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Abstract

While significant progress has been made on
the text-to-SQL task, recent solutions repeat-
edly encode the same database schema for ev-
ery question, resulting in unnecessary high
inference cost and often overlooking crucial
database knowledge. To address these issues,
we propose You Only Read Once (YORO),
a novel paradigm that directly internalizes
database knowledge into the parametric knowl-
edge of a text-to-SQL model during training
and eliminates the need for schema encod-
ing during inference. YORO significantly re-
duces the input token length by 66%-98%.
Despite its shorter inputs, our empirical re-
sults demonstrate YORO’s competitive perfor-
mances with traditional systems on three bench-
marks as well as its significant outperformance
on large databases. Furthermore, YORO excels
in handling questions with challenging value
retrievals such as abbreviation.

1 Introduction

The text-to-SQL task aims to convert natural lan-
guage questions (NLQs) into executable SQL state-
ments, enabling users without SQL expertise to
query databases effortlessly. Existing text-to-SQL
systems typically encode both a linearized database
schema, which sometimes appended with partial
database content (Lin et al., 2020), and an NLQ
as input to generate a SQL query grounded in the
database (Scholak et al., 2021; Li et al., 2024a).
However, this conventional approach presents sev-
eral limitations, as illustrated in Figure 1.

First, the repeated encoding of the same schema
for every question significantly increases the com-
putational inefficiency, especially when dealing
with large database schemas. Second, while the
linearized schema input represents the high-level
structure of the database, it may still omit crucial
information, such as all possible cell value choices,
relationships among columns and cell values, and

Lengthly input

Repeated encoding

Information Omission

Wrong retrieval /
High retrieval cost

 Trad.: ~1979 avg tokens ▹ long DB sequence 
 YORO: ~50 avg tokens 

 Trad.: YES   ▹ encoding the same DB schema
 YORO: NO             

 Trad.: YES                   ▹ limited DB content
 YORO: NO

 What are the salaries in American League?
 Trad.: League (✘) / costly during inference
 YORO: AL (✔) 

Aspect Comparison

Figure 1: Comparison of traditional method and YORO.

domain-specific knowledge. Third, when append-
ing schema with partial database content, existing
text-to-SQL systems usually require a cell value
retrieval phase for each question. This process in-
curs additional retrieval costs and can lead to errors
if retrieval misses occur due to challenging value
scenarios like abbreviations in the question (Chang
et al., 2023), resulting in incorrect SQL generation
(e.g., it might fail to retrieve the value AL given
American League in the NLQ).

To address these limitations, this work intro-
duces a novel training paradigm for the text-to-SQL
task, dubbed You Only Read Once (YORO). As il-
lustrated on the left side of Figure 2, YORO takes a
fundamentally different approach by first conduct-
ing a database knowledge acquisition phase. This
phase comprehensively understands the database
content and directly internalizes database informa-
tion into the parametric knowledge of a text-to-SQL
model. We achieve this by fine-tuning a language
model on synthetic text-to-SQL data generated for
target databases.

The key advantage of YORO is evident at infer-
ence time, where it can convert NLQs into SQL
queries grounded in the database without requir-
ing schema encoding. This streamlined process
contrasts sharply with the multiple steps and po-
tential pitfalls of the conventional approach. Fur-
thermore, we propose training text-to-SQL expert
models, with each expert specializing in a specific
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Prompt Spider Dev KaggleDBQA BIRD Dev
CodeS 713 609 1979

PICARD 137 116 340

YORO 41 40 47

Table 1: Average input length comparison between
YORO and two representative input formats from state-
of-the-art models, PICARD and CodeS, across three
datasets. Inputs are tokenized using Mistral tokenizer.

target database. This approach is motivated by
the observation that while recent studies focus on
training a single text-to-SQL model to generalize
across cross-domain databases, database schemas
can be highly dynamic and ambiguous with many
nuances. For instance, the same column name can
have different meanings in different databases. We
hypothesize that having expert models can mitigate
the potential cross-database knowledge conflicts
and improve overall performance.

Our extensive evaluation on popular text-to-SQL
benchmarks, including Spider (Yu et al., 2018),
KaggleDBQA (Lee et al., 2021), and BIRD (Li
et al., 2024b), demonstrates that YORO performs
competitively compared to traditional approaches
across different model choices, LLaMA-7B (Tou-
vron et al., 2023) and Mistral-7B (Jiang et al.,
2023a). Crucially, YORO achieves this perfor-
mance while maintaining significantly reduced in-
put lengths. Table 1 shows the input length com-
parison between YORO and two representative in-
put formats from state-of-the-art models, PICARD
(Scholak et al., 2021) and CodeS (Li et al., 2024a),
across all three datasets. YORO’s input length
is 66-98% shorter than that of previous models.
This significant reduction in input length translates
to improved computational efficiency, particularly
for large databases like those in the BIRD dataset,
where YORO’s input length remains consistent re-
gardless of database size. Moreover, YORO’s de-
sign allows it to learn database values from syn-
thetic data during the knowledge acquisition phase,
eliminating the separate value retrieval step during
inference and learning challenging cell values.

Our contributions are three-fold. First, we pro-
pose a novel text-to-SQL paradigm, YORO, where
expert models acquire database knowledge during
the training phase and utilize this knowledge to
answer questions without having database access
in inputs during inference phase. This results in
significantly shorter inputs and eliminates depen-
dence on value retrievers. Second, experimental

results demonstrate that YORO achieves compara-
ble performance with traditional methods. Third,
our case studies reveal that YORO significantly
outperforms traditional methods in large databases
and excels at handling questions with challenging
value retrievals.

2 Related Work

Text-to-SQL. Fine-tuning has recently been the
primary method for achieving satisfying perfor-
mance for text-to-SQL (Zhong et al., 2017; Yu
et al., 2018; Scholak et al., 2021). However, with
the emergence of closed-source LLMs like GPT-4
and Claude, their powerful zero-shot and in-context
learning capabilities have made prompting-based
solutions a strong baseline. (Chen et al., 2023; Pour-
reza and Rafiei, 2024; Chang and Fosler-Lussier,
2023; Zhang et al., 2024; Gao et al., 2023; Wang
et al., 2023a). For example, Pourreza and Rafiei
(2024) decomposes the parsing problem into sev-
eral tasks such as schema linking, leveraging GPT-
4 to solve each task by providing exemplars. How-
ever, the effectiveness is limited by the quality
of the LLMs, and it is not possible to improve
the performance of these closed-source models di-
rectly. More recently, the continued training of
LLMs has been revisited for its potential to further
boost text-to-SQL parsing performance, as seen
with models like CodeLlama (Roziere et al., 2023)
and CodeS (Li et al., 2024a). All of these methods
still require schema information during inference,
as well as running cell value candidate retrieval and
column rankers when dealing with large databases.

Context Compression. Context compression
aims to make the LLM inference more efficient
by either compressing and shortening the instruc-
tion (Fei et al., 2023; Jiang et al., 2023b) or encod-
ing the context into compact representation (Cheva-
lier et al., 2023; Mu et al., 2024; Xiao et al., 2023).
In this work, we aim to shorten database contents
via knowledge ingestion where the contexts are
"stored" in model’s parameters.

Single database semantic parsing can be natu-
rally viewed as a compressed schema setting for
Text-to-SQL (e.g., ATIS (Hemphill et al., 1990),
GEO (Zelle and Mooney, 1996)). However, this
approach requires a large amount of annotated ex-
amples, whereas we synthesize data. Additionally,
these studies did not focus on storing database con-
tents into model weights.
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Figure 2: Overview of YORO. YORO comprehends and internalizes database knowledge through fine-tuning
text-to-SQL expert models on synthetic NLQ and SQL data. Comparing with traditional methods, it leads to
significantly shorter inputs and does not rely on the value retrieval step.

Synthesizing data for Text-to-SQL. Data aug-
mentation improves text-to-SQL systems, espe-
cially in the domain generalization. One effective
approach is the skeleton-based method, which ex-
tracts SQL skeletons and populates placeholders
to generate diverse SQL queries for training set’s
databases (Zhong et al., 2020; Hu et al., 2023).
Subsequently, a SQL-to-Text generator such as
T5 or ChatGPT is employed to produce the NLQ
and SQL pairs. Another line of work synthesizes
data for databases from new domains (Wang et al.,
2023b; Li et al., 2024a). These studies still require
providing database contents as part of the input.

3 YORO

YORO encompasses a training stage for database
comprehension and knowledge acquisition, fol-
lowed by an inference stage focused on question
comprehension and SQL generation. As illus-
trated in Figure 2, we propose a straightforward ap-
proach to acquire database knowledge: synthesize
a vast collection of high-quality NLQ-SQL pairs
for the target database, then continue training large
language models to become Text-to-SQL experts.
Once the YORO expert model is ready, we can use
it for online inference without accessing schema
information. In contrast, traditional Text-to-SQL
systems require constructing a database index and
retrieving cell values, a time-consuming process
that also incurs index maintenance costs. After cell
value retrieval, we must serialize the schema and
construct a significantly longer input for model in-
ference. In the next sections, we will delve into

the intricacies of our prompt design, training phase,
and inference phases.

3.1 Prompt Structure

Our prompt closely resembles the standard text-
to-SQL prompts, yet it excludes all schema in-
formation (e.g., table names, column names, col-
umn aliases, column types, foreign key relation-
ships) and cell value candidates. We only retain the
database ID (e.g., department_management). This
approach prevents the model from merely copying
database contents from the input when constructing
a SQL query and instead compels it to internalize
the database contents within the model weights for
each database ID. In contrast to standard text-to-
SQL prompts (Table 2), our prompt is remarkably
simple and results in significantly shorter inputs.

In contrast, the CodeS prompt (Li et al., 2024a)
incorporates database information as extensively
as possible, including table/column names, column
types, sampled cell values, retrieved cell values,
as well as primary and foreign key relationships.
The underlying design principle is to ensure that
all relevant information is accessible within the
prompt. However, the PICARD prompt (Scholak
et al., 2021) adopts a more simplified approach,
omitting column types, sampled cell values, and
foreign key relationships. Despite this, its input re-
mains lengthy, and it adds complexity to constraint
decoding during beam search.

3.2 Database Knowledge Acquisition

Databases often comprise numerous tables,
columns, and a vast number of rows, with each
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row containing relevant domain knowledge. It is a
non-trivial task for a large language model (LLM)
to efficiently digest and compress all this informa-
tion into the model weights. More importantly, the
LLM must also learn how to leverage this acquired
information for the text-to-SQL task. To bridge the
gap between database knowledge acquisition and
text-to-SQL generation, we propose the method of
continued pre-training with synthetic NLQ-SQL
pairs. In this approach, we encode the database
structure and cell value information within syn-
thetic SQL queries, and then utilize these NLQ-
SQL pairs for model training. This method enables
the LLM to not only absorb the database informa-
tion but also learn how to apply it in generating
accurate SQL queries from NLQs.

In line with Zhao et al.’s (2023) method, we em-
ploy skeleton-based SQL synthesis and condition
NLQ generation based on synthetic SQLs. We
leverage in-context learning with an LLM for all
three stages: 1) SQL skeleton extraction, 2) SQL
generation and 3) NLQ generation. We start with
zero-shot prompt and gradually add generations as
few-shot exemplars. We describe each step with
examples below. See Appendix A for the prompts
used at these steps.

SQL Skeleton Extraction. From SQL queries
in a training set, we extract SQL skeletons by ab-
stracting table names, column names, aliases, and
cell values, resulting in a variety of skeletons. This
diversity ensures a broad range of SQL patterns
in subsequent steps, while also ensuring that the
resulting synthetic SQL queries will have SQL pat-
terns similar to those in the training set.

SQL: select avg(unitprice) from track

Skel.: select avg(col_name) from table_name

SQL Generation. Using the skeletons from the
previous step, we generate SQL queries for the
target database by prompting an LLM to fill in
placeholders within each skeleton. Multiple SQL
queries are derived from each skeleton. We instruct
the LLM to skip generating SQL queries for skele-
tons that are not applicable to the database (e.g.,
insufficient tables to meet the required number of
tables). Each generated SQL query is executed,
and those that result in execution errors are filtered
out. We present the database contents in the CodeS
format within the prompt, providing metadata and
sample cell values for columns. We use a high tem-

perature setting for in-context learning to ensure
SQL queries with extensive coverage of different
tables, columns, and cell values.

Skel.: select avg(col_name) from table_name

SQL1: select avg(tonnage) from ship

SQL2: select avg(lost_in_battle) from ship

NLQ Generation. Finally, given a synthetic SQL
from the previous step, we generate an NLQ. Inter-
estingly, we observed in our preliminary study that
in-context learning produces high-quality NLQs,
whereas Zhao et al.’s (2023) T5-based NLQ gener-
ator often yields unnatural NLQs, especially with
complex SQL queries. In contrast, in-context learn-
ing adapts more effectively to complex queries,
resulting in more natural and accurate NLQs. We
believe that high-quality NLQs are crucial not only
for accurate text-to-SQL learning but also for a
correct understanding of the database.

SQL: select avg(tonnage) from ship

NLQ: What is the average tonnage of the ships?

3.3 Domain Experts
YORO employs expert models to acquire knowl-
edge for each target database. Unlike previous
approaches that aim to train a single model capable
of generalizing to unseen database schemas, our
solution can be adapted to a company’s proprietary
databases without requiring new human-labeled
data. Although training multiple expert models
is more computationally expensive than training a
single model, our solution can significantly reduce
the cost of online inference. For example, it saves
64% of FLOPS compared to PICARD and 93%
compared to CodeS in the 90th percentile on Spi-
der. Since model training is a one-time cost while
inference will be continuous, YOLO will achieve
better overall efficiency.

While target databases are typically unseen, the
synthetic data described in Section 3.2 profiles the
target databases, allowing us to transfer domain
knowledge to expert models. To train an expert
model, we combine the synthetic data of the target
database and the original training data (i.e., out-of-
domain data), excluding its database contents, to
enhance data quality and diversity. We hypothesize
that balancing training data allows expert models
to mitigate cross-database knowledge conflicts. Fi-
nally, each fine-tuned expert processes the test data
routed to it by the database ID during inference.
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Prompt Example

CodeS Schema :
table department , columns = [ department.creation ( text | values : 1789 , 1947 ) , department.ranking ( int | values : 1 , 2 ) ,
department.budget_in_billions ( real | values : 9.96 , 11.1 ) , department.num_employees ( real | values : 30266.0 , 115897.0 ) ,
department.department_id ( int | primary key | values : 1 , 2 ) , department.name ( text | values : State , Treasury ) ]
...
foreign keys : management.head_id = head.head_id, ... matched contents : department.name ( State )

PICARD Schema : department_management | department : department_id , name , creation , ranking , budget_in_billions ,
num_employees | head : head_id , name , born_state , age | management : department_id , head_id , temporary_acting

YORO Construct the SQL by using the column names you memorized for DB ID department_management.

Table 2: Examples of different prompts for the same data in Spider Dev, each followed by the same NLQ.

4 Evaluation

4.1 Experimental Setup
Evaluation datasets. For evaluation, we employ
three widely used datasets for Text-to-SQL, Spider
(Yu et al., 2018), KaggleDBQA (Lee et al., 2021),
and BIRD (Li et al., 2024b)1. Spider is known
to have table and column names that are simple
and explicit while the other two datasets use more
realistic databases containing abbreviated and am-
biguous column names. BIRD’s databases also
contain cell values in various formats that poses
new challenges for models. We use the official dev
sets as our test set because our method needs to
access the target database for the knowledge acqui-
sition. In addition, prior studies on BIRD often use
oracle knowledge during training and testing, but
this is not a realistic setting. Therefore, we do not
use oracle knowledge in our BIRD experiments.

Evaluation metrics. Text-to-SQL results are re-
ported in execution accuracies. We provide both
micro and macro averages across all databases. Un-
less otherwise specified, we always present micro
average results.

Implementation details. We use Anthropic’s
Claude-3-Sonnet model to generate synthetic data.
For SQL skeleton extraction and NLQ generation,
the temperature is set as 0.9 and 0.0 respectively2.
We set higher temperature for SQL generation since
we want to obtain diverse SQLs.

As noted in Section 3.3, we mix the synthetic
data with original training data to train each ex-
pert model. Since KaggleDBQA lacks a training
set, we use the Spider’s training set for KaggleD-
BQA experiments. We use Mistral-7B (Jiang et al.,
2023a) and LLaMA-7B (Touvron et al., 2023) as
the base models. We optimize these models us-
ing AdamW (Loshchilov and Hutter, 2018) for 300

1See Appendix B for statistics on these datasets.
2See Appendix C for statistics on synthetic data.

steps for Mistral and 500 steps for LLaMA with a
batch size of 128 through gradient accumulation, a
maximum learning rate of 2e-6 for Mistral and 2e-5
for LLaMA, and a linear warmup of 0.04 ratio fol-
lowed by a cosine decay of the learning rate. The
texts over 4096 tokens are trimmed during training.

4.2 Results and Discussion

Baselines. We employ as our baselines models
trained on the input formats of CodeS and PICARD,
which contain database information as described
in Section 3.1. We retrieved cell value candidates
for the CodeS format but not for PICARD, to in-
vestigate performance differences given varying
amounts of database information. This establishes
two baselines: the former with full information
access and the latter with minimal access.

Results of text-to-SQL for Spider, KaggleD-
BQA, and BIRD are shown in Table 3. As we can
see, using Mistral as the base model consistently
outperforms LLaMA. Additionally, all macro and
micro average results obtained via CodeS baselines
are higher than PICARD baseline results across the
three datasets, except for the LLaMA versions in
Spider and BIRD. This implies that various meta-
data and retrieved values presented in the CodeS
prompt are often helpful. We speculate that a model
might need to be powerful enough to fully utilize
the rich information in the CodeS prompt and that
even the LLaMA versions will perform well more
consistently with CodeS prompt on all datasets if
inputs are shortened via schema filtering.

Baselines vs YORO. Results of YORO are pre-
sented in Table 3. Our goal is to determine if a
model without database access during inference
can compete with or even surpass the performance
of traditional methods.

First, Our method significantly outperforms all
PICARD baselines by 1.9% to 12.0% with Mistral
and 6.5% to 18.0% with LLaMA in terms of micro
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Method
Spider Dev KaggleDBQA BIRD Dev
Mic. Mac. Mic. Mac. Mic. Mac.

Mistral-7B
CodeS 80.2 83.5 44.5 43.4 35.7 34.1

PICARD 76.1 81.3 37.1 35.3 22.0 22.1

YORO 78.5 81.8 39.0 39.0 34.0 34.1
LLaMA-7B

CodeS 66.9 71.9 27.9 24.5 11.7 12.0

PICARD 67.7 71.9 22.8 22.3 12.6 11.8

YORO 74.2 76.9 34.2 34.3 30.6 30.4

Table 3: Performance of CodeS, PICARD, and YORO
in Spider Dev, KaggleDBQA, and BIRD Dev, using
LLaMA-7B and Mistral-7B. Bold indicates the highest
accuracy, and underlined denotes the second highest.

average accuracy. Although YORO’s inputs lack
table and column names during inference, train-
ing expert models on NLQ-SQL pairs improves
performances, even surpassing PICARD baselines.

Second, when comparing YORO with CodeS
baselines, we observe mixed results between us-
ing LLaMA and Mistral. With LLaMA, YORO
consistently outperforms the corresponding CodeS
baselines by 6.3-18.9% in terms of micro average
accuracy. This indicates that LLaMA makes it
easier for YORO to answer questions using its ac-
quired database knowledge instead of relying on
the database contents in the input. On the other
hand, YORO using Mistral underperforms CodeS
baselines by up to 1.7-5.5% micro average. How-
ever, a closer examination of individual database
performance in Appendix D reveals that there ex-
ists several YORO experts performing as well as or
better than their CodeS counterparts.

Finally, in the comparison of YORO with PI-
CARD and CodeS in BIRD, YORO often shows
either a smaller performance gap or significant im-
provement compared to the other datasets. This
trend in BIRD can be explained by two factors. 1)
the databases in BIRD are larger than those in the
other two datasets, as discussed in Section 4.4. 2)
baselines struggle with the metadata in CodeS due
to abbreviated columns and random cell values in
BIRD. Our method uses synthetic NLQs to help
models comprehend these abbreviated columns and
cell values. This can also be seen as enhancing
YORO’s ability to handle complex databases by
distilling the Claude’s knowledge.

While our discussion of these results has focused
on micro average accuracy, the same trends can be
observed for macro average accuracy for the most
part. Overall, these results are very encouraging,

Spider Dev (%) KaggleDBQA (%) BIRD Dev (%)

0.48 0.37 0.07

Table 4: Percentage of gold SQLs in each test set that
exactly match any synthetic SQLs used to train our
models. For BIRD, a string match is used, while for
Spider and KaggleDBQA, a parsing-based match (i.e.,
exact match in Spider evaluation) is employed. The
proportion is very small, under 0.5% in each dataset.

especially considering that the new paradigm is a
highly challenging setting.

To further validate our findings, we examine
whether synthetic data significantly overlaps with
test sets, causing YORO to memorize the gold
labels rather than genuinely acquiring database
knowledge. Table 4 presents the percentage of
gold SQLs in each test set having an exact match
with any synthetic SQLs used to train our models.
It shows the ratio is less than 0.5%, indicating that
YORO is indeed learning database contents.

Different synthetic data sizes. Recent studies
(Li et al., 2023; Zhou et al., 2024) show the im-
portance of quality and quantity of training data.
Here, we investigate the effectiveness of scaling up
the synthetic data by training models with varying
amounts of synthetic data.

Results of YORO with Mistral on three datasets
are shown in Figure 3, where YORO is trained on
the mixed data of the original training data and
different amount of synthetic data. Mistral is a
strong base model as can been seen from prior ex-
periments. Without any synthetic data (i.e., using
only original training data), the model achieves 0.5-
19.0% points. Surprisingly, performances improve
by 20.7-46.8% points only by being provided with
one hundred synthetic data for each target database.
We see the smaller slope after one hundred syn-
thetic data. This suggests the importance of aug-
menting the synthetic data, although a substantial
quantity may not always be necessary.

Standard fine-tuning vs LoRA. We further en-
hance memory efficiency by employing the low-
rank updating mechanism, known as LoRA (Hu
et al., 2021). Employing a shared foundation model
with a set of LoRA adaptors for different com-
panies could increase cost efficiency. Moreover,
recent work (Chen et al., 2024) enables efficient
multi-LoRA serving. Dettmers et al. (2024) demon-
strates LoRA’s ability to compete with standard
fine-tuning performances in some tasks. However,
unlike typical NLP tasks, YORO requires learning
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Figure 3: Performance of YORO trained with varying
amounts of synthetic data using Mistral-7B.

Method Spider Dev KaggleDBQA BIRD Dev

Mistral-7B

Standard 78.5 39.0 34.0

LoRA 78.1 37.5 33.8

LLaMA-7B

Standard 74.2 34.2 30.6

LoRA 73.2 33.1 28.4

Table 5: YORO with standard vs LoRA fine-tuning.

domain-specific knowledge (i.e., database knowl-
edge) that has not been seen during pre-training.
The question is: would LoRA still compete with
standard fine-tuning in such a new paradigm?

Results of standard fine-tuning and LoRA3 ver-
sions of YORO with Mistral and LLaMA on three
datasets are shown in Table 5. Although signifi-
cantly less parameters are updated in LoRA, it lags
behind the standard fine-tuning version by only 0.2-
2.2% points. This suggests that YORO is effective
even with parameter-efficient fine-tuning.

Different model sizes. The LLaMA series en-
compasses a range of models differing in size. In
this experiment, we aim to investigate how varying
the size of these models affects YORO’s perfor-
mance while utilizing LoRA fine-tuning due to
computational limitations.

Results of YORO using LLaMA with varying
sizes are shown in Table 6. We observe that model
scaling generally leads to higher accuracies in the
new paradigm. However, in contrast to prior work,
which often shows significant improvements with
increasing LLaMA model size, our results might
be a more moderate enhancement.

3We set LoRA r = 128, α = 128 with a learning rate of
2e-4. LoRA modules are added to all linear layers of the base
model following Dettmers et al. (2024). All other parameters
are the same as ones used for standard fine-tuning experiments.

Model Spider Dev KaggleDBQA BIRD Dev

LLaMA-7B 73.2 33.1 28.4

LLaMA-13B 74.4 35.3 31.1

LLaMA-33B 74.9 36.0 32.9

Table 6: Performance of YORO across different LLaMA
model sizes, all fine-tuned using LoRA.

Spider BIRD

YORO 74.1 44.4

– Original data 67.9 37.3

– Synthetic data 15.2 0.37

– Database ID 71.3 41.3

– Domain experts 67.5 40.5

Table 7: Ablation results for YORO using Mistral-7B.

4.3 Ablations.

To evaluate the contribution of the different compo-
nents in our full model, we show in Table 7 ablation
results of YORO using Mistral-7B, which we ob-
tain by removing one component at a time and
retraining the model. We evaluate on holdout sets
from the training data of Spider and BIRD, using
20 and 11 training databases, respectively.

Original training data. First, we remove the
original training data, meaning that each expert
is trained solely on synthetic data. As we can see
in Table 7, Text-to-SQL accuracy drops by 5.3-
7.9% points. This indicates that it is useful to mix
original training data with synthetic data.

Synthetic data. Ablating the synthetic data
means that all experts are trained using only the
original training data (i.e., out-of-domain data).
This ablation resembles the part of the prior ex-
periment where we trained models with different
amounts of synthetic data. Comparing with the
full model results, Text-to-SQL accuracy drops by
33.5-59.5% points. This suggests the effectiveness
of using our synthetic data as well as the difficulty
of the new paradigm.

Database ID. Next, we remove database ID from
YORO’s prompts during training and testing. Re-
call that an expert is trained on a mix of original and
synthetic data, requiring the model to link questions
with database knowledge from multiple sources.
Text-to-SQL accuracy drops by 2.1-6.5% points,
showing the important role played by database ID.

Domain experts. Finally, we ablate domain ex-
perts by training a single model on the mixture of
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(1) CodeS Input: database schema : ... templates.template_type_code ( char(15) | values : PP , BK ) , ...
Question: Show the number of documents that use the PowerPoint template.
(✗) CodeS Output: select count(*) from documents as t1 join templates as t2

on t1.template_id = t2.template_id where t2.template_type_code = ’ PP ’
(✓) YORO Output: select count(*) from documents as t1 join templates as t2

on t1.template_id = t2.template_id where t2.template_type_code = ’ PPT ’

(2) CodeS Input: database schema : ... bond.bond_type ( text | values : - , = ) , ...
Question: Find the triple-bonded molecules which are carcinogenic.
(✗) CodeS Output: select molecule.molecule_id from molecule inner join bond on

molecule.molecule_id = bond.molecule_id where bond.bond_type = ’ - ’ and molecule.label = ’+’
(✓) YORO Output: select t1.molecule_id from molecule as t1 inner join bond as t2 on

t1.molecule_id = t2.molecule_id where t1.label = ’+’ and t2.bond_type = ’ # ’

Table 8: Examples of challenging value retrieval scenarios. The value retriever finds no value in these examples.

synthetic data for all target databases. Text-to-SQL
accuracy drops by 5.9-6.8% points, showing do-
main experts’ positive contribution. The expert ap-
proach helps efficiently transfer the domain knowl-
edge for the target database through synthetic data.

4.4 Case Studies.
We explore further strengths of YORO alongside
its significantly shorter inputs.

Large databases. YORO can handle large
databases consisting of many columns and ta-
bles without making input longer during inference,
while traditional methods might suffer from long
input sequence both in terms of accuracy and in-
ference cost. To examine performances with large
databases, we construct our evaluation set using
a subset of the BIRD dev set, ensuring that each
database contains at least 90 columns. This ac-
counts for 583 of 1534 examples4.

Results of CodeS, PICARD, and YORO using
Mistral-7B are 26.1%, 18.4%, and 31.6%, respec-
tively. Despite YORO underperforming CodeS on
the entire BIRD dataset as shown in Table 3, it sur-
passes both CodeS and PICARD when handling
large databases. This advantage over CodeS may
arise in part from its input truncation when exceed-
ing a maximum length, which is common due to
CodeS’s longer inputs with large databases. While
schema filtering and model quantization are poten-
tial memory-saving techniques, our method does
not require schema filtering during inference for
handling massive databases, and it can also seam-
lessly integrates with model quantization.

Challenging value retrievals. In certain in-
stances, YORO successfully generates accurate
queries for questions involving challenging value

4The Spider dev set and KaggleDBQA do not contain such
large databases.

retrieval. Many state-of-the-art models rely on
string matching to align indicators in the question
with database values, potentially leading to failures
when encountering specific instances like abbre-
viations such as "PPT" in Example (1) in Table
8. While CodeS input may occasionally include
the required value among its example column val-
ues, this is not always the case. In contrast, YORO
may have encountered the required value in syn-
thetic data during training, allowing it to effectively
leverage this knowledge to address such challeng-
ing cases. In addition to abbreviation, Examples
(2) presents another challenging case where the re-
triever needs to find the database value "#" from the
indicator "triple-bonded" in the question5. While
the baseline model might attempt to guess the value
based on the world knowledge it acquired during
pre-training, this approach is not always success-
ful. These examples highlight a potential advantage
of YORO in handling challenging value retrieval.
However, further research with a more extensive
dataset is needed to validate this quantitatively.

Baselines might be enhanced by employing
a more sophisticated retriever (e.g., embedding-
based) with the drawback of higher retrieval costs.
However, YORO’s strength lies in its independence
from such a retrieval step. This is particularly ad-
vantageous when dealing with massive databases
containing numerous cell values.

4.5 Error Analysis

Although YORO outperforms all PICARD base-
lines for text-to-SQL, it still underperforms CodeS
baselines when using Mistral-7B. To better un-
derstand what areas of improvement are needed,
we present some sample errors made by our top-

5The bonds of type "triple-bonded" is conventionally rep-
resented as "#" in many chemical notation systems.
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(1) Database: concert_singer | stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id ,
name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id ,
year | singer_in_concert : concert_id , singer_id
Question: What are the locations and names of all stations with capacity between 5000 and 10000?

YORO Output: select t1.location, t1.name from station as t1 where t1.capacity between 5000 and 10000

(2) Database: car_1 | continents : contid , continent | countries : countryid , countryname , continent | car_makers : id , maker ,
fullname , country | model_list : modelid , maker , model | car_names : makeid , model , make | car_data : id , mpg ,
cylinders , edispl , horsepower , weight , accelerate , year
Question: How many models does each car maker produce? List maker full name, id and the number.
YORO Output: t1.fullname, t2.id , count(*) from car_makers as t1 join model_list as t2 on t1.id = t2.maker group by t2.maker

(3) Database: GeoNuclearData | nuclear_power_plants : id, name, latitude, longitude, country, status , reactortype, reactormodel,
constructionstartat, operationalfrom, operationalto, capacity, lastupdatedat, source
Question: How many nuclear power plants are in preparation to be used in Japan?

YORO Output: select count(*) from nuclear_power_plants where status = ’ Preparation ’ and country = ’Japan’

Table 9: Examples of the errors made by YORO with Mistral-7B. PICARD inputs are also presented as reference.

performing YORO setup, which uses Mistral-7B
as the base model.

While this may not be surprising, our model
occasionally fails in correctly acquiring database
knowledge. First, the model uses a table name that
does not exist in the database when constructing
a SQL query, such as "station" in Example (1) in
Table 9, where the correct table name is "stadium".
In this example, the model misuses "stations" from
the question as the table name. Second, the model
get confused about which table a column belongs
to. In Example (2), the "t2.id" column in the gener-
ated query is a column that does not appear in the
"model_list" table even though this column name
exists in other tables such as the "car_makers" and
"car_data" tables. Third, the model recalls an in-
correct cell value. In Example (3), the cell value
"Under Construction" for the "status" column is
necessary to construct a correct query. Instead, the
model incorrectly uses "preparation" from the ques-
tion as the cell value "Preparation". Currently our
system still makes mistakes with these cases.

5 Conclusion

Motivated in part by recent studies on compress-
ing instructions and contexts, this work introduced
YORO, a new training paradigm for Text-to-SQL.
It enables database knowledge acquisition by fine-
tuning domain experts on text-to-SQL synthetic
data and answer questions without having database
access. YORO outperformed PICARD baselines
with Mistral and LLaMA while also surpassing
CodeS baselines with LLaMA.

Limitations

There are three limitations. First, database contents
could dynamically change, which requires our pro-

posed method to retrain a model occasionally. To
update the database information already stored in
LLM’s parametric knowledge after database op-
erations such as inserts, updates or deletions, it
might be more desirable to use a knowledge edit-
ing technique on the trained model rather than fully
fine-tune a base LLM from scratch. Second, some
enterprise-level databases may involve thousands
of tables, which could challenge YORO’s scala-
bility and limit its applicability to medium-sized
databases. Third, some databases could share a
similar domain, potentially leading to beneficial
synergy by training an expert on synthetic data gen-
erated from those databases, but we have trained
an expert on synthetic data from a single target
database and original training data without consid-
ering domain combinations. We leave these three
components to a future work.
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A Prompts for Synthetic Data Generation

The prompt used for extracting SQL skeleton, SQL
generation, and NLQ generations are shown in Ta-
ble 10-12, respectively.

B Dataset Summary

Table 13 shows statistics on Spider, KaggleDBQA,
and BIRD.

C Statistics on Synthetic Data

Table 14 shows statistics on SQL skeletons and
synthetic data used for our experiments. As noted,

KaggleDBQA lacks the training set and uses the
skeletons from Spider.

D Performances on Individual Databases

Results of CodeS baseline, PICARD baseline and
YORO on individual databases in three datasets
are shown in Table 15. C, P, and Y columns cor-
respond to CodeS, PICARD, and YORO, respec-
tively. When using Mistral-7B, although CodeS
generally shows higher average accuracies com-
pared to YORO, several YORO experts still per-
form as well as or better than their CodeS counter-
parts: ten out of twenty databases in Spider, three
out of eight databases in KaggleDBQA, and three
out of eleven databases in BIRD.
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You are a SQL expert. Please read the following SQL statement and extract a SQL skeleton by masking table names,
column names, cell values, and table alias.

<example>
{examples}
</example>

<requirements>
1. The final results of schema links should be marked with <skeleton></skeleton>.
2. Just return the SQL skeleton in the response, do not output explanations.
3. Use the next format: table_name, column_name, alias, value, and pattern.
4. If column name comes with alias in the original query (e.g., t1.column_name), just keep column_name.
</requirements>

SQL: {sql}

Table 10: Prompt for extracting SQL skeletons.

Assume you are a SQL expert, please read the following schema and fill in the SQL skeleton with appropriate table names,
column names and cell values:

<example>
{examples}
</example>

SQL skeleton: {skeleton}

Given the above SQL skeleton, please generate as many valid SQL queries as possible, following these requirements:
<requirements>
1. Each line should only have one SQL, no list number in the beginning, no line breaks within SQL.
2. Use the provided schema and cell values to construct meaningful queries that fit the skeleton.
3. Explore different combinations of table names, column names, and cell values to create a diverse set of queries.
4. Ensure that the generated queries are syntactically correct and compatible with the provided schema.
5. Ensure that the generated queries are efficient without redundancy (e.g. unnecessary table join)
while also following the provided SQL skeleton.
6. If a query needs table alias, always use t1, t2, t3, ...
7. If you’re using table aliases in a query, make sure to consistently use those aliases throughout the entire query.
8. Ensure that the generated queries are natural and understandable. For example, taking max of id column could be
unnatural unless the id value has a meaning other than being an identifier.
9. If the skeleton pattern is not applicable to the provided schema to generate natural queries, only return "Not Applicable".
</requirements>

Table 11: Prompt for generating SQLs.

Assume you are a SQL expert, please read the following schema and generate an appropriate natural language question
for the provided SQL. The questions should be based on the information that can be extracted from
the database schema using this query. Ensure that the questions are clear, relevant, and can be answered with the data
available in the database. Consider all aspects of the provided SQL query, including the selection, filtering, and
grouping operations, to craft appropriate questions.

<example>
{examples}
</example>

SQL: {sql}

Given the above schema, please translate the provided SQL into natural language question.
<requirement>
1. The final results should be marked with <question></question>.
2. Just return the question in the response, do not output explanations.
3. Ensure not to include column name (e.g., city_id) and table name (e.g., farm_competition) from schema
in the generated questions.
</requirement>

Table 12: Prompt for generating NLQs.
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Dataset
Size # DB

Train Dev Train Dev

Spider 7000 1034 140 20

KaggleDBQA - 272 - 8

BIRD 9428 1534 69 11

Table 13: Dataset Summary.

Spider Dev KaggleDBQA BIRD Dev

#SQL skeletons 967 - 3737

#Synthetic data 2863 4530 3594

Table 14: Number of SQL skeletons extracted from each
training dataset and average synthetic data volume used
to train each expert model.

Database
Mistral-7B LLaMA-7B

C P Y C P Y

Spider Dev

world_1 72.5 57.5 52.5 39.2 44.2 54.2

pets_1 81.0 66.7 92.9 81.0 76.2 88.1

car_1 52.2 52.2 65.2 38.0 34.8 65.2

wta_1 69.4 75.8 93.6 67.7 53.2 90.3

dog 73.2 70.7 74.4 54.9 65.9 72.0

orchestra 100.0 100.0 85.0 92.5 97.5 82.5

course 93.3 86.7 83.3 86.7 76.7 83.3

concert 97.8 93.3 91.1 80.0 84.4 86.7

employee 100.0 100.0 86.8 92.1 100.0 79.0

museum 83.3 94.4 88.9 72.2 66.7 66.7

cre_Doc 90.5 92.9 94.1 83.3 81.0 83.3

tvshow 80.6 74.2 71.0 72.6 64.5 67.7

flight_2 88.8 86.3 92.5 66.2 85.0 82.5

real_estate 75.0 50.0 75.0 75.0 75.0 75.0

singer 100.0 100.0 96.7 96.7 93.3 100.0

battle_death 68.8 75.0 75.0 56.2 43.8 68.8

student 73.1 75.6 66.7 57.7 52.6 59.0

voter_1 100.0 86.7 86.7 86.7 73.3 80.0

poker_player 100.0 100.0 100.0 85.0 97.5 97.5

network_1 69.6 87.5 64.3 53.6 73.2 57.1

Micro AVG 80.2 76.1 78.5 66.9 67.7 74.2
Macro AVG 83.5 81.3 81.8 71.9 71.9 76.9

KaggleDBQA

GeoNuclear 78.1 53.1 68.8 68.8 53.1 68.8

Manchester 51.9 44.4 40.7 37.0 22.2 40.7

Pesticide 32.0 38.0 32.0 28.0 14.0 26.0

StudentMath 32.1 10.7 17.9 0.0 0.0 14.3

TheHistory 46.2 20.5 38.5 10.3 23.1 28.2

USWildFires 59.5 54.1 54.1 18.9 32.4 56.8

HipHop 19.5 34.1 26.8 22.0 17.1 17.1

WorldSoccer 27.8 27.8 33.3 11.1 16.7 22.2

Micro AVG 44.5 37.1 39.0 27.9 22.8 34.2
Macro AVG 43.4 35.3 39.0 24.5 22.3 34.3

BIRD Dev

formula_1 28.2 21.8 37.9 9.2 10.9 23.6

california 18.0 13.5 21.4 0.0 5.6 20.2

thrombosis 15.3 9.8 9.2 4.3 1.2 11.0

debit_card 35.9 15.6 31.3 18.8 12.5 35.9

financial 31.1 9.4 26.4 14.2 4.7 25.5

codebase 37.6 36.6 31.2 14.5 30.1 30.1

toxicology 37.9 9.0 35.9 6.2 4.1 29.7

european 17.8 24.8 45.7 0.0 11.6 35.7

student_club 57.6 40.5 54.4 27.2 19.0 51.3

superhero 68.2 50.4 61.2 34.1 25.6 55.0

card_games 27.8 12.0 20.9 3.7 4.7 16.2

Micro AVG 35.7 22.0 34.0 11.7 12.6 30.6
Macro AVG 34.1 22.1 34.1 12.0 11.8 30.4

Table 15: Overall and individual database performance
of CodeS (C), PICARD (P), and YORO (Y) in Spider
Dev, KaggleDBQA, and BIRD Dev, using LLaMA-7B
and Mistral-7B. Some database names are shortened
due to the limited space.
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