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Abstract

High-quality training data has proven cru-
cial for developing performant large language
models (LLMs). However, commercial LLM
providers disclose few, if any, details about the
data used for training. This lack of transparency
creates multiple challenges: it limits external
oversight and inspection of LLMs for issues
such as copyright infringement, it undermines
the agency of data authors, and it hinders scien-
tific research on critical issues such as data con-
tamination and data selection. How can we re-
cover what training data is known to LLMs? In
this work we demonstrate a new method to iden-
tify training data known to proprietary LLMs
like GPT-4 without requiring any access to
model weights or token probabilities, by using
information-guided probes. Our work builds on
a key observation: text passages with high sur-
prisal are good search material for memoriza-
tion probes. By evaluating a model’s ability to
successfully reconstruct high-surprisal tokens
in text, we can identify a surprising number of
texts memorized by LLMs.1

1 Introduction

For proprietary, legal, and reputational reasons, it
has become common practice for companies to re-
lease few, if any, details about the secret ingredient
— training data — powering their large language
models (LLMs). For example, the data used to
train Gemini is described only at a high level as
containing “data from web documents, books, and
code” (Gemini et al., 2023), while Llama-2 appar-
ently uses a “new mix of data from publicly avail-
able sources, which does not include data from
Meta’s products or services” (Touvron et al., 2023).
And even though training data is widely regarded
as one of the most valuable components in build-
ing high-performing LLMs (Gemini et al., 2023),

1Code/data available at https://github.com/
AbhilashaRavichander/information-probing
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Figure 1: Reconstruction probes to identify training data.
The probing pipeline involves (1) finding surprising
tokens (tokens which are difficult to predict based on
context), which can be accomplished using multiple
approaches including leveraging domain knowledge, or
relying on an external reference model, (2) constructing
reconstruction probes where high-surprisal tokens are
masked out and surrounding context tokens are kept
constant, and (3) measuring the reconstruction rate for
a given target model, i.e., the number of successful
reconstructions of masked tokens.

most companies only provide access to the over-
arching model without detailed information about
data sources or distributions, and certainly do not
provide direct access to the model training data.

This lack of transparency has both scientific and
societal implications, making it very difficult for
(1) researchers to evaluate the true capabilities and
limitations of model generalization (Balloccu et al.,
2024; Aiyappa et al., 2023), (2) external inspectors
to examine models for data misuse (Buick, 2024;
Longpre et al., 2024), and (3) data authors to un-
derstand and control how their data is used (Bom-
masani et al., 2023; Solove, 2024). To get around
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this issue, training data auditors have had to rely
on roundabout and genre-specific memorization
tests; for example, research investigating the use
of published books as training data have used char-
acter name cloze tests (Chang et al., 2023), which
mask out a specific word in a text, or prefix com-
pletion methods to see if models will exactly gen-
erate a piece of text given the first few words of
the text as a prefix (D’Souza and Mimno, 2023;
Karamolegkou et al., 2023a; Grynbaum and Mac,
2023). However, cloze tests make assumptions
about the pretraining data (e.g., the presence of
character names) and prefix completion relies on
heuristics for comparing model responses to the
original text, as models do not always produce the
completions verbatim.

In this work, we study the following problem:
given a text sample and a closed, black-box model,
is it possible to infer whether the sample may have
been memorized by the model? In this setting, a
practitioner only has access to inputs and outputs
from a model but no information about weights or
logits; this is currently the most practical setting,
as it mirrors the level of access provided to most
commercial LLMs today. Crucially, unlike prior
work, we focus not on specific data domains — e.g.,
books (Chang et al., 2023) or poems (Walsh et al.,
2024) — but on datasets spanning texts from mul-
tiple domains. We develop tests that are applicable
to diverse types of data, and that are more precise
than simple prefix probing.

To identify data that is known to models, without
access to token probabilities, we construct probes
based on the concept of surprisal (Shannon, 1948):
that a text passage may contain low-likelihood
tokens that are difficult to reconstruct based on
context alone. We then design cloze-style probes
where these tokens are masked, and quantify the
model’s ability to reconstruct the tokens. Success-
ful reconstruction would indicate that a model re-
lies on one of two mechanisms: (1) reconstruction
based on context, or (2) reconstruction based on
memorization. If the token is chosen such that re-
construction based on context is challenging (for
example, a minor character’s name in a passage
without any other identifying information), then the
remaining mechanism for successful reconstruction
is memorization.

These probes allow us to identify strong evi-
dence of memorization, finding that LLMs may be
memorizing more, and different, data than what
can be extracted by looking at a prefix comple-

tions alone. This is important because past work
has shown that models may perform much better
on memorized examples than they would other-
wise (Chang et al., 2023), and there have been
concerns that this problem may be affecting how
LLMs are evaluated (Oren et al., 2023). Our work
sheds light on the training data imprints in LLMs,
and the potential risks of this memorization such as
test set contamination. We hope our work fosters
a culture of greater data transparency in the LLM
ecosystem.

2 Background

Memorization tests. Memorization tests can be
developed using two main assumptions; the method
has access to underlying token probability distribu-
tions or it has no access the these distributions. In
this paper, we focus on the latter as it is the most
common setting seen with current LLMs. For this
setting, we focus on discoverable memorization,
where given part of a training data sample as input,
the model can recover the remainder of the sam-
ple (Carlini et al., 2022; Liu et al., 2023; Chang
et al., 2023; D’Souza and Mimno, 2023). Past work
has shown that about 1% of training datasets can be
recovered in this way (Carlini et al., 2022). How-
ever, these methods have limitations; cloze tests
have required that the data contain character names
or other specific features (Chang et al., 2023), and
prefix completion tests are less effective. Modern
large language models likely incorporate additional
posttraining or output filters to safeguard against
verbatim regurgitation, and hence prefix probing
methods often rely on heuristics (such as match-
ing the longest common subsequence between the
model generation and the orginal text) to compare
model completions (Karamolegkou et al., 2023a).

Surprisal. Surprisal (Shannon, 1948), or the in-
formation conveyed by a linguistic unit in context,
is a widely used measure in the computational mod-
eling of human language processing (Hale, 2001;
Levy, 2008). Briefly, the information content of a
word wt ∈ V that occurs in its context w<t ∈ V
can be denoted as:

I(wt) = − logP (wt|w<t) (1)

Predictable linguistic units carry lower information
and have lower surprisal, whereas units that are
unexpected transmit higher information, and thus
have higher surprisal. Recently, LLMs have been
studied as estimators for token-level surprisal, by
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examining their correlation with different psycho-
metric variables that predict human comprehension
behavior (McDonald and Shillcock, 2003; Good-
kind and Bicknell, 2018; Oh and Schuler, 2023;
Giulianelli et al., 2023). In this work, we use LLMs
to identify tokens carrying high information, to sep-
arate two distinct mechanisms that models can use
to reconstruct training data: (a) reconstructing from
surrounding context of a token, or (b) reconstruct-
ing through memorization of training data.

3 Methodology

Our work aims to surface evidence of text sam-
ples that have been memorized by models, and
we show that we can recover examples at higher
precision compared to previous approaches such
as prefix probing. Information-guided probes of-
fer a complementary view of identifying training
data that is memorized by models by identifying
tokens that are challenging to predict without mem-
orization. Concretely, information-guided probing
involves first identifying high-surprisal tokens, then
constructing probes, and finally quantifying the re-
construction capacity of target models. We discuss
details of this probing pipeline.

Probe design. Taking inspiration from prior
work (Chang et al., 2023), we formulate our probes
as a cloze task, where a single high-surprisal token
is masked out, and a target model is prompted to
predict the token that fills in the mask, as shown
in Figure 1. The exact prompts to the model, in-
cluding instructions (and in-context examples), are
described in Appendix B. This allows our probes to
not require access to token probabilities assigned
by a model, instead only leveraging model gener-
ations from the target model. Tokens are masked
out one at a time, while the remaining tokens in
context are held constant. Finally, for a given target
model, we examine the reconstruction rate, or the
number of high-surprisal tokens the target model
can reconstruct.

Information measures for token selection. In
practice, there are a variety of ways to measure
high-information carrying tokens. We consider
two different methods to measure the amount of
information being transmitted by a token x.

(1) The probability of wt given context c, where
hc is the hidden state of a model for the context c:

Prob(wt) = − logP (wt|hc) (2)

(2) The rank of wt in a vocabulary space V given
context c, or the number of more plausible alterna-
tives:

Rank(wt) = |{x : P (x|hc) > P (wt|hc), x ∈ V }|
(3)

The rank metric evaluates a token’s position in
the sorted probability distribution of all possible
tokens at a given masked position, rather than just
its raw probability. This captures information about
how many other tokens could plausibly appear in
that position. For example, consider a probabil-
ity distribution where an alternative token x is as-
signed the highest probability, receiving the vast
majority of the probability mass, and the token wt

is assigned the second highest probability. Here,
while traditional probability-based surprisal would
assign wt a high surprisal value due to its low like-
lihood, the rank metric would assign it a lower
surprisal value since there is only one more con-
textually appropriate choice. Yet another way of
identifying high-information tokens is by leverag-
ing domain knowledge (as we see in §4.1, this is
the case for character names in fictional text).

How do we extract these information measures?
Practically, we use a secondary model, known as
a reference model to extract (2) and (3), since we
do not have access to token probabilities from the
target model. In order to get accurate information
measures, in an ideal scenario we would want this
reference model to be one that has not memorized
the datapoint in question, in order for the token
probabilities to be correctly-calibrated and to not
be influenced by training on that particular data-
point. In practice, it is infeasible to find a large
language model that has not been trained for every
data sample. Instead, we seek to use a low-capacity
model as they memorize training data at signifi-
cantly lower rates (Carlini et al., 2022) to extract
information measures.

Accounting for context using knowledge filters.
In real-world domains, identifying what is surpris-
ing often requires world knowledge, but different
models may encode different sets of facts. Thus,
we employ an ensemble of models to correctly con-
textualize surprising knowledge. In practice, after
obtaining candidate surprise tokens from a refer-
ence model, we filter out those tokens which can
be correctly surmised by a secondary (or even an
ensemble of secondary) low-capacity instruction-
tuned LLM(s). We note that the knowledge filters
are low-capacity instruction tuned models, which
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differ from the the reference model which is a base
model. The instructions used for knowledge filters
are described in Appendix B. We use the token
probabilities from the reference models to identify
candidates for surprisal tokens, whereas we prompt
the knowledge filtering models to reconstruct these
candidate tokens after masking them, in order to
filter out which ones can be easily guessed in a
setting that closely matches the final target model.

Putting it all together. The full pipeline that
combines these components is shown in Figure 1.
To determine whether a piece of text has been mem-
orized, we first identify high-surprisal tokens using
a reference model. Optionally, a knowledge filter
may be applied to filter spurious high-surprisal to-
kens. These tokens are then masked one at a time,
and the target model is prompted to reconstruct the
masked token. We then measure the reconstruction
rate, or the number of successful reconstructions,
to identify if text has been memorized by a model.

4 Experiments

We are interested in identifying whether some text
d has been memorized by a model M . We investi-
gate two distinct risks associated with model mem-
orization: (1) the memorization of copyrighted
content such as works of fiction or news articles
(Fiction and New York Times), and (2) the con-
tamination of evaluation metrics through direct
memorization of test samples, which undermines
the assessment of a model’s capabilities by allow-
ing it to succeed through recall rather than by ap-
plying intended skills (Dataset Contamination).

We examine the performance of two closed
models: GPT-3.5 (gpt-3.5-turbo-0125), GPT-4
(gpt-4-0613), and an open-weight model: Llama-
2-70B (Touvron et al., 2023). Note that as of the
writing of this paper, Llama-2-70B is open-weight,
but details of its training data remain unknown. For
all the described experiments, we use BERT (110M
parameters) as the reference model. We hold out
1870 instances from BookMIA (Shi et al., 2023) to
tune hyperparameters such as the thresholds for se-
lecting surprising tokens. We select low-probability
or highly ranked tokens for our two information
measures (please refer to Appendix A for details of
all hyperparameters). To evaluate detection meth-
ods, we primarily use precision (the proportion
of correctly identified memorized samples among
all samples flagged as memorized). When com-
paring methods with similar precision scores, we

prefer those that identify more memorized sam-
ples. Therefore, we report the Fβ=0.1 score which
weights precision more highly than recall.

For tasks which examine the memorization
of copyrighted content (Fiction and New York
Times), we compare against prefix probing due to
it’s widespread use (Karamolegkou et al., 2023b;
Grynbaum and Mac, 2023). Prefix probing eval-
uates a model’s ability to generate similar contin-
uations to a piece of text given the first N tokens
as context. In practice, to overcome the limita-
tions of a model not generating an exact continu-
ation, evaluation can be undertaken by measuring
number of words in the longest common subse-
quence between the original text and the model
generation (LCS) (Karamolegkou et al., 2023a).
See Appendix E for examples of model-generated
continuations and details about our prefix probing
setup. For dataset contamination where samples are
typically shorter and less amenable to prefix prob-
ing, we compare against TS-SLOT Guessing (Deng
et al., 2024), which probes contamination in black-
box LLMs by first asking ChatGPT to identify ”in-
formative” words and then using these to make
masked-prompts for the target model.

4.1 Fiction

Memorization of fiction books has recently
been studied due to the potential legal con-
sequences of LLMs reproducing copyrighted
texts (Karamolegkou et al., 2023a). To test our
probes, we examine the results of three types of sur-
prise tokens: character names (Person) which are
known to be high-surprisal in fictional text (Chang
et al., 2023), low probability tokens from a refer-
ence model (Prob), and high rank tokens (Rank)
from a reference model. For prefix probing, we use
the first 50 words in the passage as input for the
target model (Appendix E).

We use the BookMIA dataset (Shi et al., 2023),
which consists of text excerpts from books pub-
lished in 2023 (after the knowledge cutoff of the
models we study) as examples of unseen text, and
passages from popular books as memorized exam-
ples (Chang et al., 2023). We use 8k examples from
the dataset as a test set. We consider a sample of
text to be memorized if at least two high-surprisal
tokens are reconstructed successfully by the tar-
get model, to avoid the effect of a single spurious
match (Appendix A).
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Tokens Selected by Probability

...over Avathar, or Araman, or Valinor, and plunge in the
chasm beyond the Outer Sea, pursuing his way alone amid
the grots and caverns at the roots of Arda...

Another sigh, and she let herself fall back, head cradled by
the soft loam. Her eyes closed...

Anne breathed deeply, and looked into the clear sky beyond
the dark boughs of the firs.

You’re safe. Benjamin can’t hurt you anymore.

Tokens Selected by Rank

That light lives now in the Silmarils alone. But Morgoth
hated the new lights...

He slammed down another dollar. “Don’t oversport yourself,
Ed,” Bootyny challenged.

Because I am committed to protecting my peace and you are
so far from my inner circle you’re basically a hexagon. Get
thee behind me.

Why, said Stubb, eyeing the velvet vest and the watch and
seals, you may as well begin by telling him that he looks a
sort of babyish to me, though I don’t pretend to be a judge.

Table 1: Examples of tokens detected as surprising
by rank and probability. These examples highlight the
diversity of tokens and texts, which go beyond character
names or other traditional cloze tests.

Results. Table 2 shows the precision, recall, and
Fβ=0.1 performance for Llama-2-70B, GPT-3.5,
and GPT-4. Our goal is to minimize the number
of false positive samples that are reported as mem-
orized text. Compared to suffix completions, we
find that surprisal tokens can more precisely iden-
tify memorized book passages for all three types of
models. Further, we find that surprisal tokens based
on domain knowledge (Person) can be highly in-
formative when available, though tokens obtained
from reference models are also informative.

We additionally show examples of the high-
surprisal tokens, selected either by rank or probabil-
ity from, in Table 1. These examples highlight the
diversity of words selected, which span from rare
tokens to character names to fictional place names
to frequent tokens used in unusual settings. These
high-surprisal tokens would not easily be found via
rule-based systems and can be applied across many
different text domains. Even if no character name
is available in a text, the surprisal metric can still
be used to identify other tokens for the cloze test.

4.2 New York Times Lawsuit

In 2023, the New York Times sued OpenAI for
allegedly training on articles published by the
Times (Grynbaum and Mac, 2023). We scrape the

Probe Token Type P R Fβ

Random - 50.2 50.5 50.2
Majority - 49.8 100 50.2

Target Model: GPT-3.5
LCS - 53.3 69.7 53.4
Surprisal Person 83.1 47.2 82.5
Surprisal Prob 75.8 11.7 71.9
Surprisal Rank 73.5 10.5 69.3

Target Model: GPT-4
LCS - 56.8 63.6 56.9
Surprisal Person 82.2 75.3 82.7
Surprisal Prob 81.9 61.8 81.6
Surprisal Rank 82.6 63.9 82.3

Target Model: Llama-2-70B
LCS - 53.2 34.7 52.9
Surprisal Person 75.8 29.6 74.6
Surprisal Prob 64.9 8.5 60.9
Surprisal Rank 64.4 7.0 59.6

Table 2: Identification results for GPT-3.5 (top), GPT-4
(centre), and LLama-2-70B (bottom) on fictional text,
with β=0.1. We bold the highest values and underline
the second highest.

evidence included in Exhibit-J of the New York
Times lawsuit against OpenAI (The New York
Times Company, 2023), consisting of one hundred
articles that GPT-4 allegedly memorized. We also
compare to negative samples, gathered from scrap-
ing hundred articles from CNN in 2023, which
appear after the reported knowledge cutoff date for
both models. For prefix probing, we use prefixes
provided in Exhibit-J of the lawsuit (Appendix E).

Results. As shown in Table 3, we evaluate both
GPT-3.5 and GPT-4 on the resulting dataset, and
use the Mistral-V2 (Jiang et al., 2023) and Alpaca-
7B (Taori et al., 2023) models as knowledge filters.
We find that (1) though the evidence in the lawsuit
is based on near-exact verbatim regurgitation of
the content of the New York Times articles — this
content is no longer exactly reproduced as of May
2024, likely because of additional post-training
procedures or output filters. (2) We find that while
verbatim prompting works better on GPT-3.5 with
very few correct guesses on surprise tokens, prob-
ing with surprise tokens is much more effective
when it comes to GPT-4 where the probe shows
fewer false positives.

4.3 Dataset Contamination

A growing concern for accurate evaluation of
LLMs’ generalization capabilities is the prospect
of dataset contamination, which is when evaluation
benchmark data has already appeared in LLM train-
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Probe Token Type P R Fβ

Random - 48.7 55.0 48.7
Majority - 50.0 100 50.3

Target Model: GPT-3.5
LCS - 59.8 61 59.82
Surprise Token Rank 53.5 23 52.8
Surprise Token Prob 51.5 17 50.5
Surprise Token+IF Rank 37.5 3 33.7
Surprise Token+IF Prob 40.0 4 36.7

Target Model: GPT-4
LCS - 46.7 50 46.8
Surprise Token Rank 64.7 44 64.4
Surprise Token Prob 58.1 36 57.7
Surprise Token+IF Rank 70.0 14 67.3
Surprise Token+IF Prob 54.8 17 53.7

Table 3: Identification results for GPT-3.5 and GPT-4 on
articles from the New York Times lawsuit, with β=0.1.
IF indicates application of a knowledge filter. We bold
the highest values and underline the second highest.

ing sets. Past work has demonstrated that this can
artificially inflate benchmark performance (Tou-
vron et al., 2023; Zhou et al., 2023; Jiang et al.,
2024). However, with proprietary models that limit
access to training data, there is limited recourse to
evaluate how contamination affects performance.

For our purposes, we study text contamina-
tion (Jiang et al., 2024), when the input text of
an evaluation sample is likely to have appeared in
the training data of a model. There is little gold
standard evidence of contamination for proprietary
language models. Recently, Deng et al. (2024)
looked for evidence of contamination by prompting
ChatGPT to identify informative words in dataset
samples and prompting target models to guess the
missing words (TS-SLOT). Specifically, they con-
duct a contamination experiment, where ChatGPT
is finetuned with data from the MMLU test set, and
the differences in Exact Match Rate between the
finetuned model and the original model is observed.
However, the extent to which these target models
were contaminated with those datasets in the first
place is unknown, and consequently the discrimi-
native power of the test also remains unknown. In
the section below, we describe a controlled setting
to examine the discriminative power of contami-
nation tests. We then apply the best-performing
tests to real-world datasets to surface evidence of
contamination.

Controlled contamination. We would like any
test of contamination to have discriminative power,
i.e., produce different values for contaminated

datasets and uncontaminated datasets.
Therefore, we construct a synthetic test to com-

pare the power of reconstruction probing with TS-
SLOT (Deng et al., 2024). We start with an uncon-
taminated dataset, and then deliberately contami-
nate the model to examine the discriminative power
of our method at detecting contamination. Thus,
we consider a benchmark dataset, Google-proof
QA or GPQA (Rein et al., 2023), where questions
were written by domain-experts in biology, physics,
and chemistry. The dataset was released in 2023—
beyond the knowledge cutoff of the target models
in this study. The combination of novel written
text and the release date of the benchmark2 leads
to our decision to consider GPQA as unlikely to be
contaminated for these models.

We then replicate the contamination experiment
from (Deng et al., 2024) as described in Table 4,
by finetuning GPT-3.5-turbo on the dataset. We
use the Mistral-V2 (Jiang et al., 2023) model as
a knowledge filter. We observe that all surprisal-
based approaches we study have greater discrimi-
native power than TS-Slot-based approaches, with
low-probability surprisal tokens with instruction-
filtering having the greatest discriminative power.

Probing for contamination. We then apply
this method on two other datasets (Common-
senseQA (Talmor et al., 2019) and ARC-
Challenge (Clark et al., 2018)) to probe for evi-
dence of contamination across our three target mod-
els (Table 5). We apply these probes on the test
sets for both datasets.

We find that we are largely unable to find evi-
dence of contamination for the models we study
on CommonsenseQA. For Arc-Challenge, we do
observe slight evidence of contamination with GPT-
4-0613. Qualitative analysis indicates that some
examples of high-surprisal tokens are correctly pre-
dicted by GPT-4-0613, such as “photosynthesis” in
“Which of these is produced during [MASK]?”, and
“HCL” in “If [MASK] is added to Zn, what would
be an expected product?”

5 Analysis

Memorization extraction methods are comple-
mentary. Overall, our experiments show that all
three tested methods uncover distinct examples of
memorized text that are not identified by any of

2And not only the release date, as benchmarks may be
based on text which predate the benchmark itself, such as
Wikipedia articles from previous years.
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TS-SLOT (EM)
(Deng et al., 2024)

Reconstruction
Probing Prob (EM)

Reconstruction
Probing Rank (EM)

Reconstruction
Probing Prob IF (EM)

Reconstruction
Probing Rank IF (EM)

#Tokens 448 448 448 258 207

gpt-3.5-turbo 38.84% 16.96% 12.28% 6.59% 7.25%
gpt-3.5-turbo

(contaminated)
88.84% 89.51% 66.07% 84.82% 78.64%

∆ 50% 72.55% 53.79% 78.23% 71.39%

Table 4: Exact Match rates for TS-SLOT (Deng et al., 2024) and information-guided probing for ChatGPT, with and
without contamination. IF indicates application of a knowledge filter. The discriminative power of reconstruction
probing is greater in all settings, including picking low probability tokens or tokens with a large number of
alternatives.

Dataset/Model Llama-2-70B GPT-3.5 GPT-4

# Tokens 104/86 104/86 104/86
CommonsenseQA 0.96%/0.0% 6.73%/2.33% 4.81%/1.16%

# Tokens 105/51 105/50 105/51
ARC 11.43%/1.96% 24.76%/6.0% 22.86%/13.73%

Table 5: Exact Match Rates for information-guided
probing on two datasets: CommonsenseQA and ARC.
We report # low-probability probes/# of low-probability
probes that pass instruction filtering, as well as the exact
match rates on these probes.

the other methods in this study. This indicates
that a suite of complementary methods may be
most suitable to uncover the training data known
to black-box large language models.

Larger models reconstruct more tokens. We
examine the effect of model size on the capability
to recover high-surprisal tokens (Figure 3). For
the Llama-2 family of models, we plot the pro-
portion of high-surprisal tokens recovered by the
model at 7B, 13B and 70B parameters for samples
from fictional text. We observe that larger models
can recover many more high-surprisal tokens (∼7x
more tokens for the 70B model compared to the 7b
model), indicating that surprisal probes are likely
to be much more effective at recovering memorized
data on large models compared to small models.

Token probabilities contain more information
about memorization. We would like to under-
stand the upper bound on performance for identify-
ing training data in LLMs. We therefore focus on a
large model that does allow practitioners to access
token probabilities on fictional text: Llama-2-70B
(Table 6). Our work relates closely to membership
inference methods, which seek to identify if data
has been used to train a model, or if a model has
never seen the data. Memorized training exam-
ples would form a subset of the model’s training

Probe Precision Recall F-Beta

Surprise Tokens (Rank) 64.4 7.0 59.6
Surprise Tokens (Prob) 64.9 8.5 60.9
Surprise Tokens (Person) 75.8 29.6 74.6

PPL 96.5 9.7 88.6
PPL/ZLib 98.8 9.9 90.7
Min 5% 99.5 10.0 91.4
Min 10% 98.5 9.9 90.5
Min 20% 98.0 9.8 90.0
Min 30% 97.3 9.8 89.3
Min 40% 96.8 9.7 88.9

Table 6: Comparison of information-guided probing to
membership inference methods that access token proba-
bilities, for Llama-2-70B. Membership inference meth-
ods can be viewed as an upper bound — both seeking
to identify all training data and non-members (and not
just memorized training data), and having access to the
token probability distribution from the target model.

data. Thus, we study three kinds of membership
inference methods: the perplexity of the sample,
the perplexity callibrated with the zlib compres-
sion entropy (Carlini et al., 2021) and the Min-K
method (Shi et al., 2023). We find that the gap
between methods that have full access to token
probabilities, and surprisal-based methods is about
17 points in Fβ . Notably, token probabilities repre-
sent a rich source of information in two aspects: (1)
they are from the target model itself, (2) they are
drawn from a much larger sample space than the
binary information provided by whether a model
could reconstruct a token (or not). When available
for models, we advocate using token-probability
based methods for membership inference.

6 Discussion and Future Work

Our goal is to provide a foundation for greater data
transparency in the ecosystem surrounding large
language models. We briefly discuss our findings,
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(a) Overlap between all instances iden-
tified as memorized by GPT-4 on fic-
tional text, for prefix probing (verba-
tim), and surprisal (person and prob)

(b) Overlap between all instances cor-
rectly identified as memorized by GPT-
4 on fictional text, for prefix probing
(verbatim), and surprisal (person and
prob)

Figure 2: Overlap between instances identified as memo-
rized for GPT-4, by surprisal-based probes and verbatim
probes

and provide directions for future research.

The need for multiple methods to surface train-
ing data. In our work, we find that we are able
to identify text that is known to even proprietary
black-box LLMs, and that the examples of memo-
rized text that were successfully identified can dif-
fer between probing methods. This indicates that
the community would benefit from a range of such
approaches, and that focusing on state-of-the-art
detection performance should not be the only goal.
Further, recent work has investigating combining
signals for various training data identification meth-
ods in order to determine if a model was trained
on a given document (Maini et al., 2024). This
suggests that developing diverse, complementary,
probes can help us better understand how data was
used to train models.

Answering questions about model generaliza-
tion. While LLMs have achieved state-of-the-art
performance on several benchmarks, the extent of
their generalization capabilities remains an open
question. This is in part due to an inability to char-
acterize train-test overlap: that is, making sense
of what data a model was trained on and how it

Figure 3: Token recovery rate as a function of model
size for Llama-2 7B, 13B, and 70B. We observe that
as model size increases, the ability to recover low-
likelihood tokens also increases.

may relate to the data a model needs to perform
inference on. Our work adds to the growing body
of work in shedding light on test-set contamina-
tion, which is particularly critical for proprietary
LLMs — where the reasons behind performance
improvement on standard benchmarks are opaque.

Data transparency in the LLM ecosystem. Our
work is in spirit related to studies that have called
for better data documentation in machine learn-
ing (Liu et al., 2024b; Bender and Friedman,
2018; Gebru et al., 2021) or offered large-scale
search and indexing mechanisms for pre-training
corpora (Elazar et al., 2024; Liu et al., 2024a).
While previous efforts focus on supervised, accessi-
ble datasets, this work focuses on inferring training
data of models, especially in cases where there is
currently no data transparency.

Why not only work with open models? In this
work, our central focus is closed commercial mod-
els that do not offer access to token probabilities.
The reason for this choice is that this is the dom-
inant paradigm for many popular models today.
While there is an argument to be made to limit sci-
entific study only to open-source models, studying
proprietary models is also important for multiple
reasons: (1) they are in frequent use by the general
public, and it is critical to understand how they may
be using people’s data, (2) open models are often
required to match the capabilities of proprietary
models in order to be considered in the same class,
so it is important to understand where performance
improvements of proprietary models comes from.

Influence of data on models. Little is known
about how datapoints in training affect model be-
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havior downstream. A systematic understanding
of these relationships could enable more principled
approaches to data curation, and help optimize for
specific behaviors by identifying which types of
training examples are most effective for it. We
hope by identifying training data that is memorized
by models, we enable further studies of how data
affects model behavior, and which data most affects
model behavior.

7 Related Work

Our work closely relates prior lines of work in
the literature that involve training data exposure
of models, and data transparency. Typically, such
work has either examined copyright issues, or in-
vestigated evidence of dataset contamination— our
study explores both of these issues, and we discuss
prior work in both here.

Copyright violation risks. Copyright issues can
arise at various steps in the generative AI pipeline,
especially in language models, including data col-
lection (Min et al., 2023; Shi et al., 2023; Chang
et al., 2023; Karamolegkou et al., 2023a), model
training (Vyas et al., 2023), and generation and de-
ployment (Meeus et al., 2024; Ippolito et al., 2023).
Our work relates to the first step by surfacing evi-
dence of training data memorization from the mod-
els output, with only API-level access. Duarte et al.
(2024) propose DE-COP, a membership inference
method that can work on black-box LLMs. This
method is intended for document-level membership
inference which is not the focus of our study, and
works by aggregating evidence across passages in
a longer document. This method is also expensive
and relies on proprietary LLMs (see Appendix C,D
for cost and performance comparisons).

Dataset contamination. Work involving data
contamination and test-case leakage have garnered
more attention recently as such contamination
could muddy the conclusions made from existing
benchmarks (Oren et al., 2023; Golchin and Sur-
deanu, 2023; Weller et al., 2024; Xu et al., 2024;
Sainz et al., 2024). Although this line of work
also infers membership, it differs from our work
in two manners: (1) the information-guided probes
can be applied to even proprietary large language
models with no access to token probabilities from
the model, and (2) test-set contamination meth-
ods sometimes take advantage of meta-data and
artifacts other than the data itself, for instance the

order of samples (Oren et al., 2023), whereas in
our mode we do not have access to such meta-data.

Verbatim memorization and membership infer-
ence. Our work is also related to membership
inference attacks (MIAs), which are often used as
a proxy to measure the amount of training data
leakage in machine learning models (Shokri et al.,
2017). These attacks usually entail thresholding
a membership score, which is metrics including
LOSS (Yeom et al., 2018), likelihood-ratio (Car-
lini et al., 2021; Mireshghallah et al., 2022), Zlib
Entropy (Carlini et al., 2021), curvature (Mattern
et al., 2023), and Min-k% probability (Shi et al.,
2023), among others. More recent work (Duan
et al., 2024) has shown that membership inference
attacks for LLMs show near-random performance,
partly due to models being trained on large datasets
with very few iterations. In contrast, our work
seeks to find evidence of memorization of data-
points, and identify data that has left a strong im-
print in the model. Previously, evidence of such
memorization has largely been found by examin-
ing model generations for long sequences that are
likely from the training data (Carlini et al., 2021),
or by prompting the model to generate continua-
tions of a piece of text given the first part of text as
input (Karamolegkou et al., 2023b). Modern LLMs
likely incorporate additional posttraining or output
filters to safeguard against verbatim regurgitation,
indicating the need for a suite of complementary
methods to uncover evidence of memorization, this
present work offers a unique and complementary
approach to identify this evidence.

8 Conclusion

In the current landscape of closed LLMs, the lack
of documentation surrounding training data re-
mains a major obstacle for model auditing and
for scientific exploration. In this work, we con-
sider one of the most restrictive (and yet common)
access scenarios: models which do not permit ac-
cessing pretraining data, model weights, or logits.
We construct a probing strategy that only requires
input-output access to a model, and that can be
applied using much smaller and cheaper language
models. We show that we can use these probes to
identify documents in the training data of commer-
cial LLMs. We hope this effort leads to greater
transparency in the LLM ecosystem, and empow-
ers data contributors to have greater agency when
interacting with AI systems.
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9 Limitations

We aim to highlight potential limitations of our
work. First, we recognize that the task of training
data identification can be framed in various ways.
For instance, should paraphrases be treated as mem-
bers or non-members of the training set? Similarly,
what about derivative works of copyrighted content
that may still retain information from the original
source? How much of the content needs to be mem-
orized to qualify as a member? As such, due to
the inherent ambiguity in defining this task, we are
uncertain about the precise “nearness” of the data
we identify as memorized.

Second, our approach is heavily dependent on
model memorization. As a result, if a model does
not memorize the training data, our method will
not be effective. Consequently, as we discuss in
Section 5, extracting memorized data using recon-
struction probing is likely to only be effective for
large and capable instruction-tuned models. We
encourage future research to adapt our method to
probes that do not rely on memorization, potentially
by calibrating recovery rates using rare or generic
tokens. Additionally, we do not leverage metadata
about the text samples for any of the methods de-
scribed in this work (such as authors of passages
of fictional text). It is possible that leveraging such
metadata can improve the precision of identifying
memorized data. A further limitation is that we
used datasets from previous studies, which intro-
duces potential differences between members and
non-members, such as temporal gaps or varying
frequencies in the training data (Duan et al., 2024).
We also acknowledge a limitation in the reference
models used in our experiments: these models may
not possess the same knowledge as the model be-
ing tested, which could introduce bias into results.
In addition, these models may have already been
trained on the sample being probed, which could
affect the distribution of tokens that are identified
as high-surprisal. An additional constraint of this
method is the reliance on identifying high-surprisal
tokens. It may be the case that a sample of text
is sufficiently generic that such high-surprisal to-
kens cannot be found, or that spurious examples of
high-surprisal tokens are found— possibly due to
limitations of the reference model. Here, a practi-
tioner may want to explore alternative methods to
identify memorized data.

Lastly, we recognize that closed-source models
inherently exhibit some degree of variance, which

can make it difficult to replicate our findings across
different models or systems. Companies can also
implement post-training strategies to circumvent
the effectiveness of our method. As a result, apply-
ing our probes to future models may prove challeng-
ing, especially in environments where proprietary
changes to models are not disclosed.
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A Knowledge Cutoffs and
Hyperparameters

We select all target models for this study
(gpt-4-0613, gpt-3.5-turbo-0125, and Llama-
2-70B) such that they have a knowledge cutoff date
before 2023.

We use a validation set of 1870 examples from
BookMIA to be used for tuning all hyperparame-
ters, which is held out separately from the 8000 ex-
amples we evaluate on. We select surprisal tokens
which have a log likelihood <-12, or a rank>2000.
The number of high-surprisal tokens can vary in

any given piece of text, we cutoff at 10 tokens
for text where more than 10 high-surprisal tokens
are available (selecting the lowest probability or
highest rank tokens that pass the threshold). For
fiction datasets, we consider a sample to be mem-
orized if atleast two or more such tokens can be
reconstructed by the target model (to overcome the
effect of a single spurious match). For the New
York Times dataset, we additionally use knowledge
filters since it is a real-world domain.

B Prompts

Inspired by (Chang et al., 2023), we use the fol-
lowing prompt for probing fictional text and NYT
articles:

You have seen the following passage in your training data. What
is the word that fills in the [MASK] token in it? This word is a
noun, verb, adjective, or adverb (not a pronoun, preposition or
conjunction). You must make a guess, even if you are uncertain.

Example:
Input: Stay gold, [MASK], stay gold.
Output: <word>Ponyboy</word>

Input: The door opened, and [MASK], dressed and hatted, entered
with a cup of tea.
Output: <word>Gerty</word>

Input:

Inspired by (Deng et al., 2024), we use the fol-
lowing prompt for test set contamination:

Complete the sentence in one word:
Input:
Reply the answer only.

We use the following two prompta for knowl-
edge filtering.

What is the word that fills in the [MASK] token in the following
passage?
Passage:

What are 100 words that can fill in the [MASK] token in the follow-
ing passage?
Passage:

C Probe Cost

We attempt to estimate the cost of running
information-guided probes. For a given input of
N tokens, this cost would scale with the number
of high-surprisal tokens K being probed. Let us
assume that these tokens are cutoff at K = 10
as we do in this work, and let us assume out-
put tokens are constrained to 5 tokens (though
models may provide longer responses). Then for
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any provider where input tokens cost X$/token,
and output tokens cost Y$/token (for many LLM
providers X<Y), the cost of running information-
guided probes would be 10 ∗ ((N + 123) ∗ X +
5 ∗ Y ), where 123 is the number of tokens in
the instructions for probing fictional text using
the tokenizer for GPT-4. In comparison, prefix
probing (Karamolegkou et al., 2023a) would cost
(50 + 13) ∗X + (N − 50) ∗ Y , assuming that 50
tokens are provided to the model as a prefix. We
estimate DE-COP (Duarte et al., 2024) for a sample
would cost N ∗4∗24∗X+24∗Y , not taking into
account the cost of paraphrasing the input three
times with Claude, making it more expensive than
the other probes if N > 15.

D Adapting DE-COP to Passages

DE-COP (Duarte et al., 2024) is a method intended
to determine whether a piece of text has appeared
in a model’s training data. In the fully black-box
setting, detecting copyrighted content is posed as a
multiple-choice question answering task (MCQA)
task, where a target model must correctly pick out
the training sample, from three paraphrases of that
training sample. Though this method is intended
for document-level membership inference by aggre-
gating information across several passages in a long
document, we attempt to do a head-to-head com-
parison to information-guided probing by consid-
ering the DE-COP score assigned to each passage.
We subsample 600 passages from the BookMIA
dataset due to the cost of the DE-COP method, and
then follow the original procedure of using Claude-
2 (Anthropic, 2023) to paraphrase each passage
three times. The prompt used for paraphrasing
is ‘Rewrite this entire text (all sentences with no
exception) expressing the same meaning using dif-
ferent words. Aim to keep the rewriting similar
in length to the original text. Do it three times.
The text to be rewritten is identified as <Example
A>. Format your output as: Example B: <insert
paraphrase B> Example C: <insert paraphrase C>
Example D: <insert paraphrase D> Example A:’.
For each of these samples, we then oversample
24 times by creating every possible combination
of options for the 4-option multiple choice ques-
tion. To evaluate memorization, we compute the
proportion of times the model picks the BookMIA
passage instead of its paraphrased counterparts in
the multiple-choice question answering task. We
prompt the model with the following prompt that

Probe Precision Recall Fβ

Majority 51.5 100 51.75
DE-COP-Passage 58.38 63.11 58.43
Surprisal (Person) 85.47 47.57 84.8

Table 7: Identification results for GPT-3.5 (top) on 600
samples from the BookMIA dataset, with information-
guided probing and DE-COP, with β=0.1.

doesn’t use any extra metadata about the sample
‘You are entering a multiple choice questions exam.
You should directly answer each question by choos-
ing the correct option. Be concise and straight to
the point in your answer. Output only the letter cor-
responding to the correct answer. Question: Which
of the following passages is verbatim from your
training data? Options:’. We use 100 examples
from the same validation set to compute the thresh-
old to identify memorized samples in DE-COP, and
evaluate on the remaining 600 samples. We also
evaluate information-guided probing on the same
600 samples. These results are shown in Table. 7
for GPT-3.5. We find that in the same head-to-
head setting where both probes only have access to
a text snippet, information-guided probing is more
precise.

E Verbatim Completion and Prefix
Probing

Prefix Probing We describe the details of per-
forming classification based on the prefix-probing
approach wherein models are prompted with the
first N tokens of a piece of text and asked to con-
tinue it, and the generated continuation is then
compared to the original piece of text. For fic-
tion, we use the first 50 words as the prefix that
is fed into the model, and for New York Times,
we use the prefix specified in Exhibit-J of the New
York Times vs OpenAI lawsuit for each article (The
New York Times Company, 2023). For prefix prob-
ing with fiction, we add the instruction ‘Please
complete the following text with more than 150
words:’ before the prefix, based on the prompt
used in Karamolegkou et al. (2023a). For prefix
probing on New York Times articles, we add the in-
struction ’Complete exactly and don’t hallucinate’
before the prefix, based on successful reproduction
of parts of a New York Times Article using this
prompt.3 We use a logistic regression classifier fit

3https://x.com/srush_nlp/status/
1740746983512609088
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on the LCS values from the validation set to predict
memorized samples on the test set.

Examples of verbatim completions We provide
some qualitative examples of model completions to
prefix probes in Table 8. We observe that models
rarely generate the exact continuations as the orig-
inal content in response to prefix probes, demon-
strating the need for better metrics to assess model
generations for evidence of memorization.

F Books known to ChatGPT

We include examples of high-surprisal tokens re-
covered from popular books by ChatGPT in Table
9. We find several such instances where tokens
that are difficult to predict based on context alone
without prior knowledge of the material, are suc-
cessfully recovered by GPT-3.5 and GPT-4.

G TS-SLOT

We apply the filtering heuristics upon TS-SLOT,
based on only keeping informative words that are
nouns, adjectives, or verbs, and obtain only slightly
different results (Table 10).

H Additional Surprisal Measures

In this work, we consider two information mea-
sures for identifying high-surprisal tokens: proba-
bility, and rank. For fictional text, we additionally
consider named entities. However, future work
could find ‘surprising’ tokens in multiple ways in-
cluding (1) leveraging domain-specific knowledge
to identify statistically rare or distinctive phrases
(e.g., URLs, or usernames in an online forum—
character names are an example of this kind of
heuristic.). (2) Leveraging n-gram statistics from
large text corpora, (3) Manual annotations. In addi-
tion, future work could extend our method to iden-
tify surprising spans of text, or surprising structure
in text to evaluate evidence of memorization.
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Category Prompt Original Continuation Model Model Response
Fiction Please complete the fol-

lowing text with more
than 150 words: Dexter
said . It was hard to tell
whether he actually be-
lieved what he was say-
ing . “ Anything to rejuve-
nate the brand in Urmau ,
” Brianna said , finally get-
ting it . She stuffed a too-
big forkful of salad in her
mouth . Genial Sr. took a
sip

of his soup and Manuel followed suit
. Genial watched them nervously ,
scratching his cheek with his empty
hand . “ Delicious , ” Genial Sr. pro-
nounced , smiling at his son . “ You
have a better chef than I do. ” “ Only
the finest , ” Genial said , and looked at
me as though I were the chef myself . “
It ’ s right , Ezra ? ” “ Only the finest ,
” I echoed . The conversation stalled as
we ate and were poured more wine . I
entertained the thought that this dinner
would last forever , that I would grow
old and die at Genial ’ s giant dining
room table

GPT-
4

of his aged whiskey, his eyes
never leaving Dexter. The ten-
sion in the room was palpa-
ble, the air thick with anticipa-
tion. "Dexter," Genial Sr. be-
gan, his voice a gravelly whisper
that commanded attention, "I’ve
seen many a brand rise and fall
in my time. It’s not just about
rejuvenation, it’s about under-
standing the pulse of the market,
the desires of the consumers." ...

Fiction Please complete the fol-
lowing text with more
than 150 words: not cer-
tain whether his sister had
been born then . Fi-
nally they had emerged
into a noisy , crowded
place which he had real-
ized to be a Tube station .
There were people sitting
all over the stone-flagged
floor , and other people ,
packed tightly together ,
were sitting

on metal bunks , one above the other
. Winston and his mother and father
found themselves a place on the floor ,
and near them an old man and an old
woman were sitting side by side on a
bunk . The old man had on a decent
dark suit and a black cloth cap pushed
back from very white hair : his face
was scarlet and his eyes were blue and
full of tears . He reeked of gin . It
seemed to breathe out of his skin in
place of sweat , and one could have
fancied that the tears welling from
his eyes were pure gin . But though
slightly drunk he was also suffering
under some grief that was genuine and
unbearable . In his childish way Win-
ston grasped that some terrible thing ,
something that was beyond forgiveness
and could never be remedied , had just
happened . It also seemed to him that
he knew what it was . Someone whom
the old man loved – a little granddaugh-
ter , perhaps – had been killed ...

GPT-
3.5

on the benches lining the walls.
The air was thick with the
smell of sweat and the sound
of chatter and footsteps echoed
off the tiled walls. The boy
felt overwhelmed by the sheer
number of people surrounding
him, each lost in their own
world, yet all connected by the
shared experience of navigating
the bustling underground net-
work.As he stood there, trying to
make sense of his surroundings,
a wave of uncertainty washed
over him. He couldn’t remem-
ber how he had ended up in the
Tube station or where he was
supposed to be going. Panic
started to rise within him, but
he forced himself to stay calm
and think logically. He scanned
the station

New York
Times

Complete exactly and
don’t hallucinate. WASH-
INGTON — While senior
Trump administration of-
ficials said this week that
Iran has been actively in-
terfering in the presiden-
tial election, many in-
telligence officials said
they remained far more
concerned about Russia,
which in recent days has
hacked into state and lo-
cal computer

networks in breaches that could allow
Moscow broader access to American
voting infrastructure. The discovery
of the hacks came as American intel-
ligence agencies, infiltrating Russian
networks themselves, have pieced to-
gether details of what they believe are
Russia’s plans to interfere in the presi-
dential race in its final days or immedi-
ately after the election on Nov. 3. Of-
ficials did not make clear what Russia
planned to do, but they said its opera-
tions would be intended to help Presi-
dent Trump, potentially by exacerbat-
ing disputes around the results, espe-
cially if the race is too close to call...

GPT-
4

networks in an escalation of its
sophisticated cyberattacks. The
officials, who spoke on the con-
dition of anonymity to discuss
classified information, said that
Russia’s hacking efforts were
aimed at disrupting the election
process, sowing discord, and
undermining confidence in the
democratic process. They also
noted that Russia has a history
of interfering in U.S. elections,
most notably in 2016. The
Trump administration officials,
on the other hand, have been
focusing on Iran’s alleged in-
terference, accusing the country
of sending threatening emails to
voters and spreading disinforma-
tion online...

Table 8: Examples of verbatim completions by GPT-3.5 and GPT-4 to prefix probes, where part of the input is
provided to the model and the model is asked to generate a continuation. We observe that we rarely see model
responses that reflect the exact continuations.
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Book Title Probes Masked To-
ken

GPT-3.5
Response

The Silmar-
illion

n the white ships of the Teleri and landed in the Firth of Drengist,
and there burned the ships at Losgar. Chapter 11 Of the Sun and
Moon and the Hiding of Valinor It is told that after the flight
of [MASK] the Valar sat long unmoved upon their thrones in
the Ring of Doom; but they were not idle, as Fanor declared in
the folly of his heart. For the Valar may work many things with
thought rather than with hands, and without voices in sil

Melkor Melkor

Emma a common way, like every body else, and if there is any thing to
say, to sit down and write a letter, and say just what you must, in
a short way; and another, to write verses and charades like this."
[MASK] could not have desired a more spirited rejection of Mr.
Martin’s prose. "Such sweet lines!" continued Harriet–"these
two last!–But how shall I ever be able to return the paper, or say
I have found it out?–Oh! Miss Woodhouse, what ca

Emma Emma

Great Ex-
pectations

and disappeared. "Now, Mr. Pip," said Mr. Jaggers, "attend,
if you please. You have been drawing pretty freely here; your
name occurs pretty often in [MASK]’s cash-book; but you are
in debt, of course?" "I am afraid I must say yes, sir." "You know
you must say yes; don’t you?" said Mr. Jaggers. "Yes, sir." "I
don’t ask you what you owe, because you don’t know; and if
you did know, you w

Wemmick Output:
Wemmick

Hitchhiker’s
Guide To
The Galaxy

"Yeah." "Er, what is ..." "A teaser? Teasers are usually rich
kids with nothing to do. They cruise around looking for planets
which haven’t made interstellar contact yet and buzz them."
"Buzz them?" [MASK] began to feel that Ford was enjoying
making life difficult for him. "Yeah", said Ford, "they buzz
them. They find some isolated spot with very few people around,
then land right by some poor soul whom no one’s ever going to
believe a

Arthur I believe the
word that
fills in the
[MASK]
token in the
passage is
"Arthur."

Table 9: Examples of book passages where GPT-3.5 recovered high-surprisal tokens

TS-SLOT - Filtered (EM)
(Deng et al., 2024)

Reconstruction
Probing Prob (EM)

Reconstruction
Probing Rank (EM)

Reconstruction
Probing Prob IF (EM)

Reconstruction
Probing Rank IF (EM)

#Tokens 442 448 448 258 207

gpt-3.5-turbo 38.91% 16.96% 12.28% 6.59% 7.25%
gpt-3.5-turbo

(contaminated)
88.91% 89.51% 66.07% 84.82% 78.64%

∆ 50% 72.55% 53.79% 78.23% 71.39%

Table 10: We apply the additional filtering strategy proposed by (Deng et al., 2024), wherein only nouns, adjectives
and verbs are retained (TS-SLOT-Filtered). We find this produces similar results on GPQA.
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