the
“next thousand languages” (NTL) MT models of
Bapna et al. (2022b) over many language pairs and
within relatively high-frequency lexical domains,
including numbers, colors, animals, days of the
week, and months. In this paper, we refer to the
tendency to confuse words within a domain as the
“alligator problem.”1 As we show in this paper, this
pattern isn’t only found in MT-specific models, but
in translations produced by large language models
(LLMs) as well.

Using a development set consisting of data from
122 LRLs, we show that this problem is widespread
in translations of the NTL models, which are de-
scribed in Bapna et al. (2022b). We then propose a
method for prompting an LLM with lexical infor-
mation to post-edit these translations, both trans-
lating into and out of English, leading to better
performance on these frequently confused lexical
items, as well as higher machine translation qual-
ity overall. The lexical information is provided by
incorporating the GATITOS lexicon (Jones et al.,
2023) into the LLM prompt. We further show that
the LLM is able to improve its performance on
these lexical items even when the lexicon entries
presented in the prompt don’t exactly match the
source string because of morphological inflections.

This method combines the in-depth knowledge
of the specialist NTL MT systems with the gener-
alist abilities of the LLM. We show that the LLM
is incapable of matching the MT system’s perfor-
mance on its own, even when given access to the
lexicon, despite the fact that the MT system is
much smaller, at only 850M parameters. However,
given the specialist MT model’s best hypotheses,
the LLM can fix the MT model’s persistent lexical
confusions as a post-editor, making use of the infor-

1Not the “crocodile problem,” because somewhere be-
tween encountering the crocodile-filled examples from Bapna
et al. (2022b) and starting this work, we confused alligators
and crocodiles. We kept the name, though, since our mistake
is itself a nice illustration of the problem.
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Language reference translation
Meiteilon (mni) I believe a lion is stronger than a tiger. I believe a snake is stronger than a crocodile.
Twi (ak) I would want to be a dog for a day. I want to be a crocodile just one day.

Table 1: Examples from Bapna et al. (2022a) of the “alligator problem”

mation in the lexicon. Our primary contributions
are:

• Demonstrating that the “alligator problem”
(lexical confusion on distributionally similar
words) is a failure mode not only in traditional
MT, but also in LLMs.

• Developing a targeted evaluation for the alli-
gator problem, and demonstrating a method
for fixing the problem by using an LLM as
post-editor with a lexicon as context.

• Revealing that specialist MT models still far
outperform generalist LLMs on LRL trans-
lation, and introducing a new paradigm of
generalist-LLM-as-post-editor.

2 Related work

MT for low-resource languages Before LLMs,
for Very Low-Resource Language MT — i.e. any-
thing beyond the most frequent hundred languages
or so — there existed no parallel text at all out-
side of religious domains. In these cases, the
only option was Unsupervised Machine Transla-
tion (UNMT), which uses only monolingual text
to translate. This was pioneered in Lample et al.
(2017); Artetxe et al. (2017); Song et al. (2019a),
and eventually Bapna et al. (2022a) scaled up to
1000 languages in the NTL models. However, the
unsupervised paradigm led to tell-tale mistakes,
such as the “alligator problem” discussed here.

LLMs then barged in and changed all these
paradigms, although they still perform poorly out
of the box on LRLs (Kocmi et al., 2023). A
common approach is in-context learning, or ICL
(Brown et al., 2020; Agarwal et al., 2024) which
gives examples in the prompt. ICL examples for
LRLs have included diverse context like sentence
pairs (Zhang et al., 2024; Tanzer et al., 2024), dic-
tionaries (Elsner and Needle, 2023), the full GATI-
TOS lexicon (Reid et al., 2024), and a full grammar
of the Kalamang language (Tanzer et al., 2024).
A popular variant of ICL is RAG, or Retrieval-
augmented generation (Rubin et al., 2022), which
draws only on examples for ICL that are relevant
to the current sentence being translated. Despite

its popularity, Vilar et al. (2023); Zhu et al. (2024);
Zhang et al. (2023) find exemplar quality is more
important than relevance.

LLMs as post-editors. Another less common ap-
proach for LRL MT has focused on automatic post-
editing (APE) translations with LLMs, which is an
approach often used in high-resource MT (Bhat-
tacharyya et al., 2023; Zerva et al., 2024). Chen
et al. (2024) let an LLM iteratively self-correct its
translation, Lim et al. (2024) have a model post-edit
its own translations from related higher-resource
languages into the target language, and Xu et al.
(2024) iteratively apply fine-grained error correc-
tion from an LLM. However, these efforts have
focused on a base model and a post-editor that are
the same size, and both large.

Rare word translation Many MT models strug-
gle specifically with translating rare words, includ-
ing MT models for high-resource languages. In
our case, we study the inverse problem of diffi-
culties with common words, but the approaches
necessary to fix may be the same. Prior work in-
cludes placing soft constraints on the output ter-
minology (Bergmanis and Pinnis, 2021) and aug-
menting parametric models with non-parametric
datastores such as parallel corpora (Khandelwal
et al., 2021) or lexica (Zhang et al., 2021). The
latter is more similar to our approach, though we
present a lexicon to the LLM as a part of a prompt,
rather than using it during the training phase.

3 Methods

The approach we take to solving this problem is
to (1) generate output for a set of LRLs using a
specialist MT system; (2) create prompts for post-
editing each segment that include the entire GATI-
TOS lexicon, and (3) use these prompts to generate
post-edited output using a generalist LLM. The ex-
ample in Table 2 illustrates how a single Udmurt
example passes through the pipeline of specialist
MT system and LLM-posteditor:

3.1 Data
Evaluation data. To measure the magnitude of
this problem, we evaluate the performance of the
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Source 5:30 chasysen 2:30 chasoz’ vordïs’konysen kösnynaloz’
Reference between 5:30 am to 2:30 am from Mondays to Saturdays
MT output from 5:30 a.m. to 2:30 a.m. Monday through Friday
Post-edit from 5:30 a.m. to 2:30 a.m. Monday through Saturday

Table 2: An example of how the MT model and postediting step render a single example from Udmurt. The
alligator problem is shown by the error highlighted in red, which is corrected by the postediting step.

models on 122 LRLs, translating into and out of
English (complete list in Appendix C). The evalua-
tion data comprises segments from FLORES-200
(NLLB et al., 2022), NTREX (Barrault et al., 2019;
Federmann et al., 2022) and GATONES (Jones et al.,
2023). For each language pair, there are 600-1000
segments.

Prompting data. This lexical information comes
from the GATITOS lexicon (Jones et al., 2023).
This is a 4000-entry multilingual lexicon with
English segments, which have been translated
by human translators into 170 very low resource
languages. These lexical segments include fre-
quent English tokens (including words for num-
bers, months, and days of the week), Swadesh
wordlists (Swadesh, 1952), and some short English
sentences.

3.2 Metrics
General MT quality: To measure general qual-
ity we report CHRF score (Popović, 2015).

Alligator recall: CHRF will not necessarily re-
flect wins or losses in the alligator problem. To
directly measure this problem, we propose a recall-
based metric over a set of predetermined lexical
items with similar distributions, which we call alli-
gator recall. The selected lexical items are shown
in Appendix A, and are grouped into the domains
of animals, colors, weekdays, months, common
numbers, and rare numbers. They are restricted
to terms that are in the GATITOS lexicon. For a
given evaluation set, we find all references that
have one of these words, and score the model hy-
potheses on whether they 1) produced the exact
correct word (CORRECT); 2) produced a different
in-domain word (CONFUSION, i.e., the alligator
problem); or 3) produced neither a correct nor in-
correct word (UNKNOWN). If a total of N alligator
words appear in the set of all reference strings, and
the model’s hypotheses produce the correspond-
ing correct alligator word R times and a different
in-domain word W times, then we report the corre-
sponding alligator scores as follows:

CORRECT =
R

N
(1)

CONFUSION =
W

N
(2)

UNKNOWN =
N −R−W

N
(3)

We only report alligator recall for the into-
English direction. Measuring the presence or ab-
sence of a word in the model output via simple
string matching is problematic for more morpho-
logically complex languages. For example, the
Udmurt word for April is listed in citation form
as oshtolez’. However, in one phrase in our eval-
uation data, “in April 2020,” it is inflected to os-
htoleze — with the final character of the citation
form (transliterated as ’) removed, and the suffix
-e added. If we calculated alligator recall on Ud-
murt target data, we would count inflections like
these as non-matches, unless we accounted for mor-
phological inflection. However, accommodating
the diverse morphologies of 122 languages is out-
side the scope of this paper. Therefore, for the
out-of-English translation direction, we report only
CHRF.

3.3 Models

We use the NTL MT models as our baseline (Bapna
et al., 2022b). These are sentence-level, unsu-
pervised transformer translation models, that are
trained as follows: First, for each language in their
training data (a set which includes our 122 evalua-
tion languages), an encoder-decoder Transformer
model with 6B parameters is trained. Because data
is limited, this first phase uses a MASS de-noising
task on monolingual data (Song et al., 2019b). The
second phase of training consists of iterative back-
translation, where the models are used to generate
parallel data via online translation, and then trained
on this synthetic data. Finally, these models are
distilled into multilingual 850M parameter encoder-
decoder models, and cover either the en > xx or xx
> en direction.
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For post-editing, we use the LLM Gemini 1.5
Pro (Reid et al., 2024), whose long context (up to
10M tokens) is ideal for our purposes. We perform
greedy decoding to generate outputs.

4 Results and discussion

Tables 3 and 4 show that the best performance
comes from using the LLM as a post-editor, and in-
cluding the entire GATITOS lexicon in the prompt.
The models we compare are (1), the MT models
alone (our baseline), (2) the LLM model alone, and
(3) the LLM as post-editor of the MT model output.
The exact prompt templates are in Appendix B. The
prompts given to the LLM include all 4000 entries
from GATITOS for the given language, except when
noted otherwise.

As shown in Table 3, lexical confusion is present
in the initial MT system output, but when averaged
over all evaluation languages, its severity is limited.
When we subsample the 20% of languages with the
highest level of lexical confusion, it becomes clear
that this issue is much more severe for some lan-
guages than for others.2 The highest quality output
is consistently produced by prompting the LLM to
postedit the MT system output. The lexical recall
gains are particularly concentrated in the languages
that had the highest rates of lexical confusion.

Other attempted methods fall short of the per-
formance of LLM post-editing with access to the
whole lexicon. The LLM on its own is a relatively
poor translator, even given the entire GATITOS lex-
icon. On these high-confusion languages, we also
experiment with presenting the LLM with a few
different levels of lexical information: no lexical
information, prompts with only the words in the
given segment, and prompts with the whole lexi-
con. No lexical information is, as expected, a worse
condition, but even limiting the prompt to include
only the lexical items that are present in the source
is unhelpful — this condition under-performs even
the baseline.

As expected, the prevalence of lexical confusion
correlates with the overall performance of the MT
systems on a language, as shown in Table 3, where
languages with higher confusion have lower CHRF
score. For per-language scores, see Appendix C.

2For the list of languages constituting the high-confusion
group, see the table in Appendix C.

4.1 Morphology and the shortcomings of
string-match RAG

One reason why prompts with targeted lexical in-
formation fail may be that retrieving words from
the lexicon for the prompt is difficult in languages
with complex morphology: string matching can’t
retrieve words that don’t appear in the citation form
(the uninflected root form) in MT input. To mea-
sure how often a retrieval from the lexicon would
fail, we identify times when an English word from
our evaluation list (see Appendix A) appears in
the gold reference in the xx→en direction. We
then count how often the word is missing in the
initial MT system output, but appears in the post-
editing output of the LLM prompted with the whole
lexicon. Of the cases where post-editing recovers
the correct word, we measure how often the corre-
sponding source language token (from GATITOS)
appears in the source in citation form.

The citation form occurs in the source side only
56.1% of the total times that the post-editing pro-
cedure correctly recovered a lexical item. This
suggests that the LLM was able to use information
in the lexicon even when retrieval of the correct
item from the lexicon would have required going
beyond an exact match. A significant source of
these retrieval failures is likely the morphological
inflections in the source string that complicate re-
trieval. Recall the example given in Section 3.2:
the Udmurt word for April is oshtolez’, but it ap-
pears in the evaluation data in an inflected form,
oshtoleze, as part of a phrase meaning, “in April
2020.” In this inflected form, the final character of
the citation form (transliterated as ’) is removed,
and the suffix -e added. This makes direct retrieval
of this item from the lexicon difficult. Additionally,
the substitution of synonyms in the source string
would affect this. Whether these retrieval failures
are due to morphological inflection or synonymy,
the LLM is able to recover the correct target word
in many of these cases when simply given the entire
lexicon and handles lexical variations itself.

5 Conclusion

This work is the first to document and quantify
the alligator problem in Large Language Models
for low resource languages, a systemic translation
error mode that is not well captured in metrics
like CHRF. This problem is much reduced, though
not fully eliminated, by our proposed approach of
lexicon-augmented post-editing. This also suggests
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Alligator recall scores
Correct (↑) Confusion (↓) Unknown (↓) ChrF (↑)

All languages
Baseline 59.4 3.8 36.9 52.4
Direct translation 2.9 4.1 93.0 48.5
Post-edit, whole lex. 62.4 2.8 34.8 53.2
Baseline 49.6 8.3 42.2 45.3

High-confusion Direct translation 2.4 3.6 94.0 39.8
languages Post-edit, whole lex. 57.0 4.8 38.2 46.3

Post-edit, targeted lex. 53.0 6.0 40.9 43.7
Post-edit, no lex. 51.1 7.2 41.7 44.9

Table 3: CHRF and lexical recall scores for the xx→en translation direction. High-confusion languages are the
top quintile of languages by confusion score. “Post-edited” scores represent the output of the LLM that has been
prompted to postedit the MT output.

ChrF (↑)

All langs.
Baseline 43.5
Direct translation 40.9
Post-edit, whole lex. 44.0
Baseline 37.6

High-conf. Direct translation 35.9
langs. Post-edit, whole lex. 38.2

Post-edit, target lex. 34.4
Post-edit, no lex. 36.5

Table 4: CHRF scores for the en→xx direction. High-
confusion languages are the top 20% of languages by
confusion in the xx→en direction. Alligator scores are
not reported in this direction, since it can’t be reliably
calculated on non-English output.

a new paradigm for generalist models like LLMs,
exploiting their better general-purpose reasoning
and tool use to use them as post-editors. The small,
specialized MT model provides a strong baseline
for translation performance, one that the LLM can-
not meet on its own, even when given access to
a lexicon. However, the LLM can better extract
and use information from a resource like GATITOS,
and therefore improve upon its superior’s work.
The LLM is also able to overcome challenges such
as complex morphology that would make it pro-
hibitively difficult to use the lexicon directly to
post-edit the MT output.

Limitations

One limitation of this work is the fact that exact
string matching is used in the alligator recall eval-
uation, which doesn’t account for morphological
inflection or synonymy. So for example, if the word
twelve appeared in the reference and the model out-
put a dozen, this would fall into the UNKNOWN

category of the metric rather than the CORRECT

category, where it likely belongs. Likewise, if the
reference word is morphologically inflected in such
a way that the citation form doesn’t appear in the
output (e.g., geese instead of goose), it would fall
into the UNKNOWN category. This is mitigated by
the fact that the set of evaluation words we use have
relatively few synonyms (weekdays, months, and
common numbers, for example). All of them are
also nouns with regular plurals, so even when they
appear in an inflected form (plural being the only
option for English nouns), the citation form should
appear as a substring in the target output.

Other limitations include using a hand-picked set
of words over which to evaluate the alligator prob-
lem. Finally, it would be preferable to be able to
perform the alligator recall metric on non-English
output. Addressing the English-only nature of this
evaluation would require handling the morphology
of 122 very low-resource languages, which would
almost certainly require producing more resources
for them, which lies outside the scope of this work.
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Toms Bergmanis and Mārcis Pinnis. 2021. Facilitat-
ing terminology translation with target lemma anno-
tations. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 3105–3111,
Online. Association for Computational Linguistics.

Pushpak Bhattacharyya, Rajen Chatterjee, Markus Fre-
itag, Diptesh Kanojia, Matteo Negri, and Marco
Turchi. 2023. Findings of the WMT 2023 shared
task on automatic post-editing. In Proceedings
of the Eighth Conference on Machine Translation,
pages 672–681, Singapore. Association for Compu-
tational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Ma teusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. ArXiv, abs/2005.14165.

Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Ken-
neth Heafield. 2024. Iterative translation refinement
with large language models.

Micha Elsner and Jordan Needle. 2023. Translating a
low-resource language using GPT-3 and a human-
readable dictionary. In Proceedings of the 20th SIG-
MORPHON workshop on Computational Research

in Phonetics, Phonology, and Morphology, pages 1–
13, Toronto, Canada. Association for Computational
Linguistics.

Christian Federmann, Tom Kocmi, and Ying Xin. 2022.
NTREX-128 – news test references for MT evalua-
tion of 128 languages. In Proceedings of the First
Workshop on Scaling Up Multilingual Evaluation,
pages 21–24, Online. Association for Computational
Linguistics.

Alexander Jones, Isaac Caswell, Orhan Firat, and Is-
hank Saxena. 2023. GATITOS: Using a new multi-
lingual lexicon for low-resource machine translation.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
371–405, Singapore. Association for Computational
Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2021. Nearest neigh-
bor machine translation. ICLR 2021.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
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A Lexical items for recall metric

B LLM prompts

B.1 Direct translation prompt with entire
lexicon

You are asked to translate the text below into {tar-
get_language_name}.

Note the following translations:

{source_word1} means {target_word1}

{source_word2} means {target_word2}

...

{source_wordn} means {target_wordn}

Please output only the translation of the text with-
out any other explanation.

{source_language_name}: {source_text}

{target_language_name}:

B.2 Post-editing prompt with no lexical
information

You are asked to edit the following transla-
tion from {source_language_name} into {tar-
get_language_name}. The proposed translation is
high-quality, but may have some incorrect words.

Please output only the translation of the text with-
out any other explanation.

{source_language_name}: {source_text}

{target_language_name}: {MT_output}

B.3 Post-editing prompt with lexical
information (whole lexicon or subset)

You are asked to edit the following transla-
tion from {source_language_name} into {tar-
get_language_name}. The proposed translation is
high-quality, but may have some incorrect words.

Note the following translations:

{source_word1} means {target_word1}

{source_word2} means {target_word2}

...

{source_wordn} means {target_wordn}

Please output only the translation of the text with-
out any other explanation.

{source_language_name}: {source_text}

{target_language_name}: {MT_output}

C Complete results
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Animals Common numbers Colors Rarer numbers Weekdays Months
cat two black eighteen Monday January

chicken three white eighty Tuesday February
frog four red fifteen Wednesday March
bird five blue fifty Thursday April
bee six yellow forty Friday May
fish seven green forty-two Saturday June

horse eight purple fourteen Sunday July
goat nine orange nineteen August

elephant ten grey ninety September
butterfly hundred seventeen October

dog million seventy November
deer sixteen December
bear sixty

ten
ten thousand

thirteen
twenty-one

zero
eleven
twelve

Table 5: Words used for our recall metric for evaluating the prevalence of in-domain lexical confusion.
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Table 6: Lexical recall and CHRF scores before and after post-editing for translation into English. The languages
whose codes are highlighted in blue constitute the top 20% with the highest confusion scores, before editing. These
are reported on as “high-confusion languages” elsewhere.

xx→en

MT output Post-edited
Correct Confusion Unknown ChrF Correct Confusion Unknown ChrF

aa 22.3 3.8 73.9 24.5 21.0 4.2 74.8 25.1
ab 60.0 4.3 35.7 51.6 64.8 3.3 31.9 51.3
ace 74.2 0.7 25.1 60.7 74.9 0.5 24.6 61.9
ach 58.1 4.8 37.1 50.2 58.6 3.8 37.6 49.0
aii 40.0 7.1 52.9 40.8 51.9 3.3 44.8 44.7
alz 51.9 4.8 43.3 44.1 55.7 3.3 41.0 44.1
arz 70.1 1.4 28.5 62.3 70.9 1.6 27.5 63.3
av 62.6 2.9 34.5 50.7 69.6 2.3 28.1 54.6
awa 78.3 0.2 21.6 68.0 79.3 0.2 20.5 68.8
ayl 72.9 1.0 26.2 58.1 73.3 1.4 25.2 59.1
ba 65.6 2.9 31.5 47.6 68.0 2.5 29.5 49.0
bal 0.0 0.0 100.0 33.3 0.0 0.0 100.0 28.5
ban 63.0 4.9 32.1 51.3 64.5 4.4 31.1 52.6
bbc 59.7 2.9 37.4 49.8 62.6 2.5 34.9 51.3
bci 24.5 5.7 69.8 27.4 26.9 4.2 68.9 28.3
bem 62.9 5.0 32.1 54.5 64.0 7.0 29.0 55.9
ber 42.2 4.6 53.1 43.2 42.1 4.8 53.1 44.2
bew 66.4 0.0 33.6 56.5 67.2 0.0 32.8 57.7
bik 75.7 1.9 22.4 66.1 80.5 1.9 17.6 65.0
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MT output Post-edited
Correct Confusion Unknown ChrF Correct Confusion Unknown ChrF

bjn 75.4 0.4 24.2 65.3 76.6 0.4 23.0 66.5
bm-Nkoo 41.8 9.1 49.0 29.1 43.8 7.7 48.6 29.5
bo 57.8 2.2 40.0 47.5 55.9 2.8 41.3 48.0
br 76.2 2.9 21.0 62.3 77.6 3.8 18.6 62.2
brx 52.9 7.1 40.0 55.3 58.6 4.3 37.1 54.5
bts 67.6 3.8 28.6 57.6 71.0 2.4 26.7 57.3
btx 61.4 2.9 35.7 47.1 64.8 3.3 31.9 47.0
bua 64.8 2.9 32.4 50.8 68.1 1.9 30.0 51.8
bug 56.3 1.1 42.6 50.5 56.7 1.1 42.2 51.4
ce 53.4 3.4 43.3 48.4 60.5 2.5 37.0 53.9
cgg 64.8 4.8 30.5 53.0 65.7 4.3 30.0 52.2
ch 49.0 4.8 46.2 41.8 52.4 4.8 42.8 42.7
chk 51.9 3.8 44.2 47.4 60.6 2.9 36.5 48.0
chm 62.4 10.2 27.3 55.4 74.1 3.9 22.0 55.9
cnh 59.5 9.5 31.0 55.8 67.1 4.8 28.1 56.2
crh 67.1 3.8 29.0 57.5 71.9 1.0 27.1 58.7
crs 85.4 1.4 13.2 74.6 84.9 1.4 13.7 75.1
ctg 59.5 3.8 36.7 51.9 65.7 3.3 31.0 55.5
cv 62.6 2.9 34.5 53.6 63.0 2.5 34.5 54.0
din 34.0 3.6 62.4 36.1 33.3 4.3 62.4 36.8
dov 55.2 4.3 40.5 46.5 58.6 2.9 38.6 46.7
dyu 23.6 2.5 73.9 26.0 29.0 3.3 67.6 28.6
dz 50.0 3.4 46.6 41.3 50.7 2.7 46.6 41.8
fa-AF 74.7 2.2 23.1 62.0 75.2 1.9 22.9 63.5
ff 57.1 6.4 36.5 46.3 58.4 5.4 36.3 46.9
fj 72.5 2.0 25.5 58.8 72.4 1.5 26.2 56.1
fo 76.8 1.4 21.8 65.0 78.7 1.4 19.9 66.7
fon 37.1 4.6 58.3 38.9 38.3 3.9 57.8 39.9
fur 79.7 0.9 19.4 69.4 80.2 0.7 19.1 70.9
gaa 61.0 4.8 34.3 51.8 62.9 3.3 33.8 51.3
gv 19.2 13.5 67.3 27.6 20.7 15.9 63.5 28.3
hil 84.3 1.0 14.8 69.7 86.2 1.0 12.9 67.5
hne 81.1 0.2 18.7 74.8 82.4 0.5 17.1 75.6
hrx 68.6 1.9 29.5 65.4 74.8 2.4 22.9 65.7
iba 62.4 2.4 35.2 48.9 69.0 1.9 29.0 48.5
jam 86.2 0.5 13.3 77.7 90.5 0.0 9.5 78.9
kac 41.4 4.1 54.5 44.6 43.0 3.7 53.3 46.6
kbd 56.7 12.4 31.0 47.0 67.6 4.3 28.1 47.7
kek 43.8 5.2 51.0 39.2 48.1 4.3 47.6 39.6
kg 52.4 2.7 44.9 50.2 52.4 2.3 45.3 51.0
kha 51.9 12.5 35.6 55.0 67.8 4.3 27.9 57.8
kl 49.2 3.4 47.5 40.3 53.8 3.4 42.9 42.4
kr 57.8 2.0 40.3 45.8 58.5 2.1 39.4 46.5
ks-Deva 63.5 2.3 34.2 57.6 66.5 2.3 31.2 58.9
ks 62.6 2.5 34.9 58.7 63.3 2.3 34.4 60.2
ktu 77.6 2.9 19.5 57.6 77.1 1.4 21.4 57.1
kv 54.8 9.5 35.7 50.9 66.2 2.4 31.4 50.8
li 73.1 0.4 26.6 67.8 74.5 0.4 25.1 69.1
lij 79.7 1.1 19.3 71.9 81.8 0.9 17.3 73.5
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MT output Post-edited
Correct Confusion Unknown ChrF Correct Confusion Unknown ChrF

lmo 77.4 1.2 21.4 69.5 76.8 1.4 21.7 70.7
ltg 81.3 1.1 17.6 70.6 82.9 0.9 16.2 71.0
lu 48.1 7.1 44.8 40.5 50.0 7.1 42.9 39.9
luo 44.5 3.5 52.0 41.5 46.7 3.0 50.2 42.7
mad 65.5 3.8 30.7 55.8 71.0 3.4 25.6 56.9
mak 63.3 5.7 31.0 51.0 67.1 2.9 30.0 52.7
mam 43.3 2.9 53.8 35.6 47.1 2.4 50.5 36.8
mfe 82.9 1.4 15.7 71.2 83.3 2.9 13.8 70.0
mh 47.8 7.2 44.9 46.8 54.6 3.4 42.0 47.4
min 80.2 1.1 18.7 67.8 81.1 0.9 18.0 68.2
ms-Arab 86.2 1.9 11.9 69.4 84.8 1.9 13.3 68.5
mwr 72.4 1.9 25.7 54.6 77.6 1.0 21.4 55.8
nd 61.9 3.3 34.8 50.6 63.8 2.1 34.1 51.6
ndc-ZW 28.4 6.7 64.9 31.1 31.7 4.3 63.9 31.9
new 55.7 2.8 41.5 52.8 54.2 2.8 42.9 53.7
nhe 50.5 7.6 41.9 41.0 57.6 6.2 36.2 42.4
nr 73.8 4.3 21.9 64.3 77.1 1.9 21.0 62.8
nus 47.8 5.7 46.5 43.2 48.7 5.2 46.2 44.4
oc 87.3 0.4 12.3 78.8 87.7 0.2 12.1 79.5
os 53.3 10.5 36.2 53.0 67.1 4.3 28.6 54.1
pa-Arab 71.4 1.9 26.7 58.5 72.4 1.4 26.2 59.2
pag 58.6 0.9 40.5 56.2 60.2 0.5 39.2 57.4
pam 71.4 1.0 27.6 53.6 70.5 1.0 28.6 53.6
pap 82.2 0.2 17.6 76.5 81.6 0.0 18.4 77.0
quc 31.1 3.4 65.5 29.5 33.6 2.5 63.9 30.6
rhg-Latn 31.4 6.7 61.9 33.0 48.6 4.8 46.7 38.6
rn 61.1 3.9 34.9 52.7 63.3 2.5 34.2 53.9
rom 65.2 4.8 30.0 60.2 72.9 2.9 24.3 60.3
sah 62.4 8.6 29.0 52.5 68.6 3.8 27.6 52.9
sat-Latn 32.8 5.5 61.7 39.9 35.5 5.5 59.0 43.9
scn 78.6 1.1 20.3 67.7 78.3 1.1 20.7 68.3
se 65.2 7.6 27.1 59.9 74.8 2.9 22.4 60.0
sg 20.9 5.8 73.3 27.4 20.3 5.6 74.1 26.4
shn 60.8 3.6 35.7 53.5 62.0 2.9 35.1 54.7
ss 72.4 2.4 25.2 63.5 72.0 2.6 25.4 64.5
sus 54.3 5.7 40.0 41.1 54.3 4.8 41.0 41.2
szl 79.7 0.5 19.8 70.2 80.9 0.7 18.4 71.9
tcy 69.0 3.8 27.1 51.8 71.9 3.8 24.3 53.2
tet 76.7 3.8 19.5 64.7 77.1 3.8 19.0 64.8
tiv 18.5 3.4 78.2 20.1 19.3 4.2 76.5 20.4
tn 72.2 1.9 25.9 60.6 73.1 1.7 25.2 62.0
to 67.6 3.8 28.6 57.4 68.6 4.3 27.0 59.6
tpi 61.1 1.2 37.6 60.3 61.7 0.7 37.6 60.8
trp 37.0 5.8 57.2 37.4 52.4 2.4 45.2 39.4
tum 52.2 2.1 45.6 47.8 54.5 2.1 43.3 49.0
ty 65.7 2.3 32.1 50.0 65.2 2.6 32.2 50.3
tyv 60.0 5.2 34.8 52.0 71.4 2.9 25.7 53.2
udm 62.4 9.5 28.1 52.3 73.3 3.3 23.3 52.5
ve 67.8 6.9 25.3 60.3 72.4 2.9 24.6 61.7
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MT output Post-edited
Correct Confusion Unknown ChrF Correct Confusion Unknown ChrF

vec 79.3 1.2 19.4 69.9 79.1 1.2 19.6 71.4
war 71.7 0.4 28.0 75.5 72.4 0.2 27.5 75.5
wo 48.8 2.0 49.1 41.7 48.1 1.4 50.5 42.1
yua 52.1 2.1 45.8 42.7 52.9 2.9 44.1 44.4
zap 19.5 3.3 77.1 22.3 21.4 3.8 74.8 22.9
Average 59.3 3.8 36.9 52.4 62.4 2.8 34.8 53.2

Table 7: CHRF scores before and after post-editing for translation out of English. The languages whose codes
are highlighted in blue constitute the top 20% with the highest confusion scores before editing, in the into-English
direction. These are reported on as “high-confusion languages” elsewhere.

en→xx

Pre-edit CHRF Post-edit CHRF
aa 22.3 22.4
ab 41.7 43.0
ace 45.9 46.5
ach 42.3 39.9
aii 26.6 28.1
alz 36.8 38.7
arz 50.6 51.2
av 28.8 28.9
awa 54.0 50.1
ayl 51.3 51.6
ba 41.7 43.0
bal 21.1 21.3
ban 43.1 42.9
bbc 37.2 37.6
bci 29.3 29.1
bem 48.4 49.3
ber-Latn 21.4 34.5
bew 48.4 46.5
bik 59.4 60.1
bjn 53.8 56.5
bm-Nkoo 18.8 16.9
bo 42.1 43.1
br 51.4 52.3
brx 41.0 41.7
bts 48.5 48.5
btx 42.7 42.3
bua 40.5 41.0
bug 39.2 40.2
ce 25.3 25.8
cgg 43.9 44.9
ch 37.2 37.9
chk 37.4 40.8
chm 48.9 48.7
cnh 44.6 45.2
crh 47.8 48.7
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Pre-edit CHRF Post-edit CHRF
crs 69.2 69.8
ctg 33.0 34.1
cv 49.6 48.5
din 25.6 26.4
dov 41.0 41.5
dyu 22.3 22.4
dz 43.0 43.8
fa-AF 48.2 46.7
ff 32.4 31.3
fj 60.5 60.2
fo 56.5 57.6
fon 26.1 25.9
fur 60.4 61.7
gaa 48.8 48.5
gv 22.9 24.0
hil 63.7 63.6
hne 57.2 56.2
hrx 47.5 51.3
iba 45.2 44.6
jam 60.7 55.2
kac 43.5 44.2
kbd 36.8 40.4
kek 31.9 35.1
kg 50.2 51.0
kha 54.3 57.0
kl 42.4 43.6
kr 32.8 33.3
ks-Deva 33.8 25.0
ks 24.0 34.7
ktu 63.2 64.7
kv 39.9 42.0
li 55.0 54.1
lij 57.4 58.0
lmo 39.2 40.2
ltg 64.0 63.8
lu 24.7 24.5
luo 41.2 41.5
mad 40.7 40.6
mak 44.9 46.3
mam 28.8 25.9
mfe 66.5 66.3
mh 42.1 41.4
min 58.6 59.4
ms-Arab 66.2 59.9
mwr 36.8 36.4
nd 41.8 43.2
ndc-ZW 27.9 29.6
new 37.4 36.9
nhe 38.6 41.2
nr 58.8 57.2
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Pre-edit CHRF Post-edit CHRF
nus 32.5 30.6
oc 68.3 69.5
os 45.9 46.2
pa-Arab 43.3 45.1
pag 53.0 53.0
pam 47.7 47.3
pap 66.1 68.1
quc 24.7 25.3
rhg-Latn 20.6 24.0
rn 44.9 45.5
rom 37.0 36.4
sah 46.9 48.7
sat-Latn 22.8 24.4
scn 51.9 53.0
se 46.8 48.8
sg 30.5 31.1
shn 40.7 39.6
ss 56.2 55.9
sus 34.9 28.6
szl 59.2 59.5
tcy 39.1 40.9
tet 60.0 59.8
tiv 26.3 27.1
tn 55.8 55.7
to 52.0 54.6
tpi 51.9 52.3
trp 36.5 40.6
tum 44.7 45.0
ty 56.6 54.8
tyv 43.1 44.7
udm 45.9 46.2
ve 55.6 52.1
vec 55.4 54.7
war 61.8 63.0
wo 29.8 29.3
yua 38.5 39.5
zap 17.8 18.3
Average 43.4 43.8
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