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Abstract
Large language models (LLMs) have exhib-
ited impressive capabilities across a myriad
of tasks, yet they occasionally yield undesir-
able outputs. We posit that these limitations
are rooted in the foundational autoregressive
architecture of LLMs, which inherently lacks
mechanisms for differentiating between desir-
able and undesirable results. Drawing inspi-
ration from the dual-process theory of human
cognition, we introduce LLM2, a novel frame-
work that combines an LLM (System 1) with
a process-based verifier (System 2). Within
LLM2, the LLM is responsible for generat-
ing plausible candidates, while the verifier pro-
vides timely process-based feedback to distin-
guish desirable and undesirable outputs. The
verifier is trained with a pairwise comparison
loss on synthetic process-supervision data gen-
erated through our token quality exploration
strategy. Empirical results on mathematical rea-
soning benchmarks substantiate the efficacy of
LLM2, exemplified by an accuracy enhance-
ment from 50.3 to 57.8 (+7.5) for Llama3-1B
on GSM8K. Furthermore, when combined with
self-consistency, LLM2 achieves additional im-
provements, boosting major@20 accuracy from
56.2 to 70.2 (+14.0)1.

1 Introduction

Large language models (Brown et al., 2020;
Chowdhery et al., 2023; OpenAI, 2023) have exhib-
ited remarkable abilities across various tasks that
span general assistance (OpenAI, 2022), coding
(Chen et al., 2021), vision (Alayrac et al., 2022)
and more. However, they still occasionally produce
undesirable outputs in many scenarios, e.g., reason-
ing and planning (Mialon et al., 2023; Hu and Shu,
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2023), factual consistency (Min et al., 2023), and
human value alignment (Bai et al., 2022), etc. We
hypothesize these deficiencies stem from the fun-
damental design of LLMs. Specifically, the next-
token prediction objective optimizes LLMs to max-
imize the probability of human-generated strings
empirically, with no explicit mechanism to distin-
guish between desirable and undesirable outputs.
During the inference stage, LLMs autoregressively
generate outputs token-by-token in a single pass,
with no awareness of their errors. This procedure
is reminiscent of System 1 in the dual-process the-
ory, which postulates that thinking and reasoning
are underpinned by two distinct cognitive systems
(Stanovich and West, 2000; Evans, 2003; Kahne-
man, 2011). System 1 operates automatically and
subconsciously, guided by instinct and experience.
In contrast, System 2, thought to be unique to hu-
mans, is more controlled and rational, enabling de-
liberate thinking for difficult tasks, especially when
System 1 may make mistakes (Sloman, 1996).

In this paper, we introduce LLM2, which aims
to empower LLMs with System 2 reasoning. As
shown in Figure 1, LLM2 integrates an LLM (Sys-
tem 1) with a process-based verifier (System 2).
During inference, the LLM generates multiple can-
didates at each time step, and the verifier provides
timely feedback on each candidate. By efficiently
exploring the generation space based on the veri-
fier’s feedback, LLM2 ultimately identifies more
effective outputs. During the training stage, the
process-based verifier is optimized with a pairwise
comparison loss to distinguish between desirable
and undesirable tokens. To obtain informative to-
ken pairs data for process-supervision, we propose
a token quality exploration strategy that generates
synthetic data based on the potential impact of to-
kens on the generated text.

We evaluate LLM2 on two representative math-
ematical reasoning datasets: GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). With
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Figure 1: An illustration of the training and inference stages of LLM2. The training stage includes (a) synthetic
process-supervision data collection and (b) the optimization of a process-based verifier. The inference stage involves
(c) a dual-process LLM for generation.

the integration of System 2 reasoning, LLM2
achieves substantial performance improvement
across Llama3 models ranging from 1B to 8B pa-
rameters. For instance, compared to the vanilla
Llama3-1B, LLM2 significantly improves accu-
racy from 50.3 to 57.8 (+7.5) on GSM8K, and from
24.2 to 28.8 (+4.6) on MATH. Combining LLM2
with self-consistency further boosts the model’s
performance, enhancing major@20 accuracy from
56.2 to 70.2 (+14.0) on GSM8K. Further analysis
of the utilization of self-generated answers under-
scores the effectiveness and promising potential of
synthetic process-supervision data.

2 Method

2.1 Dual-process LLM
We aim to build a dual-process LLM (i.e., LLM2),
where an LLM serves as System 1 for giving plau-
sible proposals and a verifier functions as System
2 for deliberate thinking to refine and prevent mis-
takes introduced by System 1. Specifically, we
formalize this procedure as:

log π∗(xt|x<t) ∝ log π(xt|x<t) + βs(x<t, xt), (1)

where π and π∗ represent the policies of the LLM
and dual-process LLM, respectively. The verifier
steers π during decoding based on the process score
s(x<t, xt), with β controlling the strength. For
computational efficiency, we focus verification on
the most probable tokens at each time step. There-
fore, we filter out low probability tokens using an
adaptive plausibility constraint (Li et al., 2022):

Vt = {v ∈ V : zt[v] ≥ logα+max
w

zt[w]}, (2)

where zt represents the logits of π, V is the vocabu-
lary and Vt ⊂ V denotes the token set filtered with
the hyperparameter α ∈ [0, 1] at time step t.

Therefore, the logits of π∗ at time step t, denoted
as z∗t , are computed as:

z∗t [v] =

{
zt[v] + βs(x<t, v) if v ∈ Vt,

−∞ otherwise.
(3)

The probability distribution π∗(xt|x<t) =
softmax(z∗t ). This formulation allows π∗ to inte-
grates seamlessly with various decoding strategies,
depending on the use case.

2.2 Process-based Verifier

We initialize the verifier from an LLM, replac-
ing the unembedding head with a linear head
to produce scalar scores. Given a dataset
D =

{
xi
}N

i=1
, we synthesize process-supervision

Dp(x) =
{
x<t, x

+
t , x

−
t

}T

t=1
for each instance

x, where x+t is more appropriate than x−t . Ac-
cordingly, the training dataset for the verifier is
Ds =

{
xi,Dp(x

i)
}N

i=1
. We train the verifier with

a pairwise comparison loss (Ouyang et al., 2022):

L(sθ,Ds) = −E(
x,Dp(x)

)
∼Ds

T∑

t=1

[
log σ

(
sθ(x<t, x

+
t )− sθ(x<t, x

−
t )

)]
. (4)

2.3 Synthetic Process-supervision

We aim to create Dp(x) =
{
x<t, x

+
t , x

−
t

}T

t=1
for

each instance x. In particular, we use the ground-
truth token xt as x+t , which is desirable to be cor-
rect. Regarding x−t , our goal is to select tokens that
express the undesirable failure modes of LLMs,
e.g., reasoning errors, hallucinations and misalign-
ment with human values. Then, through learning
to distinguish between x+t and x−t , the verifier can
discern desirable and undesirable behaviors.
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Figure 2: Results of LLM2 and other baselines’ performance on GSM8K and MATH with Llama3 series.

To create x−t , one can sample tokens from the
distributions predicted by LLMs. However, LLMs
may assign a high probability to alternative cor-
rect tokens, which leads to false x−t and confuses
the training of the verifier. To alleviate this issue,
we introduce a token quality exploration strategy
for sampling x−t . Specifically, the token quality
exploration strategy evaluates the quality of indi-
vidual tokens based on their potential impact on
the generated text. This strategy involves three key
steps:

Continuation Generation For each candidate
token v ∈ V \{x+t } at time step t, we use the LLM
to generate N continuations {cj}Nj=1, each starting
with x<t concatenated with v.

Quality Assessment We evaluate the quality of
each continuation based on the correctness of all
decoded answers.

q(v) =
1

N

N∑

j=1

quality(cj), (5)

where quality(cj) is a function that returns the qual-
ity score for each continuation. In this work, we
use accuracy as the quality measure.

Negative Sampling We sample x−t from tokens
with low quality scores:

x−t ∼ {v : q(v) < τ, v ∈ Vt \ {xt}}, (6)

where τ is a threshold hyperparameter.
The token quality exploration strategy enables

the identification of tokens likely to lead to low-
quality outputs, providing informative negative ex-
amples for training the verifier. In this work, we

consider the top-k most probable tokens according
to the LLM’s distribution as a candidate set, which
reduces the computational cost while still capturing
the most relevant candidates for x−t .

3 Experiments

3.1 Experimental Setup
Our experiments are based on the Llama3 model
series, specifically using 1B, 3B and 8B instruct
versions (Dubey et al., 2024). We leverage these
LLMs as System 1 and utilize them to initialize
corresponding verifiers. We use the GSM8K train-
ing set as D, and employ the LLMs to generate
corresponding synthetic datasets Ds for training
verifiers. For evaluation, we utilize two bench-
marks: GSM8K (Cobbe et al., 2021) and MATH
(Hendrycks et al., 2021). Further details regard-
ing our experimental setup can be found in Ap-
pendix A.

3.2 Results
We present a comprehensive comparison of LLM2
against standard vanilla models and various piv-
otal baselines, including Self-reflection prompt-
ing (Madaan et al., 2024), Supervised Fine-
tuning (SFT), and Direct Preference Optimization
(DPO) (Rafailov et al., 2024). Further elaborations
on these baselines are available in Appendix B. As
depicted in Figure 2, implementing self-reflection
prompting to engage the model in System 2 rea-
soning does not yield performance enhancements,
suggesting a prevailing limitation in self-reflective
capabilities for Llama3 models across different
scales (1B, 3B, and 8B). Given that Llama3 has un-
dergone extensive post-training with meticulously
curated mathematical reasoning data (Dubey et al.,
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LLM2
Task Vanilla

w/ Ground Truth w/ SA

GSM8K 50.3 57.8 (+7.5) 59.7 (+9.4)
MATH 24.2 28.8 (+4.6) 30.2 (+6.0)

Table 1: Results of using ground truth or self-generated
answers (SA) for LLM2’s synthetic process-supervision
on GSM8K and MATH using Llama3-1B.

2024), applying GSM8K for either SFT or DPO
training results in performance degradation across
both GSM8K and MATH benchmarks. Conversely,
LLM2 emerges as an effective approach to enhance
Llama3’s performance across different model size.
Llama3-1B exhibits an increase from 50.3 to 57.8
(+7.5) on GSM8K, while Llama3-8B progresses
from 85.8 to 88.0 (+2.2). Moreover, LLM2 demon-
strates robust generalization capabilities, with im-
provements on MATH despite the process-based
verifier’s training on GSM8K. Specifically, Llama3-
1B rises from 24.2 to 28.8 (+4.6) on MATH, and
Llama3-8B advances from 45.8 to 48.6 (+2.6).

4 Analysis

4.1 Self-generated Answers for Synthetic
Process-supervision

We further refine our methodology by utilizing the
model’s self-generated correct answers as D, re-
placing traditional golden solutions to formulate
Ds for training verifiers. Instances that remain in-
correct after multiple samplings are excluded. Our
experiments with Llama3-1B, as illustrated in Ta-
ble 1 indicate that crafting D from self-generated
data enhances the efficacy of LLM2. On GSM8K,
performance heightens from 57.8 to 59.7, marking
an improvement of 9.4 over the vanilla model. On
MATH, results improve from 28.8 to 30.2, signify-
ing a 6.0 increase over the baseline.

4.2 Self-consistency

We investigate the potential of integrating LLM2
with self-consistency (Wang et al., 2022), with de-
tailed setup provided in Appendix C. As demon-
strated in Figure 3, experiments conducted on
Llama3-1B unveil that LLM2, when amalgamated
with self-consistency, notably enhances perfor-
mance. LLM2 trained with self-generated data
(i.e., LLM2-SA) elevates Major@20 accuracy on
GSM8K from 56.2 to 72.2, and on MATH, the
Major@20 accuracy improves from 32.8 to 37.0.
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Figure 3: Results on combining LLM2 with self-
consistency on GSM8K and MATH using Llama3-1B.

Method
Latency

1B 3B 8B

VANILLA 2.8 (× 1.00) 4.8 (× 1.00) 5.3 (× 1.00)
w/ LLM2 3.5 (× 1.25) 5.9 (× 1.23) 6.4 (× 1.21)

Table 2: Averaged per-instance decoding latency of
LLM2 in seconds (s/example) on GSM8K.

4.3 Latency

We assess the impact of LLM2’s decoding latency
and compare it with vanilla models on the Llama3
model series. Specifically, as shown in Table 2, we
report the averaged per-instance inference latency
on GSM8K. Since the process-based verifier in
LLM2 only performs inference when the LLM pro-
vides multiple candidate tokens after the adaptive
plausibility constraint, LLM2 introduces an addi-
tional 1.21x to 1.25x latency. This latency tends to
decrease as the modes’s parameters increase.

4.4 Comparison with PRM Method

We compare LLM2 with Math-Shepherd (Wang
et al., 2024), a representative Process Reward
Model (PRM) baseline for Llama3-1B, with the
results presented in Table 3. For a fair compari-
son, we use the GSM8K subset2 to train a Llama3-
1B PRM model as the baseline. The results show
that Math-Shepherd’s performance converges at
Best-of-N (N=20), achieving 57.6 and 27.0 on
GSM8K and MATH, respectively, while LLM2
achieves 59.7 and 30.2, demonstrating LLM2’s ad-

2https://huggingface.co/datasets/peiyi9979/
Math-Shepherd
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Math-Shepherd (Best-of-N)
Task 5 10 15 20 LLM2

GSM8K 51.6 54.4 56.0 57.6 59.7
MATH 26.4 27.2 27.0 27.0 30.2

Table 3: Performance comparison between Math-
Shepherd (Best-of-N ) (Wang et al., 2024) and LLM2
on GSM8K and MATH using Llama3-1B.

Task Vanilla SFT DPO Self-reflection LLM2

GSM8K 69.2 56.0 60.3 68.7 73.5 (+4.3)
MATH 46.4 22.8 38.6 43.8 49.0 (+2.6)

Table 4: Results of LLM2 and other baselines’ perfor-
mance on GSM8K and MATH with Qwen2.5-1.5B.

vantages. Additionally, using PRM’s Best-of-N
for inference potentially introduces an N -fold la-
tency, whereas LLM2 only incurs approximately
1.2x latency. This demonstrates the advantage of
LLM2’s token-level supervision signals (Lin et al.,
2024), which enable more efficient and precise op-
timization during the generation process.

4.5 Employ Qwen2.5

We further investigate the generalizability of LLM2
across diverse LLM families, conducting experi-
ments on the Qwen2.5-1.5B model (Team, 2024).
As illustrated in Table 4, LLM2 emerges as a robust
approach to enhance the performance of Qwen2.5-
1.5B on both the GSM8K and MATH benchmarks.
Specifically, compared to the vanilla model, LLM2
achieves notable improvements in mathematical
reasoning, with performance gains of 4.3 and 2.6
on GSM8K and MATH, respectively. In contrast,
other methods fail to surpass the vanilla baseline,
highlighting the unique efficacy of LLM2. This
aligns with our observations on the Llama3 model
series, where LLM2 consistently enhanced perfor-
mance across different model sizes and tasks, re-
inforcing its potential as a universal enhancement
framework for different LLM families.

5 Related Work

Verifier for LLMs. Training verifiers to explic-
itly distinguish between desirable and undesirable
outputs has been a promising method to improve
the capabilities of LLMs. Existing verifier model-
ing can be broadly classified into two categories:
(1) Outcome-based modeling (Shen et al., 2021;
Cobbe et al., 2021), which train verifiers to learn
how to distinguish between correct and wrong out-

puts and selects more optimal ones from a num-
ber of candidates at inference time. (2) Process-
based modeling (Uesato et al., 2022; Lightman
et al., 2023; Zhu et al., 2023), which supervises
each reasoning step of the generation process. To
alleviate the reliance on human-annotated process-
supervision data, Wang et al. (2024) propose to
automatically construct process-supervision data,
where the correctness of a mathematical reasoning
step is defined as its potential to reach the final
answer correctly.

In LLM2, we propose a process-based verifier to
emulate System 2 reasoning. It is trained on syn-
thetic process-supervision data generated by our
token quality exploration strategy. During infer-
ence, this verifier can intervene at any time step,
providing immediate feedback without waiting for
the completion of specific steps or the entire output.

System 2 for LLMs. Recent works explore the
incorporation of System 2 into LLMs, primarily
during the inference stage (Weston and Sukhbaatar,
2023; Deng et al., 2023; Saha et al., 2024). These
approaches often leverage System 2 mechanisms,
such as reflection and planning (Madaan et al.,
2024), to generate explicit and verbalized reason-
ing content, which then guides subsequent token
generation. Alternatively, some research focuses
on transferring System 2 capabilities to System 1
during the training phase through methods such as
distillation (Yu et al., 2024), thereby obviating the
need for generating intermediate reasoning tokens
during the inference stage.

LLM2 integrates System 2 during the inference
stage. Specifically, LLM2 leverages a process-
based verifier as System 2 to provide real-time
feedback at each token generation step without
generating auxiliary content.

6 Conclusion

In this work, we introduce LLM2, a framework
that augments LLMs with a System 2-like rea-
soning process. By coupling an LLM with a
process-based verifier, LLM2 proficiently differ-
entiates between optimal and suboptimal outputs.
The framework is empowered by synthetic process-
supervision data generated via a novel token quality
exploration strategy, which is instrumental in train-
ing the verifier. Our empirical results and analyses
confirm the efficacy of LLM2 in enhancing LLM
performance.
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Limitations

While LLM2 demonstrates significant improve-
ments in mathematical reasoning tasks, our explo-
ration does not extend to other reasoning domains,
such as commonsense reasoning and code gener-
ation, due to computational resource constraints.
We are optimistic about the potential of LLM2
to generalize well to these additional tasks. How-
ever, applying LLM2 to open-ended tasks, like cre-
ative writing, presents challenges due to the lack of
definitive supervisory signals for synthetic process-
supervision. Addressing these challenges offers a
promising direction for future research.
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A Experimental Setup

Dataset. We leverage the training set of GSM8K
(Cobbe et al., 2021) as D and use the test set of
GSM8K as one of our evaluation set. Although we
do not use the MATH (Hendrycks et al., 2021) train
set to train the verifier, we utilize the MATH test
set as an additional evaluation set to validate the
effectiveness of the verifier in improving general
mathematical reasoning. Due to computational
resource constraints, we randomly sampled 500
examples from the original MATH test set for our
evaluation.

Hyperparameter Setting. We generally set β to
0.25 in Equation 1, α to 0.1 in Equation 2 and τ to
0.5 in Equation 6. We set N to 20 in Equation 5.
For top-k in Section 2.3, k is set to 5.

Model Details. We list the Llama3 and Qwen2.5
models used in our experiments along with their
corresponding HuggingFace model names in Table
5.

Model HuggingFace Model Name

Llama3-1B meta-llama/Llama-3.2-1B-Instruct
Llama3-3B meta-llama/Llama-3.2-3B-Instruct
Llama3-8B meta-llama/Llama-3.1-8B-Instruct
Qwen2.5-1.5B Qwen/Qwen2.5-1.5B-Instruct

Table 5: Llama 3 and Qwen2.5 models and their corre-
sponding HuggingFace model names.

Details of Training Verifiers. We train our ver-
ifiers using 8 NVIDIA A100 80GB GPUs. The
training process is conducted over 3 epochs with
a batch size of 128. We employ a learning rate of
2e-5 and utilize a cosine learning rate scheduler.

B Baselines

We implement four representative baselines:

Vanilla utilizes the original Llama model directly
for inference.

Supervised Fine-tuning (SFT) fine-tunes LLMs
to maximize the log-likelihood of the training data,
which in our case is the GSM8K training set. The
training process is conducted over 3 epochs with
a batch size of 128. We employ a learning rate of
2e-5 and utilize a cosine learning rate scheduler.

Direct Preference Optimization (DPO)
(Rafailov et al., 2024) optimizes language models

directly from desirable and undesirable outputs,
eliminating the need for an explicit reward model.
For desirable data, we use the GSM8K training set;
for undesirable data, a randomly sampled incorrect
output from the model serves as the undesirable
example. The training process is conducted over 1
epoch with a batch size of 128. We set β = 0.01
and employ a learning rate of 5e-7 and utilize a
cosine learning rate scheduler.

Self-reflection Prompting (Madaan et al., 2024)
involves first generating an output, followed by
prompting the model to assess whether its output
is correct and whether to revise the output. This
approach can be seen as introducing System 2 rea-
soning through prompting. The specific prompt is
shown in Table 6.

Please review your answer. If you think it is
correct, just repeat your answer. If you think
it is incorrect, please generate the correct
one.

Table 6: Prompt for Self-reflection prompting.

C Self-consistency Setup

For vanilla self-consistency, we use temperature
sampling with temperature τ = 1.0 for instruct
models to reach the best baseline performance (Shi
et al., 2024b). For combining LLM2 with self-
consistency, we simply set β to 0.25 in Equation 1,
α to 0.1 in Equation 2 and do temperature sampling
with temperature τ = 1.0.

D Comparison with Token-Level
Decoding Methods

To further demonstrate the effectiveness of our
process-based verifier, we compare LLM2 with
token-level decoding methods. Specifically, we im-
plement contrastive decoding (CD) (Li et al., 2022)
and DoLa (Chuang et al., 2023), and evaluate their
performance on the GSM8K and MATH datasets.
The results are shown in Tables 7 and 8.

For CD, we follow the hyperparameter settings
from Li et al. (2022); O’Brien and Lewis (2023);
Shi et al. (2024a), using Llama3-1B as the amateur
model. For DoLa, we follow the hyperparame-
ter settings from Chuang et al. (2023); Shi et al.
(2024b). The results reported for both CD and
DoLa represent their best performance across their
hyperparameter ranges. As shown, CD does not
yield significant improvements, primarily because
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CD requires an ideal amateur model (O’Brien and
Lewis, 2023; Shi et al., 2024b) which may not al-
ways exist. As for DoLa, while it proves effective
for factual knowledge tasks, it can have adverse
effects on reasoning tasks (Chuang et al., 2023; Shi
et al., 2024b).

Model Vanilla CD DoLa LLM2

Llama3-1B 50.3 - 47.2 57.8
Llama3-3B 78.9 79.8 76.1 82.7
Llama3-8B 85.8 86.4 83.0 88.0

Table 7: Results of token-level decoding methods on
GSM8K with Llama3 series.

Model Vanilla CD DoLa LLM2

Llama3-1B 24.2 - 23.6 28.8
Llama3-3B 41.2 42.0 39.6 44.2
Llama3-8B 45.8 46.4 43.2 48.6

Table 8: Results of token-level decoding methods on
MATH with Llama3 series.

E Accuracy of Process-based Verifier

We further analyze the accuracy of LLM2’s
process-based verifier in distinguishing between
ground-truth and non-ground-truth tokens. Specif-
ically, using the GSM8K test set, we pair each
question q with its answer a. Then we leverage the
vanilla models to perform next-token prediction
tasks on (q, a<t) and collect the non-ground-truth
token with the highest probability as ãt. Subse-
quently, we input (q, a<t, at) and (q, a<t, ãt) into
the corresponding verifier. A correct prediction is
determined by whether the verifier assigns a higher
score to (q, a<t, at). The results, presented in Ta-
ble 9, demonstrate the verifier’s effective token-
level accuracy.

F Case Study

We present two representative cases from GSM8K
using Llama3-1B to demonstrate how LLM2 im-
proves mathematical reasoning in Table 10 and 11.

In Case 1, LLM2 demonstrates its ability to pre-
vent computational errors. While the vanilla model
made an arithmetic error in calculating weekly egg
production (252 × 7 = 1754), LLM2 correctly com-
puted 1764 eggs per week, leading to the accurate
final answer of 294.

Model Llama3-1B Llama3-3B Llama3-8B

Accuracy 75.5 77.0 79.4

Table 9: Accuracy of LLM2 verifier (1B, 3B and 8B)
on GSM8K for the corresponding Llama3 model series.

In Case 2, LLM2 shows how it prevents logical
errors. The vanilla model overlooked Terry’s daily
consumption of 2 yogurts, while LLM2 correctly
accounted for both the unit price (1.25) and total
consumption (60 yogurts over 30 days), yielding
the correct answer of 75.

These cases demonstrate how LLM2’s verifica-
tion mechanism helps maintain both computational
and logical accuracy throughout the reasoning pro-
cess.
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Question Lloyd has an egg farm. His chickens produce 252 eggs per day and he sells them for $2 per dozen. How much does Lloyd make on eggs per
week?

Vanilla

## Step 1: Calculate the number of eggs produced per week
Since there are 7 days in a week, Lloyd’s chickens produce 252 eggs per day * 7 days = 1754 eggs per week.

## Step 2: Convert the number of eggs per week to dozens
Since there are 12 eggs in a dozen, Lloyd produces 1754 eggs / 12 = 146.8333 dozens of eggs per week.

## Step 3: Calculate the total amount of money Lloyd makes per week
Lloyd sells each dozen of eggs for $2, so he makes 146.8333 dozens * $2 = $292.6666 per week.

## Step 4: Round the total amount of money Lloyd makes per week to the nearest dollar
Rounding $292.6666 to the nearest dollar gives $293.

The final answer is: $\boxed{293}$

LLM2

## Step 1: Calculate the number of eggs produced per week
To find out how many eggs Lloyd produces per week, we need to multiply the number of eggs produced per day by 7. eggs_per_day = 252,
eggs_per_week = eggs_per_day * 7 = 252 * 7 = 1764.

## Step 2: Calculate the number of dozens of eggs produced per week
Since there are 12 eggs in a dozen, we need to divide the total number of eggs produced per week by 12 to find out how many dozens of eggs
Lloyd produces per week. dozens_per_week = eggs_per_week / 12 = 1764 / 12 = 147.

## Step 3: Calculate the total amount of money Lloyd makes per week
To find out how much Lloyd makes per week, we need to multiply the number of dozens of eggs produced per week by the price per dozen.
price_per_dozen = $2, total_money_per_week = dozens_per_week * price_per_dozen = 147 * 2 = 294.

The final answer is: $\boxed{294}$

Table 10: A case study from GSM8K using Llama3-1B, where LLM2 corrects the vanilla model’s arithmetic error.

Question Terry eats 2 yogurts a day. They are currently on sale at 4 yogurts for $5.00. How much does he spend on yogurt over 30 days?

Vanilla

## Step 1: Calculate the cost per yogurt
The cost per yogurt is $5.00 / 4 yogurts = $1.25 per yogurt.

## Step 2: Calculate the total cost for 30 days
The total cost for 30 days is $1.25 per yogurt * 30 days = $37.50.

The final answer is: $\boxed{37.5}$

LLM2

## Step 1: Calculate the cost of one yogurt
To find out how much Terry spends on yogurt per day, we need to calculate the cost of one yogurt. The current sale price of 4 yogurts for $5.00 is
$5.00 / 4 = $1.25 per yogurt.

## Step 2: Calculate the cost of yogurt over 30 days
Now that we know the cost of one yogurt, we can calculate the total cost of yogurt over 30 days. Terry eats 2 yogurts a day, so over 30 days, he
eats 2 * 30 = 60 yogurts. The total cost of yogurt over 30 days is 60 * $1.25 = $75.00.

The final answer is: $\boxed{75}$

Table 11: A case study from GSM8K using Llama3-1B, where LLM2 corrects the vanilla model’s logical error.
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