Revealing the Barriers of Language Agents in Planning

Jian Xie® Kexun Zhang"*
Kai Zhang* Yikai Zhang®

Jiangjie Chen*

Siyu Yuan’

Lei Li¥ Yanghua Xiao**

#Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University

“Carnegie Mellon University
?School of Data Science, Fudan University

¢ByteDance Seed
*The Ohio State University

{jianxie22, syyuan21, ykzhang22}@m.fudan.edu.cn, kexun@cmu.edu

jiangjiec@bytedance.com, zhang.13253@osu.edu, leili@cs.cmu.edu, shawyh@fudan.edu.cn

Abstract

Autonomous planning has been an ongoing pur-
suit since the inception of artificial intelligence.
Based on curated problem solvers, early plan-
ning agents could deliver precise solutions for
specific tasks but lacked generalization. The
emergence of large language models (LLMs)
and their powerful reasoning capabilities has
reignited interest in autonomous planning by
automatically generating reasonable solutions
for given tasks. However, prior research and
our experiments show that current language
agents still lack human-level planning abilities.
Even the state-of-the-art reasoning model, Ope-
nAl ol, achieves only 15.6% on one of the
complex real-world planning benchmarks. This
highlights a critical question: What hinders
language agents from achieving human-level
planning? Although existing studies have high-
lighted weak performance in agent planning,
the deeper underlying issues and the mecha-
nisms and limitations of the strategies proposed
to address them remain insufficiently under-
stood. In this work, we apply the feature at-
tribution study and identify two key factors
that hinder agent planning: the limited role
of constraints and the diminishing influence
of questions. We also find that although cur-
rent strategies help mitigate these challenges,
they do not fully resolve them, indicating that
agents still have a long way to go before reach-
ing human-level intelligence. Resources are
available on the GitHub.

1 Introduction

Planning is the process of determining the sequence

of actions needed to achieve a goal. It involves goal

decomposition, constraint consideration, and fore-

sight for simulating and predicting outcomes. In

the development of artificial intelligence, this ca-

pability is considered the “Holy Grail” for achiev-
“Equal contribution.

Part of the work done while at Fudan University.
fCorresponding author.

Insights

Plan

Episodic Memory Updating

Plan Direct Prompting

Plan | Parametric Memory Updating

Figure 1: Memory updating strategies for language
agents. Insights are learned from previous attempts.

ing or even surpassing human intelligence (Kahne-
man, 2011; OpenAl, 2023b). However, the path
to achieving autonomous planning is a long jour-
ney. Researchers have long focused on building
custom systems tailored to specific tasks (Newell
et al., 1959; McDermott, 1992; Silver et al., 2017).
While these systems could deliver precise solutions
through rigorous problem solvers, the extensive ef-
fort required for task-specific design prevents them
from achieving universal problem-solving capabili-
ties or general intelligence.

The advent of language agents (Weng, 2023; Su,
2023; Sumers et al., 2024), which are powered
by large language models (LLMs; OpenAl (2022,
2023a); G Team et al. (2023); Dubey et al. (2024);
Yang et al. (2024)), changes the landscape. Thanks
to the flexibility of natural language, LLM-based
language agents have shown strong potential to gen-
eralize to various planning tasks without relying on
traditional curated, task-specific solvers written in
domain-specific languages like Planning Domain
Definition Language (PDDL). However, despite
these language agents demonstrating impressive
capabilities across various tasks (Yao et al., 2022,
2023; Zheng et al., 2024a; Gu et al., 2024), their
performance in planning remains disappointing and
is viewed as mere “approximate retrieval” (Kamb-
hampati et al., 2024) rather than engaging in gen-
uine reasoning. Specifically, even the most capable
model, OpenAl ol (OpenAl, 2024), which claims
to surpass human PhD-level accuracy on several

1872

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 1872-1888
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/hsaest/Agent-Planning-Analysis

reasoning tasks, achieves only 15.6% in a real-
world travel planning benchmark, TravelPlanner
(see Figure 2), far below human-level planning
abilities. To uncover the fundamental reasons be-
hind the weak performance, we seek to answer the
first research question in this paper: RQ1: Why do
current language agents struggle with planning?

In order to enhance language agents’ perfor-
mance in planning tasks, numerous strategies have
been proposed recently, which can be categorized
into three main branches, as shown in Figure 1:
episodic memory updating through prompt opti-
mization (Zhao et al., 2024; Shinn et al., 2024; Fu
et al., 2024), parametric memory updating through
model training (Zeng et al., 2023a; Song et al.,
2024; Yin et al., 2024), and translating queries
into formal planning languages, followed by res-
olution using external solvers (Liu et al., 2023;
Dagan et al., 2023). Although these strategies have
shown performance improvements across various
tasks, their underlying mechanisms remain largely
opaque. Moreover, these strategies still fall short
of human-level intelligence (Valmeekam et al.,
2024a,b; Stechly et al., 2024), particularly in com-
plex real-world tasks (Xie et al., 2024b; Gundawar
et al., 2024; Chen et al., 2024). Therefore, based
on the findings from RQ1, this paper seeks to an-
swer the research questions, RQ2: What happens
during memory updating for language agents and
RQ3: What hinders these strategies from achiev-
ing high-level planning abilities? Specifically, we
focus on language agents’ vanilla planning as well
as planning following memory updating, which re-
flect the internal planning capabilities of language
agents rather than the translation ability.

In this paper, we delve into the two main compo-
nents of planning: constraints and questions, which
serve as the foundational elements for planning
tasks. Constraints refer to the rules that agents must
adhere to when generating a plan, while questions
represent the goals that drive the planning process.
Understanding how agents handle these elements
is crucial for improving their performance in com-
plex planning tasks. Using Permutation Feature
Importance (Breiman, 2001; Fisher et al., 2019)
to analyze the feature attribution of constraints
and questions, our investigation reveals several key
findings: 1) Language agents show a limited un-
derstanding of constraints, and the influence of the
question weakens as the planning horizon increases.
2) Episodic memory updating improves constraint
understanding but relies on global understanding,

and it’s still difficult for agents to reference con-
straints in a fine-grained manner. 3) Parametric
memory updating enhances the question’s impact
on the final plan, but the diminishing influence of
the question remains a challenge. 4) Both strate-
gies resemble “shortcut learning” and struggle with
dynamic constraints in planning.

2 Related Work

2.1 Language Agent

The advent of large language models sparks
widespread attention due to their remarkable abili-
ties, such as mathematical reasoning, creative writ-
ing, and information retrieval (Gémez-Rodriguez
and Williams, 2023; Zhang et al.,, 2023; Lou
et al., 2024; Zhu et al., 2024). Building on these
models, language agents expand their capabilities
to engage with the real world, including utiliz-
ing tools (Gu et al., 2024), grounding environ-
ments (Zheng et al., 2024a), and even controlling
real-world robotics (Zeng et al., 2023b), function-
ing as a “reasoning brain” beyond mere text genera-
tion. The conceptual framework of language agents
includes: /) Memory module handles both long-
term memory embedded in the model’s parameters,
such as commonsense (West et al., 2022), and short-
term memory specific to tasks (Majumder et al.,
2023). 2) Tool-use module enables agents to uti-
lize external tools to compensate for inherent limi-
tations, such as calling a calculator for arithmetic
tasks or retrieving up-to-date information from ex-
ternal databases (Lu et al., 2023; Xie et al., 2024a;
Wu et al., 2024). 3) Planning module controls
the entire task process, including goal decompo-
sition, action sequencing, and forward estimation,
requiring comprehensive and advanced reasoning
abilities (Weng, 2023; Sumers et al., 2024).

2.2 Planning in Language Agents

Planning, a hallmark of human intelligence, serves
as a critical component in language agent sys-
tems, as it directly controls task execution and
goal achievement. Improving an agent’s plan-
ning abilities thus leads to overall improvements
across various tasks. However, previous studies
show that current agents still struggle with plan-
ning tasks, such as classical tasks like block ma-
nipulation (Valmeekam et al., 2024a) or real-world
tasks like travel planning (Xie et al., 2024b; Zhang
et al., 2024). While these studies highlight agents’
weaker performance in planning, they mainly pro-

1873

vide high-level observations, leaving the deeper,
underlying reasons less explored. Furthermore, al-
though strategies such as updating episodic mem-
ory (also referred to as working memory (Zhao
et al., 2024)), which allows learning from past tri-
als and errors (Shinn et al., 2024; Fu et al., 2024),
or improving parametric memory through fine-
tuning (Yin et al., 2024) have been proposed, the
mechanisms driving these performance improve-
ments, as well as their limitations, remain unclear.
Therefore, in this work, we aim to understand the
challenges faced by current language agents in plan-
ning and provide promising directions for address-
ing weaknesses in planning strategies to guide the
development of more effective agents.

2.3 Interpretability of Language Models

Despite the impressive capabilities of LLMs, their
thinking processes remain opaque. Interpreting
these models is essential for improving their relia-
bility and transparency in real-world applications.
Attention visualization helps explore how models
allocate attention across different input elements,
attention heads, and layers within the model (Katz
and Belinkov, 2023; Zheng et al., 2024b; Luo and
Specia, 2024). Additionally, feature attribution
methods analyze the importance of each input fea-
ture using techniques like perturbation (Ribeiro
et al., 2016; Fisher et al., 2019) and gradients (Sun-
dararajan et al., 2017; Mudrakarta et al., 2018).
However, much of the existing work focuses on tra-
ditional tasks such as classification, which do not
fully reflect the complexity of planning tasks. Plan-
ning requires handling long-horizon dependencies
and balancing multiple objectives or constraints,
presenting unique challenges that remain underex-
plored. To address this gap, this work utilizes in-
terpretability techniques to investigate why agents
struggle with planning tasks.

3 Background

3.1 Dataset

We choose Blocksworld and TravelPlanner as our
testbeds, which cover both classical planning and
real-world complex planning scenarios:

o BlocksWorld (Valmeekam et al., 2024a) is a plan-
ning benchmark that provides a domain description,
including action and constraint definitions, and re-
quires agents to execute actions to transition from
an initial state to a goal state. All actions must
adhere to the constraints outlined in the prompt.

e TravelPlanner (Xie et al., 2024b) is a real-world
travel planning benchmark that requires language
agents to generate plans based on provided informa-
tion and user queries, aligning with commonsense
and the hard constraints specified in the queries.
Unlike the static nature of BlocksWorld, the hard
constraints in TravelPlanner are dynamic, as they
need to be inferred from the query and satisfied
through item selection. We use the “sole-planning”
mode to focus on the agents’ planning ability, ex-
cluding the influence of tool-use abilities.

3.2 Permutation Feature Importance

Permutation Feature Importance (Breiman, 2001;
Fisher et al., 2019) is a strategy for evaluating the
importance of features in a system. Specifically, if
a feature is important, its removal or alteration will
significantly affect the system’s result, whereas an
unimportant feature will have little to no impact.
In this paper, we adopt Permutation Feature Impor-
tance as our analysis strategy for testing the inner
workings of language agents when planning.

Formally, given a language model P, a fea-
ture sequence X = {x1,x2,...,%,}, and a target
sequence Y = {y1,¥2,...,Ym}, the attribution
score S; ; for the contribution of feature z; to the
target y; is defined as follows!:

Sij = Paly; | X,Yi—1) — Po(y; | Xi,Y1,5-1). (1)

A low or near-zero S; ; indicates that the feature
x; is almost independent of the target, while a
higher score suggests a stronger contribution. Here,
Py(y;j | X,Y1.j—1) represents the conditional prob-
ability of the target y; given the original input se-
quence X and the preceding targets Y7.;_1 as pre-
dicted by the model. X, denotes the input sequence
X with the values of feature x; permuted.

3.3 Experimental Setting

Data Slice In BlocksWorld, the dataset is ran-
domly split into a training set (100 samples) and
a validation set (500 samples). In TravelPlanner,
we use the original training (45 samples) and val-
idation sets (180 samples) for our experiments.
Episodic and parametric memory updating either
summarize insights from prior attempts on the train-
ing set or train on it, with evaluation performed on
the validation set. Due to the high computational
cost, for BlocksWorld, we randomly select 200
samples when computing attribution scores.

"For simplicity, we omit transformations like log and soft-
max here.

1874

Episodic Memory Updating For episodic mem-
ory updating, following previous work (Zhao et al.,
2024; Fu et al., 2024), we require language agents
to summarize insights from previous attempts, cate-
gorized into two groups and one additional human-
written reference: /) Behavioral Cloning — The
agent is provided with previous failed attempts
along with a ground truth plan (from the exter-
nal solver in BlocksWorld or human annotations in
TravelPlanner). 2) Oracle Feedback — The agent
is provided with previous failed attempts along
with feedback from the solver or evaluator, explain-
ing the reasons for failure. 3) Reference — This
setting provides human-written insights, serving as
a ground truth summary of the constraints. Specifi-
cally, in BlocksWorld, this refers to the reiteration
of constraint descriptions, and in TravelPlanner, it
includes refined summaries of commonsense and
hard constraints.” We use Reference to implement
the episodic memory updating strategy in the fea-
ture attribution study to avoid discrepancies in in-
sights generated by different agents and ensure ex-
perimental control and consistency in our analysis.
More details are provided in Appendix B.1.

Parametric Memory Updating We use super-
vised fine-tuning (SFT) for parametric memory up-
dating, with the ground truth in the training set as
the optimization objective. All local training and
inference experiments are conducted on 8 x A100
GPUs. For OpenAl models, we use the official
scripts for training. Please refer to Appendix B.2
for more details.

4 Why Do Current Language Agents
Struggle with Planning?

4.1 Status Quo

Agents demonstrate performance nearing or on
par with humans in tasks like tool-use and web
navigation (Lu et al., 2023; Zheng et al., 2024a).
However, when it comes to planning, which re-
quires advanced reasoning, such as goal decom-
position, constraint analysis, and foresight, agents
still face significant challenges. Specifically, as
Figure 2 demonstrates, with direct prompting, most
of the current agents only complete less than half
of the tasks in BlocksWorld. In a more complex,
real-world benchmark TravelPlanner, agent perfor-
mance is even lower, with none surpassing a 20%

2TravelPlanner prohibits providing evaluation metrics di-

rectly to the agent. This setting is used solely for analysis, and
the results will not be submitted to the leaderboard.

final pass rate, including OpenAI’s flagship reason-
ing model ol. This raises an important question:
Why do current language agents struggle with
planning, and what hinders them from achiev-
ing advanced planning capabilities? In this sec-
tion, we delve into the core aspects of planning to
uncover the reasons behind the weak performance.

4.2 Limited Role of Constraints and
Diminishing Influence of Questions

We use Permutation Feature Importance (Breiman,
2001; Fisher et al., 2019) as the analysis strategy
to evaluate the attribution score of each part of
the prompts in relation to the final plan, covering
various foundation models and two benchmarks.
Specifically, for BlocksWorld, we divide the
prompts into three components: action definitions,
constraint descriptions, and questions. Each part is
replaced with an empty token to compute its attribu-
tion score relative to the final plan. For TravelPlan-
ner, a real-world benchmark that requires actions
to rely on commonsense embedded in the model’s
parameters, we focus on the attribution score of
constraints and questions. When evaluating the con-
straint component, we replace the attributes (e.g.,
price) of elements selected by the agents with an
empty token to evaluate whether agents are gen-
uinely incorporating constraints into their planning
or merely generating constraint-conforming plans
by chance. For the question component, we apply
the same substitution strategy used in BlocksWorld.

Agents do not adequately reference constraints
during planning. Constraints, as one of the key
restraining factors, play a crucial role in planning.
Violating constraints directly leads to failed plans
since it results in illegal actions or unsatisfied goals,
as highlighted in previous studies (Valmeekam
et al., 2024a; Xie et al., 2024b). To investigate
the reason why agents cannot obey constraints, we
compute the attribution score of the constraint com-
ponent, with the results presented in Figure 3. Com-
pared to the upper bound score (100), which indi-
cates a dominant role, constraints account for only
a small portion of the planning process, with all
scores being less than 25.

Furthermore, we find agents are not able to ref-
erence constraints precisely. For example, when
executing the action “Pick Up”, agents should ref-
erence all related constraint descriptions for “Pick
Up”, and the attribution score should be signifi-
cantly positive, as the constraint description con-

1875

BlocksWorld TravelPlanner

100 A

N
8]
L
e
L 4

Models
o0 P ® GPT-4o
1 * n ®m GPT-40-Mini
o0l-Preview
01-Mini
Qwen2-7B
Qwen2-72B
n Llama3.1-8B
i (] + n y A Y Llama3.1-70B
Llama3.1-405B

N
o
L

J
60

un
v
L

] (] o l‘ ® 0

40

Accuracy

Final Pass Rate
-
o
L

w
-
<

201

01 ” A / ¢ 01 ;; & $ *

X
&
0\

Figure 2: Main results of 9 models with different strategies on two benchmarks. The results of ol-Preview and
o1-Mini on BlocksWorld are from Valmeekam et al. (2024b). “Beh.Clo.” and “Ora.Fee.” indicate Behavioral
Cloning and Oracle Feedback, respectively. Llama3.1-8B and Qwen2-7B tend to provide case-specific insights that
lack general applicability; thus, these models are excluded from the “Beh.Clo.” and “Ora.Fee.” settings.

M Constraint M Episodic Memory
Llama3.1-88 ‘ ‘ Llama3.1-88 m ‘
Llama3.1-88* 17.4 wamaz. -5+ |E
Llama3.1-708 ‘ zz_s Llama3.1-708
Uamas 1.708° ‘ 168 lamas 1708
Llama3.1-4058 ‘ Qwen2-78
Llama3.1-4058* Qwen2-78* ‘m
awen2.75 T
]]
Qwen2-78* m Qwen2-728*
-10 [) 10 20 30 40 0 5 10 15 20
BlocksWorld TravelPlanner

Figure 3: The attribution score of the constraint and episodic memory component in relation to the final plan across
different agents, with “*” indicating episodic memory updating. All results are normalized to account for varying
step lengths and model differences, with a maximum score of 100 representing a dominant role. The absolute
value does not directly determine performance, as it only shows whether the agent references specific parts of the
prompt, with factors like questions and fine-grained references also contributing. Llama3.1-405B and Qwen2-72B

are selected based on performance gains from episodic memory updating and computational efficiency.

tributes to the final plan. However, as shown by
the detailed score distribution of the Llama3.1-70B
model in Figure 4, agents exhibit weak constraint-
referencing behavior. Comparing the left side of
the figure, where actions align with their descrip-
tions, the current agents fail to reference constraints
effectively during planning. Similarly, in Trav-
elPlanner, if agents were planning based on the
required attributes, the attribution score between
the attribute and the final item selection should
be significantly positive. For example, the price
should influence the item choice if the agent is
performing real reasoning. Yet, across both bench-
marks, none of the agents show the ability to fully
adhere to this constraint-referencing behavior, re-
sulting in unmet preconditions in BlocksWorld and
unfulfilled hard constraints in TravelPlanner.
Moreover, in BlocksWorld, we find that for
Qwen2-7B, the attribution score of the constraint
component is negative, indicating that the presence

of constraints negatively impacts planning. To in-
vestigate further, we test the performance of three
models—Qwen2-7B, Llama3.1-8B, and Llama3.1-
70B—when no constraint descriptions are provided.
As shown in Table 1, removing constraints leads to
higher scores for Qwen2-7B, while Llama3.1-70B
exhibited a significant decline. This suggests that
agents struggle to effectively reference constraints
during planning, and in some weaker agents, con-
straints may even distract them and degrade their
performance, which also verifies the effectiveness
of our analysis strategy.

As the planning horizon increases, the influence
of the question on plan generation decreases.
We find that while agents can deliver a complete
plan, these plans often fail to meet the goals spec-
ified in the question, with failure rates increas-
ing as the planning horizon increases. Specifi-
cally, as shown in the upper part of Figure 5, in

1876

[Action Description]

PickUp Unstack PutDown Stack

[Constraint Description]

PickUp Unstack PutDown Stack

Pick Up 0.3678 -0.0270 -0.0000 -0.0423 0.0094 -0.0027 -0.0024 0.0100 0.75
pS
= 0.50
=
g 3.
28
O Unstack{ -0.1809 02367 00358 0.1236 -0.0104 00188 0.0561 0.0264 02s 2
> (=
@ =3
= 000 O
= =]
g PutDown{ -0.1860 -0.0270 ~ 0.3223 -0.0644 00639 0.0702 01051 0.0626 ~025 Y
> (=]
~0.50 @
Stack{ -0.0203 01189 00391 04032 -0.0013 -0.0072 0.038 0.0187 -0.75
L -1.00

Figure 4: The distribution of attribution scores for action
and constraint descriptions relative to the actions in the
final plans in Llama3.1-70B on BlocksWorld. The result
and discussion of TravelPlanner are in Appendix A.1.

w/ Constraints w/o Constraints

Qwen2-7B 2.4 3.6
Llama3.1-8B 0.6 0.6
Llama3.1-70B 38.8 9.8
Qwen2-7B f; 45.4 45.4
Llama3.1-8B; 48.4 45.8

Table 1: Performance comparison with and without
constraint descriptions in the prompts on BlocksWorld.

both BlocksWorld and TravelPlanner, agent perfor-
mance declines as the number of generated steps or
travel days increases. Could this be similar to the
“lost in the middle” phenomenon (Liu et al., 2024),
where they lose track of the goal as the planning
horizon increases? To investigate the underlying
reasons, we compute the attribution score of the
question at different steps in the plan, as shown in
the lower part of Figure 5.

We find that as the planning horizon increases,
the attribution score of the question decreases. This
suggests that the question’s influence on specific
action or item selection diminishes as the plan pro-
gresses. This explains why agents perform worse
as the plan length increases: if agents fail to focus
on the goal specified in the query and lose track of
it, they cannot deliver a successful plan.

5 What Happens in Memory Updating
for Language Agents?

While previous work and our experiments, as
shown in Figure 2, show that both parametric mem-
ory updating and episodic memory updating can
improve agents’ performance in planning tasks, the
underlying mechanisms remain unclear. In this
section, we aim to address the following two ques-
tions: /) Why do memory updating strategies help
improve agents’ planning abilities? 2) What limita-
tions of these strategies prevent agents from achiev-
ing more advanced planning abilities?

5.1 Episodic Memory Updating

Episodic memory updating refines and reiter-
ates constraint information, making it easier for
agents to recognize and apply. Rather than in-
corporating new information, we find that simply
refining or reiterating existing insights in episodic
memory updating can lead to performance improve-
ments. In TravelPlanner, performance gains are ob-
served when refined information (e.g., insights like
selecting cheaper items, which agents would other-
wise need to infer themselves) is introduced. Sim-
ilarly, in BlocksWorld, both agent-generated and
human-written insights—despite being slight mod-
ifications or emphases of the original constraint
descriptions—still result in performance enhance-
ments with episodic memory updating. This is
intriguing, as such repetition typically offers little
value in human reasoning.

To assess the impact of episodic memory updat-
ing on plan generation, we compute the attribu-
tion score of episodic memory (Figure 3). Specifi-
cally, these refined or reiterated insights show posi-
tive attribution scores to the final plans, indicating
that agents actively consider them during planning.
However, the figure also shows that while vague
and implicit episodic memories (e.g., “select cheap
items” in TravelPlanner) do contribute, more ex-
plicit and direct constraints (e.g., “cannot ‘Pick Up’
when the hand is not empty” in BlockWorld) are
easier for agents to utilize, as demonstrated by their
higher attribution scores.

Agents understand episodic memory on a global
level and canneot reference it in a fine-grained
manner. While episodic memory updating im-
proves performance, the gains remain relatively
minor. To investigate this further, we decompose
the episodic memory into discrete components
(i.e., treating each insight independently) to as-
sess whether agents can reference these insights
in a fine-grained manner. For example, in Trav-
elPlanner, agents are expected to consider specific
insights related to accommodation when selecting
lodging options. However, as shown in Figure 6,
while agents reference the overall episodic mem-
ory during planning, they struggle to apply indi-
vidual insights in a detailed, fine-grained manner,
reflected in their relatively low scores.

Moreover, in BlocksWorld, we observe that the
constraint description for “Unstack” plays only a
minor role (scoring 0.0188) in the original con-
straint attribution (Figure 4), but contributes sig-

1877

Accuracy (%)

Attribution Score

BlocksWorld TravelPlanner
S 20 ‘
3
<
(a4
s
A
s 17 |
Q
v 0.8
g 06} :
= 04 e s i
2 0.2 -
2 Vob—
=
g —0.2 i | ;
1 3 5 7
Days
—o— GPT-40 —=— GPT-40-Mini Qwen2-7B Qwen2-72B

—v— Llama3.1-8B

Llama3.1-70B —— Llama3.1-405B - SFT

Figure 5: Performance comparison with increasing planning horizon. The upper part shows the performance of
different agents, while the lower part shows their attribution scores of questions as the planning horizon extends.

27 U, v
4 'S¢ 0, S
%4 oc, o, o
L L L 1.00
Pick Up 4 0.0264 0.0115 0.0466 0.0501 0.75 >
=
050 o
Unstack{ 0.2469 0.1772 0.0048 0.0112 025 2
<
000 o
=1
PutDown-{ 0.0382 0.0299 0.0048 -0.0190 ~0.25
[a)
-0.50 O
o
Stack{ 0.0213 0.0199 0.0338 0.0180 075 ®
-1.00
BlocksWorld

4
b"'lsn% /1’@% “on, 00, 4.
e%n Urs/” e"'o,, scp,on
L L L 1.00

Transportation{ -0.0041 -0.0004 -0.0011 0.0022 0.75 P
050 =
Restaurant{ -0.0082 -0.0120 -0.0062 0.0122 0.25 g’
000 5
Accommodation 4 0.0010 0.0006 0.0026 0.0018 -0.25 Ljn
~0.50 3
Attraction{ -0.0194 -0.0251 -0.0084 0.0313 —0.75 ®

-1.00

TravelPlanner

Figure 6: The attribution scores of episodic memory to the final plan in Llama3.1-70B on two benchmarks. The
abscissa is the constraint, and the ordinate is the corresponding action or item in the plan.

nificantly more in the episodic memory (0.1772;
Figure 6). We hypothesize that episodic memory
complements information that agents might have
initially overlooked. However, agents still struggle
to apply this information effectively during plan-
ning when dealing with more vague or implicit
episodic memories, such as those in TravelPlanner.

5.2 Parametric Memory Updating

Parametric memory updating improves the at-
tribution score of questions. Although para-
metric memory updating improves agents’ perfor-
mance in planning tasks, its underlying mecha-
nisms remain unclear. Building on previous find-
ings that the attribution score of questions relates
to an agent’s planning performance, we investigate
whether this score changes after parametric mem-
ory updating. As shown in Figure 5, we observe
a positive correlation between the question attribu-
tion score and final performance. For example, in
BlocksWorld, from step 2 to step 4, the question

attribution score increases, resulting in both fine-
tuned agents achieving their highest scores at step
4. This suggests that through fine-tuning, agents
are able to have a stronger focus on the goal than
before, leading to improved planning outcomes.

While parametric memory updating increases
the attribution score of questions, it still strug-
gles as the planning horizon increases. Despite
improvements in question attribution scores after
fine-tuning compared to the vanilla agents, a de-
cline is observed after step 4 in BlocksWorld, lead-
ing to a corresponding drop in performance. A sim-
ilar trend is also noted in TravelPlanner. This sug-
gests a promising direction: maintaining a strong
focus on the goal throughout planning is essential
for overcoming short-horizon limitations and ad-
vancing agents’ planning abilities.

6 Discussion

When constraints are already parameterized,
episodic memory updating does not improve per-

1878

Episodic Memory X v

Qwen2-7B s 45.4 43.0
Llama3.1-8B; 48.4 36.8

Table 2: Comparison between fine-tuned models with
and without episodic memory updating on BlocksWorld.

0.02
Llama3.1-8B
N sft
0001 Qwen2 7B, ¢ [
—0.05 | | @ Constraint
M Episodic Memory
-0.10 =——————————

Figure 7: Attribution scores of constraints and episodic
memory on BlocksWorld for two fine-tuned agents.

formance and may even degrade it. If both para-
metric and episodic memory updating are effective
for agent planning, an interesting question arises:
Would it be better to combine these two strategies?
Surprisingly, this mixture does not improve the per-
formance of fine-tuned agents and even harms it.
As shown in Table 2, both fine-tuned agents ex-
hibit a performance decline after episodic memory
updating. Moreover, as shown in Figure 7, the attri-
bution scores of both constraints and episodic mem-
ory play only a minor or even negative role, indicat-
ing that the fine-tuned agents no longer explicitly
reference these constraints, rendering them redun-
dant and ineffective. We hypothesize that reiterated
episodic memory becomes redundant when con-
straints are already embedded within the model’s
parameters. This redundancy disrupts the model’s
decision-making coherence and undermines its abil-
ity to leverage the pre-existing constraint knowl-
edge, resulting in weaker planning performance.

To explore this further, we also report the per-
formance of fine-tuned agents with the constraints
removed in Table 1. Unlike the vanilla Llama3.1-
70B, which shows a noticeable performance drop,
the Llama3.1-8B,; shows only a slight decline,
and Qwen2-7B,; even exhibits no decrease at all,
suggesting that the constraints had already been
parameterized within them.

Both strategies resemble shortcut learning, fo-
cusing on short-horizon and low-level planning.
Although both strategies offer performance im-
provements, they fail to achieve our expected high-
level intelligence. Our findings suggest that these
strategies resemble “shortcut learning,” favoring
static rule learning over dynamic problem-solving.
For example, in TravelPlanner, agents learn com-
monsense rules effectively, especially through para-
metric memory updating (see Table 3), as com-

Commonsense Hard Final
Micro Macro Micro Macro Pass Rate
Direct Prompting
GPT-40 84.7 31.1 53.6 31.1 7.8
GPT-40-Mini 84.4 22.2 42.4 20.0 2.2
Llama3.1-8B 60.1 0.0 7.9 2.8 0.0
Llama3.1-70B 82.8 18.9 33.1 16.1 2.2
Qwen2-7B 49.9 1.1 2.1 0.0 0.0
Qwen2-72B 74.8 11.7 23.8 8.9 1.7
Episodic Memory Updating
GPT-40 89.2 41.7 51.7 27.2 8.3
GPT-40-Mini 84.1 22.2 39.8 22.8 5.0
Llama3.1-70B 84.9 23.9 39.5 24.4 6.1
_Quen272B 756 138 288 106 33
A +1.8 +4.4 +1.7 +2.3 +2.2
Parametric Memory Updating
GPT-40 95.3 68.9 62.6 39.4 25.0
GPT-40-Mini 94.7 61.7 49.3 17.2 12.2
Llama3.1-8B 78.3 17.8 19.3 6.1 3.8
__Quen27B__ 500 06 02 00 00

A +12.1 +23.7 +6.4 +2.2 +7.8

Table 3: Comparison between different agents on Trav-
elPlanner. “A” represents the average improvement
compared to the same model using direct prompting.

monsense is often based on static patterns learned
in training data. However, these strategies remain
insufficient when faced with hard constraints requir-
ing advanced model abilities, such as maintaining
a strong focus on long-horizon tasks, precise ref-
erencing for multiple-constraint integration, and
sophisticated planning skills like foresight, simula-
tion, and backtracking for trajectory adjustments.

7 Conclusion

This paper utilizes Permutation Feature Importance
to investigate why current language agents struggle
with planning tasks. Our findings show that con-
straints play only a minor role in agent planning,
indicating that agents are not effectively consid-
ering constraints during planning. Additionally,
the question’s influence diminishes as the planning
horizon extends, causing agents to lose focus on
the goal and resulting in failed plans. Furthermore,
we examine the effects of episodic and parametric
memory updating on agent performance. While
both strategies improve the impact of constraints
and questions in planning, they only mitigate the
underlying issues rather than fully resolve them.
We hope this paper provides valuable insights
and sparks future research to address language
agents’ key challenges in planning, ultimately mov-
ing closer to achieving human-level intelligence.

1879

Limitations

In this paper, we use Permutation Feature Impor-
tance to calculate the attribution scores across vari-
ous open-source model families and sizes, aiming
to provide insights into the obstacles that current
language agents face in planning tasks. We also
test the performance of the widely used GPT fam-
ily. However, due to the limited access provided by
OpenAI’s API, which restricts control over output
token generation, we are unable to compute attri-
bution scores for these models. Nonetheless, the
consistent conclusions drawn from the two used
model families across different sizes and bench-
marks support the robustness of our methodology
and validate our overall findings.

References

Leo Breiman. 2001. Random forests. Machine learning,
45:5-32.

Yanan Chen, Ali Pesaranghader, Tanmana Sadhu, and
Dong Hoon Yi. 2024. Can we rely on llm agents to
draft long-horizon plans? let’s take travelplanner as
an example. arXiv preprint arXiv:2408.06318.

Gautier Dagan, Frank Keller, and Alex Lascarides.
2023. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Aaron Fisher, Cynthia Rudin, and Francesca Dominici.
2019. All models are wrong, but many are useful:
Learning a variable’s importance by studying an en-
tire class of prediction models simultaneously. Jour-
nal of Machine Learning Research, 20(177):1-81.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae,
and Honglak Lee. 2024. Autoguide: Automated
generation and selection of state-aware guidelines
for large language model agents. arXiv preprint
arXiv:2403.08978.

Gemini G Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Carlos Gémez-Rodriguez and Paul Williams. 2023. A
confederacy of models: a comprehensive evaluation
of llms on creative writing. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 14504-14528.

Yu Gu, Yiheng Shu, Hao Yu, Xiao Liu, Yuxiao Dong,
Jie Tang, Jayanth Srinivasa, Hugo Latapie, and Yu Su.
2024. Middleware for llms: Tools are instrumental
for language agents in complex environments. arXiv
preprint arXiv:2402.14672.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik
Valmeekam, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024. Robust planning with llm-modulo
framework: Case study in travel planning. arXiv
preprint arXiv:2405.20625.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Paul Saldyt, and Anil B Murthy. 2024.
Position: Llms can’t plan, but can help planning in
IIm-modulo frameworks. In Forty-first International
Conference on Machine Learning.

Shahar Katz and Yonatan Belinkov. 2023. Visit: Vi-
sualizing and interpreting the semantic information
flow of transformers. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
14094-14113.

Bo Liu, Yugian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023. Llm+p: Empowering large language mod-
els with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Renze Lou, Kai Zhang, Jian Xie, Yuxuan Sun, Jan-
ice Ahn, Hanzi Xu, Yu su, and Wenpeng Yin. 2024.
MUPFFIN: Curating multi-faceted instructions for im-
proving instruction following. In The Twelfth Inter-
national Conference on Learning Representations.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play
compositional reasoning with large language models.
In Thirty-seventh Conference on Neural Information
Processing Systems.

Haoyan Luo and Lucia Specia. 2024. From understand-
ing to utilization: A survey on explainability for large
language models. arXiv preprint arXiv:2401.12874.

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra,
Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Chris Callison-Burch, and Peter Clark.
2023. Clin: A continually learning language agent
for rapid task adaptation and generalization. arXiv
preprint arXiv:2310.10134.

Drew McDermott. 1992. Robot planning. Al magazine.

1880

https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://openreview.net/forum?id=1vrS1zwekw
https://openreview.net/forum?id=1vrS1zwekw
https://openreview.net/forum?id=HtqnVSCj3q
https://openreview.net/forum?id=HtqnVSCj3q

Pramod Kaushik Mudrakarta, Ankur Taly, Mukund Sun-
dararajan, and Kedar Dhamdhere. 2018. Did the
model understand the question? In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1896-1906.

Allen Newell, John C Shaw, and Herbert A Simon. 1959.
Report on a general problem solving program. In
IFIP congress, volume 256, page 64. Pittsburgh, PA.

OpenAl. 2022. Chatgpt.

OpenAl. 2023a. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

OpenAl. 2023b. Planning for agi and beyond.
OpenAl. 2024. Openai ol.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1135—
1144.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676):354-359.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization of LLM
agents. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7584-7600, Bangkok,
Thailand. Association for Computational Linguistics.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kamb-
hampati. 2024. On the self-verification limitations
of large language models on reasoning and planning
tasks. arXiv preprint arXiv:2402.08115.

Yu Su. 2023. Language agents: a critical evolutionary
step of artificial intelligence.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. 2024. Cognitive architectures
for language agents. Transactions on Machine Learn-
ing Research.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Interna-
tional conference on machine learning, pages 3319-
3328. PMLR.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo,
Sarath Sreedharan, and Subbarao Kambhampati.
2024a. Planbench: An extensible benchmark for
evaluating large language models on planning and
reasoning about change. Advances in Neural Infor-
mation Processing Systems, 36.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kamb-
hampati. 2024b. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench.
arXiv preprint arXiv:2409.13373.

Lilian Weng. 2023. Llm-powered autonomous agents.
lilianweng. github.io.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena
Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. 2022. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4602—-4625, Seat-
tle, United States. Association for Computational
Linguistics.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai
Zhang, and Yanghua Xiao. 2024. How easily do
irrelevant inputs skew the responses of large language
models? In First Conference on Language Modeling.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2024a. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in
knowledge conflicts. In The Twelfth International
Conference on Learning Representations.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su.
2024b. Travelplanner: A benchmark for real-world
planning with language agents. In Forty-first Interna-
tional Conference on Machine Learning.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik R
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. In Pro-
ceedings of NeurlIPS.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. In Proceedings of ICLR.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024. Agent lumos: Unified and
modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 12380-12403, Bangkok, Thai-
land. Association for Computational Linguistics.

1881

https://openai.com/blog/chatgpt
https://openai.com/index/planning-for-agi-and-beyond/
https://openai.com/index/learning-to-reason-with-llms/
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://doi.org/10.18653/v1/2024.acl-long.409
https://yusu.substack.com/p/language-agents
https://yusu.substack.com/p/language-agents
https://lilianweng.github.io/posts/2023-06-23-agent/
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://openreview.net/forum?id=S7NVVfuRv8
https://openreview.net/forum?id=S7NVVfuRv8
https://openreview.net/forum?id=S7NVVfuRv8
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://openreview.net/forum?id=auKAUJZMO6
https://doi.org/10.18653/v1/2024.acl-long.670
https://doi.org/10.18653/v1/2024.acl-long.670

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023a. Agenttun-
ing: Enabling generalized agent abilities for llms.
Preprint, arXiv:2310.12823.

Fanlong Zeng, Wensheng Gan, Yongheng Wang, Ning
Liu, and Philip S Yu. 2023b. Large language
models for robotics: A survey. arXiv preprint
arXiv:2311.07226.

Kai Zhang, Bernal Jiménez Gutiérrez, and Yu Su. 2023.
Aligning instruction tasks unlocks large language

models as zero-shot relation extractors. In Findings
of ACL.

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richardson,
Yanghua Xiao, and Jiangjie Chen. 2024. TimeArena:
Shaping efficient multitasking language agents in a
time-aware simulation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3894—
3916, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024. Expel:
Llm agents are experiential learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632—-19642.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and
Yu Su. 2024a. Gpt-4v (ision) is a generalist web
agent, if grounded. In Forty-first International Con-
ference on Machine Learning.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao
Song, Bo Tang, Feiyu Xiong, and Zhiyu Li. 2024b.
Attention heads of large language models: A survey.
arXiv preprint arXiv:2409.03752.

Tinghui Zhu, Kai Zhang, Jian Xie, and Yu Su. 2024. De-
ductive beam search: Decoding deducible rationale
for chain-of-thought reasoning. In First Conference
on Language Modeling.

1882

https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://doi.org/10.18653/v1/2024.acl-long.215
https://doi.org/10.18653/v1/2024.acl-long.215
https://doi.org/10.18653/v1/2024.acl-long.215
https://openreview.net/forum?id=S1XnUsqwr7
https://openreview.net/forum?id=S1XnUsqwr7
https://openreview.net/forum?id=S1XnUsqwr7

Appendix

Within this supplementary material, we elaborate
on the following aspects:

* Appendix A: Discussions
* Appendix B: Experimental Setup Details
* Appendix C: Prompts List

A Discussion

A.1 Attribution Scores of Constraint Tokens
on TravelPlanner

As shown in Figure A.1, aside from the cuisine
attribute in the prompts, other item attributes con-
tribute minimally to the final plan. This suggests
why the agent struggles to follow commonsense
and hard constraints in TravelPlanner, as the key
attributes that determine whether constraints are
followed or violated play only minor roles. This
further highlights that current agents still face chal-
lenges in fully integrating multiple attributes and
adhering to constraints effectively when generating
satisfactory plans.

", " Rog,
C°Sr '9/7[3

A/O
Us, Q
e n U,
5,08 St

1.0

Transportation { 0.0180 0.0007 -0.0026 -0.0027 -0.0015

Restaurant4{ 0.0049 0.0005 -0.0065 0.0051 0.1533

Accommodation { 0.0257 -0.0023 0.0153 0.0334 -0.0061

&
s
21035 UOANQLIAY

Attraction { -0.0018 -0.0043 -0.0070 -0.0005 0.0355

|
Iy
o

Figure A.1: The distribution of attribution scores for
constraint descriptions relative to the actions in the final
plan in Llama3.1-70B on TravelPlanner.

B Experimental Setup Details
B.1 Episodic Memory Updating

Training For episodic memory updating, we
follow the methodology proposed by Zhao et al.
(2024), where the agent is tasked with summariz-
ing insights from previous attempts. The process
of filtering these insights involves a voting system,
where the agent can take one of the following ac-
tions:

* Add: Introduce new, general insights that are
not restricted to specific queries and are miss-
ing from the current set. New insights are
beginning with one vote.

* Modify: Revise existing insights if they are
incomplete or partially incorrect. This action
preserves the original number of votes for the
insight.

* Support: Endorse correct insights by increas-
ing their vote count by one. This action en-
sures that useful insights are retained and em-
phasized.

* Oppose: Challenge incorrect or irrelevant
insights, decreasing their vote count by one.
This process helps eliminate inaccuracies.

Inference When inference in the validation set,
agents are required to use the insight learned in the
training set. First, they are required to select the
insight that they think is useful and then plan based
on these insights. Only the votes surpassing five
will be shown to the agents. During inference on
the validation set, agents are required to apply the
insights learned during training. First, agents must
select the insights they find helpful and then use
them to guide their planning. Only insights with
a vote count exceeding five are displayed to the
agents for use during planning.

B.2 Parametric Memory Updating

OpenAl Models We use the official training
script and default hyperparameters for OpenAl
models. Specifically, for BlocksWorld, the hyper-
parameters are training steps set to 3, batch size set
to 1, learning rate multiplier set to 2, and random
seed set to 341541772.

For TravelPlanner, the hyperparameters are train-
ing steps set to 3, batch size set to 1, learning
rate multiplier set to 2, and random seed set to
1294003109.

Open-source Models We fine-tune Llama3.1-
8B and Qwen2-7B on 8xA100 GPUs. For
BlocksWorld, the training step is 50, the batch size
is 16, the learning rate is le-5, the learning rate
schedule is cosine, and the warmup ratio is set to
0.1.

For TravelPlanner, due to the high computational
cost associated with its longer context, we adopt
LoRA as the training strategy. The training step
is 200, the batch size is 2, and the learning rate is
le-4. Other hyperparameters remain the same as in
BlocksWorld.

1883

B.3 Model Access

Our experiments utilize four closed-source LLMs
accessed via API and five open-source LLMs. For
the open-source models, we use instruction-tuned
versions of each. Due to the high cost of de-
ploying Llama3.1-405B, we perform inference on
the Google Vertex Al platform and compute attri-
bution scores locally. To ensure reproducibility,
we have included the prompts used in our experi-
ments in Appendix C. For closed-source models,
we use GPT-40-2024-08-06, GPT-40-mini-2024-
07-18, ol-preview-2024-09-12, and o1-mini-2024-
09-12 across all tests.

B.4 Human-Written Insights

We provide human-written insights for
BlocksWorld and TravelPlanner here.

r[BlocksWorld]

1. Only pick up or unstack one block at
a time, ensuring your hand is empty
before doing so.

2. A block can be picked up or unstacked
only if it's clear and on the table.
3. A block is clear if it has no blocks
on top and is not currently being held.
4. When unstacking, ensure the block you

're removing is actually on top and
clear.

5. After picking up or unstacking a
block, you must hold it until it's
placed down or stacked.

6. You can only place a block you're
holding, and stacking can only occur if
the target block is clear.

7. Once a block is placed down or
stacked, your hand becomes empty, and
the block below a newly stacked one is
no longer clear.

[TravelPlanner]

1. Verify transportation and attraction

availability before planning and provide
alternatives if needed.

2. Ensure all plan details and

activities are based on available data

within the designated environment to

avoid inaccuracies.

3. Include all essential details, such

as accommodations and daily activities,

ensuring they align logically with the
planned city and timeline.

4. Maintain diversity by avoiding
repetition of restaurant or attraction

choices throughout the trip.

5. Ensure transportation methods are
consistent and logical within the trip's
context, avoiding conflicting options

like self-driving and flights.

6. Follow any specified minimum night
stay requirements when booking
accommodations.

7. Plan activities, accommodations, and
meals to align with the user's budget

constraints.

8. Ensure accommodations comply with
specific rules and preferences,
including room type and restrictions on
parties, smoking, pets, or visitors.

9. Adjust transportation options and
other preferences according to the user'
s specified requirements, such as
avoiding flights or self-driving.

10. Opt for budget-friendly
accommodations, restaurants, and

transportation methods.
.

B.5 Attribution Score Calculation

To obtain accurate attribution scores, we focus only
on “meaningful words” in the analysis. For in-
stance, in BlocksWorld, we consider only actions
such as “Pick Up”, “Put Down”, “Stack”, and “Un-
stack”, along with relevant objects like “red block”,
while discarding non-essential words like “the” A
similar approach is applied to TravelPlanner, where
only the values in the JSON format are considered.
For example, in “Accommodation: XXX”, only
“XXX” is used for calculating attribution scores.

B.6 Attribution Score Normalization

Due to the varying planning steps and models, for
example, the attribution scores in different models
are in different scales, which cannot be compared
directly. To address this, we normalize the attribu-
tion scores by dividing each score by the maximum
absolute value along the relevant dimension, which
ensures that all scores are scaled consistently across
different models. This normalization process al-
lows for a fair comparison of the attribution scores
by bringing them into a comparable range, typically
between —1 and 1, without distorting the relative
importance of features within the same model.

1884

C Prompt List
We provide the prompts utilized in this paper here.

C.1 Behavioral Learning Prompt

You are tasked with analyzing both successful and failed plans from previous
attempts based on a specific query and background information. These failed plans
are presented in chronological order, with the most recent plan including a detailed

trajectory. As these plans fail to meet certain constraints, you are encouraged to
refine the insights to improve them.

Use the following format to systematically analyze failed plans:

[State]: Describe the current situation, including factors like remaining budget,
time constraints, and any other specified conditions in the query or provided
information.

[Thought]: Explain the reasoning behind your decisions, considering the current
state.

[Action]: Detail the specific parts of your plan in response to the [State] and [
Thought].

For the successful plan, add a [Best Practice] section after the final analysis to
summarize the key experiences and practices that led to success.

For the failed plan, add an [Error] section immediately after each defective [Action
]. This section should identify and explain why the chosen actions or used insights
were inappropriate, given the [State] and [Thought].

After evaluating the plans and previous insights, refine the current insight set
based on findings from previous attempts and newly identified errors.

Your task involves adding, editing, supporting, and opposing insights from the

existing set:

[Add]: Integrate new pairs that are missing in the current set. Add new ones only

when absolutely necessary.

[Edit]: Revise pairs that are incomplete or partially incorrect. Editing an insight
retains its number of votes.

[Support]: Endorsing specific pairs to emphasize their value. Increase the number of
votes for the supported pair by 1 each time. Some previously used insights might
have been edited (with the same index). If you support the new version, vote for it.
[Oppose]: Challenging insights that are incorrect, outdated, or only applicable
under specific conditions. This will decrease the number of votes by 1 each time.

Opposing and editing are highly encouraged to resolve any conflicting insights.
Avoid proposing insights with similar purposes.

Legal Action on Current Insight Set:
[Add/Edit/Support/Oppose] [Insight 1]: [Content].

Insight Set:
{insight_set}

Task Instruction: {task}

Successful Plan:
{successful_plan}

Failed Plans:
{failed_plan}

Last Failed Plan Trajectory:
{trajectory}

Please use the following format for your response (do not output in the markdown
style):

Successful Plan Analysis:

Failed Plan Analysis:

Action on Current Insight Set:

[Finished]

1885

C.2 Oracle Feedback Learning Prompt

You are tasked with analyzing failed plans from previous attempts, along with their
evaluation results, based on a specific query and background information. These
failed plans are presented in chronological order, with the most recent plan
including a detailed trajectory. As these plans fail to meet certain constraints,
you are encouraged to refine the insights to improve them.

Use the following format to systematically analyze failed plans:

[State]: Describe the current situation, including factors like remaining budget,
time constraints, and any other specified conditions in the query or provided
information.

[Thought]: Explain the reasoning behind your decisions, considering the current
state.

[Action]: Detail the specific parts of your plan in response to the [State] and [
Thought].

For the failed plan, add an [Error] section immediately after each defective [Action
1. This section should identify and explain why the chosen actions or used insights
were inappropriate, given the [State] and [Thought].

After evaluating the plans and previous insights, refine the current insight set
based on findings from previous attempts and newly identified errors.

Your task involves adding, editing, supporting, and opposing insights from the

existing set:

[Add]: Integrate new pairs that are missing in the current set. Add new ones only

when absolutely necessary.

[Edit]: Revise pairs that are incomplete or partially incorrect. Editing an insight
retains its number of votes.

[Support]: Endorsing specific pairs to emphasize their value. Increase the number of
votes for the supported pair by 1 each time. Some previously used insights might
have been edited (with the same index). If you support the new version, vote for it.
[Oppose]: Challenging insights that are incorrect, outdated, or only applicable
under specific conditions. This will decrease the number of votes by 1 each time.

Opposing and editing are highly encouraged to resolve any conflicting insights.
Avoid proposing insights with similar purposes.

Note: Ensure that the insights are high-level and generalizable, rather than
detailed and specific to particular queries. Make sure your contributions do not
introduce unrelated insights or go beyond the scope of the provided information.

Legal Action on Current Insight Set:
[Add/Edit/Support/Oppose] [Insight 1]: [Content].

Insight Set:
{insight_set}

Task Instruction: {task}
Failed Plans:
{failed_plan}

Evaluation Results:
{eval_results}

Last Failed Plan Trajectory:
{trajectory}

Please use the following format for your response (do not output in the markdown
style):

Failed Plan Analysis:

Action on Current Insight Set:

[Finished]

=

1886

C.3 BlocksWorld Inference Prompt

p
{query}

To help your plan, some insights from a set summarized by previous agents will be
provided. Not all insights will be appropriate; you need to select the relevant ones
to guide your plan. The values in brackets indicate the reliability of the insights
, with higher values representing greater reliability.

Insight Set: {insight_set}

You should specify the insights you have chosen (beginning with [Chosen Insights]),
followed by your final plan (beginning with [Planl]).

C.4 TravelPlanner Inference Prompt

You are a proficient planner. Based on the provided information and query, please
give me a detailed plan, including specifics such as flight numbers (e.g., F0123456)
, restaurant names, and accommodation names. Note that all the information in your
plan should be derived from the provided data. You must adhere to the format given
in the example. Additionally, all details should align with commonsense. The symbol
'-' indicates that information is unnecessary. For example, in the provided sample,
you do not need to plan after returning to the departure city. When you travel to
two cities in one day, you should note it in the 'Current City' section as in the
example (i.e., from A to B).

Background Information:

{background information}

**xxx* Example x*x*xx*

Query: Please help me plan a trip from St. Petersburg to Rockford spanning 3 days
from March 16th to March 18th, 2022. The travel should be planned for a single
person with a budget of $1,700.

Plan:

L

H{

"days": 1,

"current_city": "from St. Petersburg to Rockford”,

"transportation”: "Flight Number: F3573659, from St. Petersburg to Rockford,
Departure Time: 15:40, Arrival Time: 17:04",

"breakfast”": "-",

"attraction”: "-",

"lunch": "-=-",

"dinner"”: "Coco Bambu, Rockford”,

"accommodation”: "Pure luxury one bdrm + sofa bed on Central Park, Rockford”
33,

{{

"days": 2,

"current_city": "Rockford”,

"transportation”: "-",

"breakfast”: "Flying Mango, Rockford”,

"attraction”: "Burpee Museum of Natural History, Rockford; Midway Village Museum,
Rockford; Discovery Center Museum, Rockford”,

"lunch”: "Grappa - Shangri-La's - Eros Hotel, Rockford”,

"dinner"”: "Dunkin' Donuts, Rockford”,

"accommodation”: "Pure luxury one bdrm + sofa bed on Central Park, Rockford”
13,

{{

"days": 3,

"current_city"”: "from Rockford to St. Petersburg”,

"transportation”: "Flight Number: F3573120, from Rockford to St. Petersburg,
Departure Time: 19:00, Arrival Time: 22:43",

"breakfast”: "Subway, Rockford”,

"attraction”: "Klehm Arboretum & Botanic Garden, Rockford; Sinnissippi Park,
Rockford”,

"lunch"”: "Cafe Coffee Day, Rockford”,

"dinner"”: "Dial A Cake, Rockford”,

"accommodation”: "-"

33

1

*x*x*x Example Ends x*xxx*xx

1887

To help your plan, some insights from a set summarized by previous agents will be
provided. Not all insights will be appropriate; you need to select the relevant ones
to guide your plan. The values in brackets indicate the reliability of the insights
, with higher values representing greater reliability.

Insight Set: {insight_set}

Given information: {text}

Query: {query}

You should specify the insights you have chosen (beginning with [Chosen Insights]),
followed by your final plan (beginning with [Planl]).

1888

