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Abstract

While extensive research has explored the use
of large language models (LLMs) for table-
based reasoning, most approaches struggle with
scalability when applied to large tables. To
maintain the superior comprehension abilities
of LLMs in these scenarios, we introduce AL-
TER (Augmentation for Large Table-basEd
Reasoning)-a framework designed to harness
the latent augmentation potential in both free-
form natural language (NL) questions, via the
query augmentor, and semi-structured tabu-
lar data, through the table augmentor. By
utilizing only a small subset of relevant data
from the table and supplementing it with pre-
augmented schema, semantic, and literal infor-
mation, ALTER achieves outstanding perfor-
mance on table-based reasoning benchmarks.
We provide a detailed analysis of our method
in large-table scenarios, comparing competi-
tive baselines with various table partitioning
principles. Our method outperforms all other
approaches and exhibits robustness and effi-
ciency against perturbations in all large-table
scenarios. Our code is available at https:
//github.com/Hanzhang-1lang/ALTER.

1 Introduction

Tabular data is one of the fundamental and criti-
cal semi-structured data types widely used in rela-
tional databases, spreadsheets, analysis reports, efc.
Table-based reasoning tasks, such as table-based
fact verification (FV) (Aly et al., 2021; Chen et al.,
2020a; Ou and Liu, 2022) and table-based question
answering (TQA) (Chen et al., 2020b; Pasupat and
Liang, 2015; Lu et al., 2023; Cheng et al., 2022)
require sophisticated reasoning over textual, nu-
merical, and logical forms. Additionally, inference
based on large-scale tables is in substantial prac-
tical demand and poses significant challenges for
machine intelligence.

*Corresponding author.

Recently, large language models (LLMs) have
demonstrated remarkable proficiency in reasoning.
The advent of LLMs has spurred a surge in research
focusing on their application to tabular data, herald-
ing what can be termed the LLM era (Zhang et al.,
2024; Lu et al., 2024). Despite techniques follow-
ing the pre-LLM era, such as fine-tuning methods,
the latest LLM-based approaches have achieved re-
sults that are on par with or surpass those obtained
through rule-based or pre-trained language model
approaches (Liu et al., 2022; Gu et al., 2022; Jin
et al., 2022), leveraging the contextual understand-
ing capabilities of LLMs.

Mainstream techniques in the LLM era focus
on designing prompts or pipelines that combine
instructions with serialized natural language de-
scriptions converted from tables, without additional
training. The sequential text data is parsed by
LLMs, transformed into executable code (e.g., SQL
and Python) using symbolic code generation abili-
ties (Zan et al., 2023; Cheng et al., 2023) or direct
output for inference utilizing literal reasoning abili-
ties (Jiang et al., 2023; Gong et al., 2020).

However, most table-based methods encounter
three challenges when analyzing complex large ta-
bles. Firstly, in the process of converting table
cells into natural language descriptions, the entire
data is often expected to be included to provide
enough comprehensive information (Cheng et al.,
2023). This approach can sometimes face data leak-
age issues involving privacy concerns and may fail
due to context length limitations. In addition, the
excessive length of all tabular content introduces
unnecessary computational resource consumption
and potential bias. Secondly, table reasoning tasks
often require numerical reasoning, data prepara-
tion, or key cell identification. LLMs alone may
lack the robustness to address these tasks directly
and can sometimes introduce inaccuracies or hallu-
cinations in their outputs. As tables grow in size,
reasoning about minor or nuanced details becomes
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even more difficult (Liu et al., 2024), and LLMs re-
quire careful design to enhance their expandability
and robustness in such scenarios. Thirdly, rel-
evant parts needed to derive the answer may be
scattered in different places for a complex large-
table reasoning task. Therefore, intricate queries
cannot be answered directly or resolved through a
single step of program execution. Although a cou-
ple of methods have been optimized for specific
issues mentioned above, no approach simultane-
ously considers all these problems while extending
table-based reasoning tasks to large-scale tables.

In consideration of the issues mentioned above,
we propose a novel framework named ALTER to
facilitate the understanding of tables and to scale ef-
fectively to large tables. Instead of utilizing the en-
tire table data as contextual information through-
out the process, we maintain the contextual length
by fixing the number of rows input into LLMs and
selectively filtering the pertinent columns. We en-
hance table comprehension by leveraging various
types of augmented information. The query aug-
mentor generates adaptations about the NL ques-
tions and the table augmentor generates interpreta-
tions about the table’s inherent structure and con-
tent. The token length of these contents exhibits ro-
bustness to variations in table size. In conjunction
with augmented information, the well-organized
filtered data is integrated with SQL executors and
ultimately transformed into a more accessible for-
mat for joint reasoning, adhering to the proposed
augment-filter-execute procedure.

In summary, our main contributions include:
(i) We explore new augmentation methods for
queries and tables that enhance table reasoning
tasks. (ii)) We propose a general framework and
a novel augment-filter-execute procedure capable
of scaling to large tables. (iii) We conduct exten-
sive experiments on table reasoning benchmarks,
demonstrating superior performance and exhibiting
robustness to perturbations in large-table scenarios.

2 Related Work

Large Language Models for Table Reasoning.
Primary approaches using LLMs to tackle table
reasoning tasks involve fine-tuning a foundational
model or directly utilizing in-context learning abil-
ities unique to the LLM era. For fine-tuning meth-
ods, task-specific fine-tuning methods are designed.
TaPas (Herzig et al., 2020) extends BERT’s (Devlin
et al., 2019) architecture and enhances the under-

standing of tabular data by recovering masked cells.
Models relying on logical codes (e.g., SQL) can fur-
ther enhance the model’s reasoning ability. For ex-
ample, Tapex (Liu et al., 2022) and OmniTab (Jiang
et al., 2022) focus on generating SQL queries that
are then executed to fetch relevant information.
Prompting technologies such as few-shot learn-
ing (Brown et al., 2020a), chain-of-thought reason-
ing (COT) (Wei et al., 2022), and agent-based meth-
ods (Wang et al., 2024a) can be correspondingly
applied in table reasoning tasks. Chen (2023) first
explores and demonstrates the feasibility of using
LLMs in generic reasoning tasks. Binder (Cheng
et al., 2023) shows symbolic languages are also
beneficial for complex analysis with prompt meth-
ods. Chain-of-Table (Wang et al., 2024b), inspired
by CoT prompting methods, uses tabular data in
the reasoning chain as a proxy for intermediate
thoughts. ReAcTable (Zhang et al., 2023) employs
LLMs extending the ReAct framework to reason
step-by-step and iteratively generates sub-tables
using code executors. Dater (Ye et al., 2023) and
DIN-SQL (Pourreza and Rafiei, 2023) break down
table reasoning into multi-step inference by hand-
crafting pipeline.
Query Augmentation. In question-answering
tasks, query augmentation or query rewriting is a
prevalent method to bridge the gap between queries
and facts. Within the framework of LLMs, tasks
related to Retrieval-Augmented Generation (RAG)
often involve various forms of query modification,
including query rewriting, disambiguation, and de-
composition (Gao et al., 2023). RQ-RAG (Chan
et al., 2024) equips the model with multiple capa-
bilities in multi-hop QA tasks. Ma et al. (2023) pro-
poses Rewrite-Retrieve-Read pipeline which adapts
the query itself. Step-Back Prompting (Zheng et al.,
2024) presents a simple technique to derive high-
level concepts. Our method further supplements
sampled table content to better suit the table ques-
tion answering scenario.
Table Augmentation and Table sampling. Table
augmentation involves the exploration of implicit
table content. Mainstream methods include the
incorporation of commonsense knowledge from
search engines (Sui et al., 2023) or analytical
knowledge (He et al., 2023; Jena et al., 2022) into
inference processes. Sui et al. (2024) leverages the
LLM itself to augment structural information us-
ing internal knowledge. Instead, the augmentation
in the table augmentor is closely aligned with our
ALTER framework, which is utilized throughout
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Figure 1: The overview of the ALTER framework for table-based reasoning. The gray background box symbolizes
the primary reasoning workflow. Above it, each sub-query generated by the query augmentor is processed in parallel
by the table organizer and ultimately transformed into informative demonstrations that aid in understanding the
original query. The primary sub-table and relevant information is received by the joint reasoner.

the process. For table sampling, Lin et al. (2023)
fine-tune DPR (Karpukhin et al., 2020) to retrieve
sub-tables and TabSQLify (Nahid and Rafiei, 2024)
relies on SQL queries to decompose tables into rel-
evant sub-tables.

3 Preliminary

In this section, we introduce the definition of table
reasoning tasks. Table reasoning requires reasoning
over both free-form text and inherently structured
tables. Given the triplet (7', @, A), where table
T = {c;}{_,, C represents the number of column
features in the table. Note that we do not represent
the table in cell format as we expect the table under
investigation to adhere to certain norms inherently.
@ signifies a query or claim related to the table,
and A denotes the answer.

We specifically focus on the table question an-
swering and fact verification tasks. In the table
question answering tasks, () and A correspond to
the query and expected answers in natural language
form, respectively. In the table fact verification task,
@ represents a claim about the table, and the final
answer A € {0, 1} where 0 indicates falsity and 1
indicates truth regarding the input claim.

4 Methodology

4.1 Overview

In this work, we assume that semi-structured tab-
ular data is rich in latent information beyond its
raw data values. This information suggests that
data storage adheres to certain common patterns
or field semantics, facilitating the inference of the

overall data distribution from a minimal sample
of data. Inspired by knowledge-fusion models for
metadata inference (He et al., 2023) and the in-
herent knowledge-retrieving ability of LLMs (Sui
et al., 2024), we utilize LLMs to uncover patterns
and semantics within tables, which helps to un-
derstand and operate data correctly. The entire
workflow is illustrated in Figure 1, with detailed
steps outlined in Algorithm 1 in the appendix. In
our framework, the full content of the table is not
included in the prompt; only K sampled rows are
observable. Nevertheless, the reasoning effect is
ensured through the inclusion of elaborately aug-
mented information. The framework seamlessly ac-
commodates large-scale tables, as the model is pre-
endowed with comprehensive information about
the data structure and content prior to inference.
As illustrated in Figure 1, our proposed system
ALTER, consists of three core components:

¢ Query Augmentor: This component enhances
the original query by generating multiple sub-
queries, each examining the original query from
different perspectives. Compared to the partial
original query, this component comprehensively
provides more information through the subsequent
table organizer.

e Table Organizer: Given the input query, this
component utilizes the augment-filter-execute pro-
cedure. It first guides LLMs to perform data min-
ing, enriching the raw data with augmented table
content, then filters the data to retain only highly
relevant rows and columns, and finally employs an
SQL executor to derive an accessible sub-table for

181



[O] Which country had the most cyclists finish within the top 3?

Stage 1: Column Filter & Row Sample
2008 Clasica de San Sebastian

r i
1

1 L

I ¥

)

: Ranl?gt Cyclist Abo Team Abe Point? ]

- 1!

[ g Caisse !

: R1 1 Alejandro (ESP) d'Epargne 40 L

1

: R3 3 Davide (ITA) | Gerolsteiner 25 !

)1

! |

I R6 6 Denis (RUS) | Rabobank 7 : X

1 L

1 1

1 i

I Filtered columns: Rank, Cyclist Rows sampled: R1, R3, R6 I

The table shows the results of the 2008 Clasica de San Sebastian cycling race
Cyclist (The name and nationality abbreviation of the cyclist)

Rank (The position in which the cyclist finished in the race)...

Cyclist (Names of cyclists with their nationality in parentheses)
Rank (Numbers are listed in integer format)...

@ SELECT Country FROM table WHERE
Rank<=3 GROUP BY Country ORDER BY

SELECT SUBSTR(Cyclist, -4, 3) AS Country,

COUNT(*) AS Count FROM table WHERE
Rank<=3 GROUP BY Country Country | Count
ORDER BY Count DESC LIMIT 1; \/ ITA 3

Augmentation for the Table 2008 Clasica de San Sebastian:
Cyclist (CharAbe), Rank (Numerical#)...

D Schema Info
D Semantic Info
D Literal Info

: Stage 3: SQL Execute

End2end SQL:
SsQL

COUNT(*) DESC LIMIT 1 )(

Augmented SQL Generate: [Output] Sub-table:

Figure 2: Illustration of the table organizer. The augmented information from the table augmentor is utilized in
stage 1 and stage 2. In the example depicted in the figure, the model leverages the augmented information to
accurately identify relevant columns and correctly parse nationalities within the table, ultimately producing the

correct execution sub-table.

final inference.

¢ Joint Reasoner: This component efficiently
performs reasoning and aggregation for the query
augmentor and the primary workflow.

4.2 Query Augmentor

One of the primary challenges in naive Question
Answering (QA) lies in its direct reliance on the
user’s original query as the basis. In tabular reason-
ing scenarios, an imprudent query can lead to the
model focusing on one partially biased part in the
table. We propose a novel improvement method for
the query part, which enables the LLMs to utilize
the multi-query technique to address the original
query from multiple perspectives. Each sub-query
undergoes the reasoning process via the table or-
ganizer module, with this process being conducted
in parallel. The model can utilize each indepen-
dent reasoning module to attend to different parts
within the table and extract information pertinent
to answering the original query.

We propose two query augmentation methods:
step-back augmentation and sub-query augmen-
tation. The step-back prompting method (Zheng
et al., 2024) has been empirically validated as ef-

fective in the RAG domain. We equip it with sam-
pled sub-table information, which aims to obtain
more abstract-level comprehension within the ta-
ble through query rewriting. LLMs are shown to
be stronger at sequentially solving sub-problems
than directly solving a complex problem (Zhou
et al., 2022a). The sub-query augmentation method
decomposes complex queries into sub-queries, en-
abling LLMs to more easily locate the relevant
information within each sub-query. Specifically,
we leverage LLMs to generate distinct sub-queries
based on the rewrite or decomposition demand. De-
tailed prompts for both augmentation methods are
provided in Appendix F.

4.3 Table Organizer

The table organizer is the core component of the
reasoning process. We do not use the entire ta-
ble data as contextual information; instead, we
further filter the column features of the table, as
detailed in Section 4.3.2. To maintain model perfor-
mance without accessing full data, we employ the
augment-filter-execute strategy. By pre-analyzing
the table’s schema, semantic, and literal informa-
tion using LLMs, sufficient supplementary infor-
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mation required by the query is provided. Notably,
the augmented information does not increase com-
mensurately with the table size. Therefore, our
method can exhibit strong robustness to variations
in table size.

The table organizer primarily encompasses one
preparatory stage and three reasoning stages, as
illustrated in Figure 2. During the preparatory
stage, the table augmentor augments and stores
enhanced information at various levels for subse-
quent processing. Schema information is utilized
for standardizing the table content. In stage 1, se-
mantic information is employed to identify relevant
columns. Rows are sampled based on semantic sim-
ilarity. In stage 2, with the filtered sub-table, the
augmented information transmitted can be further
simplified. We utilize literal and semantic informa-
tion and leverage text-to-SQL capabilities of LLMs
to generate high-quality SQL. The SQL query is
executed, and the final sub-table is retrieved.

4.3.1 Table Augmentor

The table augmentor aims to convey extra infor-
mation hidden inherently in the table and column
features, beyond the raw data itself. The augmenta-
tion process occurs prior to the official reasoning
process, as illustrated in Figure 2.

It’s worth noting that we can link this process
to real large database systems or table applica-
tions (Xue et al., 2023). In standard database sys-
tems, extensive work on data cleaning and nor-
malization must be undertaken. In real-world
databases, column names are often represented by
uppercase abbreviations or meaningless encrypted
codes. The data stored may be formatted with
abstract symbols, posing challenges in generat-
ing SQL queries accurately. Therefore, the table
schemas typically require pre-defined, with the se-
mantics of column features specified in advance.
Hierarchical meta information will be synchro-
nized, including information about the database,
tables, and data stored. In such cases, we can sim-
plify the steps of our table augmentor by migrating
pre-defined augmented information.

In this paper, we leverage LLMs’ inherent knowl-
edge extraction capabilities to augment table infor-
mation based on the filtered sub-table. Specifically,
we design three different augmentation types to suit
the needs of downstream stages: schema informa-
tion, semantic information, and literal representa-
tion. The prompt for each category of augmentation
is detailed in Appendix F.

e Schema information primarily represents the
data types of features stored in tables, which facili-
tates inferring and unifying data formats when rea-
soning over tables. We extracted three commonly
used types in daily analysis: Numerical, Char, and
Date types. These types are utilized to standardize
and transform table data. Special symbols are pre-
processed for Numerical and Char data, and dif-
ferent date representations are uniformly formatted
for the Date type. The features ultimately stored in
the database for SQL manipulation are transformed
into corresponding data types.

e Semantic information primarily includes the
global semantic information of the table and the
semantics about column features. The global ta-
ble information provide clues for identifying the
relevant domain of the table. Utilizing feature-
specific semantic information, LLMs can more ac-
curately locate features related to the query. Specif-
ically, when columns are named using acronyms or
aliases, the imparted semantics can be pivotal for
analysis. The semantic information is transmitted
for column filtering in stage 1 and augmented SQL
generation in stage 2.

e SQL queries often fail to accurately parse
the correct format stored in the table. Chain-of-
Table (Wang et al., 2024b) improves this by using
multiple chain calls. However, by explicitly in-
forming LL.Ms about the raw data representation
format within the table through literal information,
the model performs better in the generation of cor-
rectly formatted SQL queries in a single LLM call.
Unlike semantic information, literal information fo-
cuses on the representation format of the data (e.g.,
extra parentheses, calculation formulas, special ex-
pressions), which is efficient for SQL generation.

4.3.2 Column Filter and Row Sample

Irrelevant table content in the prompt can lead to
unnecessary computations and quality regression
issues (Sui et al., 2023), especially in scenarios
involving large tables. We retain a small number
of columns and rows from the original table. Un-
less otherwise specified, we set K = 3 in this
paper, meaning the model can only access three
rows of data relevant to the question throughout
the process. However, through the table augmentor,
we can obtain globally enhanced table information.
Specifically, we first store the index of the vector
representation of each row content, and search for
K rows based on embedding-based semantic sim-
ilarity between each row and the utterance. Sub-
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sequently, a powerful LLM is utilized to select
columns relevant to the query, excluding irrelevant
ones. The prompt for column filtering is detailed
in Appendix F. During the column pick, the aug-
mented information is also used for comprehensive
understanding. This module ensures that the scale
of the sub-table passed to LLMs remains consistent
regardless of the size of the original table.

4.4 Joint Reasoner

The Joint Reasoner is responsible for integrating
upstream information to perform the final reason-
ing. To avoid interference from entirely irrelevant
information, sub-queries that cannot be answered
are discarded. Valid sub-queries are transformed
into effective descriptions. These demonstrations
are combined with the sub-table from the primary
workflow to collectively aid in answering the orig-
inal query. Please refer to Appendix F for further
details and more comprehensive prompts. We lever-
age step-by-step reasoning capabilities of LLMs to
arrive at the final answer.

5 Experiment

In this section, we first introduce the datasets and
evaluation metrics. We compare ALTER with the
baseline methods and present the results in Sec-
tions 5.2 and 5.3. The ablation study and analy-
sis of large-table scenarios are discussed in Sec-
tions 5.4 and 5.5, respectively. Additional imple-
mentation details are provided in Appendix A.

5.1 Datasets and Evaluation Metrics

We evaluate our proposed method on two widely-
used table-based reasoning benchmarks, Wik-
iTQ (Pasupat and Liang, 2015) and TabFact (Chen
et al., 2020a). For the table-based fact verification
task, we adopt the TabFact dataset, which contains
various statements based on Wikipedia tables. We
evaluate the dataset using binary classification ac-
curacy on the small-test set containing 1998 state-
ments with 298 different tables.

For the table reasoning task, we adopt WikiTable-
Question (WikiTQ), which contains open-domain
tables accompanied by complex questions. We
use denotation accuracy as our evaluation metric,
which evaluates the predicted answers based on the
gold ones. We evaluate our method on the test set
containing 4344 samples from 421 different tables.

Table 1: Results of different methods on WikiTQ and Tab-
Fact.! (We use underline to denote the second-best perfor-
mance, bold to denote the best performance for each region:
Pre-LLM era, LLM era with result ensemble and without
ensemble)

Acc (%)

Method
etho WIKITQ TABFACT

Q Pre-LLM era

TAPEX (Liu et al., 2022) 57.2 85.9
TaCube (Zhou et al., 2022b) 60.8 -
ReasTAP (Zhao et al., 2022) 58.6 86.2
OmniTab (Jiang et al., 2022) 62.7 -
CABINET (Patnaik et al., 2024) 69.1 -
PASTA (Gu et al., 2022) - 90.8
& LLM era

Binder (Cheng et al., 2023) 55.1 85.1
Dater w SC (Ye et al., 2023) 69.0 854
ReAcTable w s-vote (Zhang et al., 2023) 68.0 86.1
Mix SC w SC (Liu et al., 2023) 73.7 -
Chain-of-Table (Wang et al., 2024b) 67.3 86.6
ALTER (ours) w SC 70.7 87.2
‘Dater wio sc (Yeetal., 2023) 650 835
ReAcTable (Zhang et al., 2023) 65.8 83.1
Mix SC w/o SC (Liu et al., 2023) 64.2 -
ALTER (ours) w/o SC 67.4 84.3

5.2 Baselines

We compare the proposed ALTER with a range
of advanced reasoning frameworks for table-based
tasks. The baseline methods for comparison can
be categorized into two types: mainstream tech-
niques following the pre-LLM era and techniques
unique to the LLM era. For the techniques fol-
lowing the pre-LLM era, we select TAPEX (Liu
et al., 2022), ReasTAP (Zhao et al.,, 2022),
TaCube (Zhou et al., 2022b), OmniTab (Jiang
et al., 2022), CABINET (Patnaik et al., 2024). For
the techniques unique to the LLM era, we select
Binder (Cheng et al., 2023), Dater (Ye et al., 2023),
ReAcTable (Zhang et al., 2023), Mix SC (Liu
et al., 2023), Chain-of-Table (Wang et al., 2024b).
Additionally, generating multiple reasoning paths
and ultimately choosing the most consistent an-
swer through voting or self-consistency (Wang
et al., 2022) can enhance the performance of LLMs.
Therefore, for the techniques unique to the LLM
era, we report two types of results for those meth-
ods employing result ensemble techniques.

5.3 Results

We present the results on the WikiTQ and TabFact
datasets. The experimental outcomes are summa-
rized in Table 1. From the results, we observe

'For the Dater method, we report the results of using the
LLM-based method as backbone
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Table 2: Ablation results of query augmentor on the test sets of WikiTQ and TabFact.

TABFACT WIKITQ
Methods All Simple Hard All Simple Hard
ALTER 84.3 90.7 78.2 67.4 71.2 63.4
wio step-back 823 (}2.0) 895(10.9) 754(12.8) 645(129) 682(}3.0) 60529
wio sub-query  82.4(11.9)  90.6(L0.1) 74.6(13.6) 654(120) 697(,15) 608 (] 2.6)

that ALTER method achieves comparatively out-
standing outcomes. Specifically, on the WikiTQ
dataset, while the Mix SC method do marginally
outperforms our method by aggregating multiple
reasoning paths (with 10 sampling times), ALTER
still managed to exceed the performance of all
other methods under comparison. Notably, AL-
TER demonstrates the best performance in single-
round reasoning among all other methods that uti-
lize result ensemble techniques in the LLM era.
This demonstrates the robust performance of our
method in reasoning tasks, which can be attributed
to the reinforced information provided by the query
augmentor and our innovative modular procedure
within the table organizer.

5.4 Ablation Study

We carry out an ablation study to assess the im-
pact of various components on the performance
of our methods, as well as to explore the relation-
ship between the pure table data and the inherent
augmentation information.

Analysis of the Query Augmentor. To analyze
the impact of two query augmentation methods
in the query augmentor. We conducted experi-
ments on two datasets by discarding the step-back
augmentation module (denoted as w/o step-back)
and the sub-query augmentation module (denoted
as w/o sub-query). For each dataset, we further
categorized the questions based on the difficulty
level, following Ye et al. (2023). This stratifica-
tion facilitates a more comprehensive evaluation
of each module’s impact across different types of
questions. The ablation test results are reported in
Table 2. From the results in the table, it is antici-
pated that employing both augmentation methods
simultaneously yields the best performance under
all experimental settings. For WikiTQ datasets, the
accuracy of ALTER without step-back/sub-query
augmentation drops by 2.9%/2.0%, demonstrating
the necessity of augmented information from multi-
queries. Furthermore, on the TabFact datasets, both
augmentation methods have a much larger impact
on hard questions than on simple questions. This

indicates that the augmented information provided
by the query augmentor is particularly effective in
dealing with complex questions.

Table 3: Ablation results of different values of rows sampled,
i.e., K and with or without augmented information on the
WikiTQ and TabFact. (improvement measured against the
data relative to the position on the bottom-left.)

WIKITQ TABFACT
w/oaug w/aug w/oaug w/aug
K=0 455 62.2 67.1 77.2
K=1 59.2 65.0 (+1.7) 80.5 82.4 (+0.5)
K=3 0633 67.4 81.9 84.3

Analysis of Pure Data & Augmentation. In our
experiments, we primarily utilized K = 3 rows
of data as contextual information. To explore the
relationship between pure table data and the aug-
mented information in the table organizer, we con-
ducted ablation experiments varying the value of K
and the augmentation process. Results are shown
in Table 3. We observe that methods utilizing
augmented information exhibit significant perfor-
mance improvements compared to those without
augmented information. We also note that the con-
current absence of augmented information and data
provision leads to a catastrophic decline in model
performance. Notably, on both datasets, using
only one row of data with augmented information
achieves comparable performance to using three
rows of data. Similar trends can also be observed in
other settings. This validates that when the model is
limited to a small portion of data, the table augmen-
tor serves as a beneficial auxiliary tool, providing
additional insights into the table’s content.

5.5 Large Table Analysis

LLMs often struggle to interpret tables within large-
scale scenarios, leading to hallucinations and errors.
To the best of our knowledge, nearly all methods
encounter a decline in model performance as the
table size increases when handling large tables.

Comparison under Large Table Scenarios. To
demonstrate the effectiveness of the ALTER frame-
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Table 4: Comparison of methods in the LLLM era with
tables divided by token count on WikiTQ. (underline
denotes the second-best performance; bold denotes the
best performance)

Methods TABLE SIZE

Small (<2k) Medium (2k~4k) Large (>4k)
Binder 56.5 26.1 6.4
Dater 62.5 42.3 34.6
Chain-of-Table 68.1 523 44.9
ALTER (ours) 71.7 (+3.6) 65.2 (+12.9) 65.9 (+21.0)

work in large-scale scenarios, we compare the per-
formance of our framework across different table
sizes in this section. We selected various table par-
titioning principles and different types of methods
for a systematic evaluation. For table partitioning,
we employed two approaches based on the token
count and the number of cells. For the models, rep-
resentative methods from both the LLM era and
the pre-LLM era are chosen.

80 —e— ALTER CABINET

707 T T T
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< - T
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CABINET OMNITAB
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Figure 3: Comparison of methods following pre-LLM era
with tables divided by cell count on WikiTQ. In the subplot
above, the regression curves of different models are repre-
sented by dashed lines in different colors. The regression
curve for ALTER exhibits a significantly slower decline rate.

Figure 3 shows the comparison results of AL-
TER and methods following the pre-LLM era, in-
cluding CABINET and OMNITAB, partitioning
tables in the WikiTQ dataset by the number of cells.
In Table 4, we present the results based on differ-
ent table sizes divided by the token count in the
WikiTQ dataset, comparing our method with Dater,
Chain-of-TABLE, and Binder unique to the LLM
era. Table 4 shows that ALTER significantly out-
performs all three methods in the LLM era across
different table sizes. The performance improve-
ment is particularly noteworthy when dealing with
large tables. In Figure 3, our model demonstrates
a much slower performance decline as the model

size increases compared to the other two methods.
As the size of the table increases, both CABINET
and OMNITAB exhibit a monotonous decline in
performance. However, our method shows a brief
reversal with an increase in performance observed
in the intermediate range, indicating the robustness
and insensitivity of our approach to changes in ta-
ble size. Our model significantly outperforms the
other two methods when the table size exceeds a
certain threshold (> 300 cells). Specifically, in the
300 — 400, 400 — 500, and 500+ cell categories,
our model exceeds their performance by at least
15%, 19%, and 25%, respectively. From the results,
it is evident that our method exhibits exceptional
performance in large tables.

Robustness and Efficiency Analysis. We exam-
ined ALTER’s robustness to noise perturbations
and token efficiency in large-scale scenarios. By
adding random rows based on different perturba-
tion factors, we introduced noise to each table in
WikiTQ, details of perturbations can be found in
Appendix E. From Figure 4, we illustrate that as
the degree of perturbation increases, the proportion
of tokens utilized of the whole table by ALTER
decreases. It can be observed that the initial fluctu-
ation has the most significant effect, yet our model
still outperforms the compared method (9.8% AL-
TER v.s. 11.4% CABINET). Concurrently, the de-
cline in the framework’s performance degree slows
down. This indicates that our method efficiently
maintains robust performance in large-table scenar-
ios by narrowing down the scope of larger tables.

Performance Drop
—=— Token Ratio

Darer
AcasiveT toz2a

Token Ratio

Performance Drop (%)

x‘O ><‘1 x‘2 ><‘4
Perturbation Factor

Figure 4: Relative performance drop and the ratio drop
of the table tokens utilized by ALTER to the total to-
ken count over the table as the number of rows added
increases by multiples (i.e., perturbation factor) on Wik-
iTQ. Specifically, the performance drop for CABINET
and ALTER is marked at the factor of 1.
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5.6 Case Study

In Appendix B, we present a case study illustrates
how each component of the augmented informa-
tion in ALTER framework contributes to accurate
comprehension or leads to errors. When addressing
complex problems, without the assistance of the
augmentation process, the model may focus on bi-
ased information or experience hallucinations when
generating SQL. However, when the augmented
information is explicitly provided, the model can
identify the region containing the correct informa-
tion or generate syntactically correct SQL, thereby
delivering accurate responses.

6 Conclusion

We propose a framework, namely ALTER, which
significantly optimizes model performance on
large-scale tables. Within this framework, we ex-
tract inherent information pertinent to the ques-
tions and tables. By leveraging an augment-filter-
execute process as the core reasoning workflow,
ALTER demonstrates superior performance in han-
dling large tables. We believe ALTER can bridge
the gap between table reasoning methodologies and
real-world analysis and bring insights into under-
standing the way LLMs comprehend tables.

Limitations

ALTER is designed to generalize to large table
reasoning tasks, but our method still faces some
limitations. Our approach relies partly on the de-
gree of structured and standardized storage of ta-
bles, meaning that if the table structure is totally
disordered or lacks a certain level of standardiza-
tion, our model’s performance will degrade, for
instance, when headers and data are intermixed.
Additionally, the combination methods of differ-
ent augmented information can be explored further.
Due to the page limits, we will leave these explo-
rations for future work.
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A Implementation Details

All experiments in this paper were conducted on
GPU clusters with 4 NVIDIA A100 GPUs. We
employ GPT-3.5-turbo as our large language model
backbone for all experiments. To ensure consistent
results, we apply a self-consistency technique with
5 sampling times for each benchmark dataset. For
the embedding model for column filter in Section
4.3.2, we utilize bge-large-en model (Xiao et al.,
2023) and employ FAISS (Johnson et al., 2019) for
efficient similarity search.

B Case Study

In Figure 5, the input question asks for the vehicle
preceding the Jaguar XJS. When filtered table is
directly provided, the SQL only attends to the sec-
ond last row of the table. This indicates that the
model has observed biased data, incorrectly assum-
ing that the vehicle Jaguar XJS appears only once.
However, through step-back query augmentation,
the query is reframed, and the model generates a
more general SQL query, acquiring more results
and thus arriving at the correct answer.

In Figure 6, the query seeks to determine the
tenure of René Heitmann as head coach. This in-
volves operations on two distinct columns. By de-
composing the original query into sub-queries, the
difficulty is reduced, allowing the model to accu-
rately retrieve the corresponding information and
ultimately compute the correct result. In Figure 7,
the input query seeks to determine the score dif-
ferential for the team Detroit. Without relying on
the augmented information from the table augmen-
tor, the model fails to correctly capture the name
in the Team column and cannot accurately extract
the score values in the Score column. After in-
corporating the augmented information, the model
generates syntactically correct SQL and extract the
needed data.

We additionally present cases when the table
augmentor and query augmentor brings in errors.
In Figure 8, an erroneous response generated by the
step-back query augmentor adversely affects the
final query result. In Figure 9, the failure to gener-
ate correctly formatted augmentation information
results in the loss of year column features. The
incorporation of augmentation information enables
the model to generate the correct SQL, underscor-
ing the necessity of augmentation information.

1978 Trans-Am season

row_number Date Circuit Winning_driver Winning_vehicle

TA1

1 May 21 Sears Point Gene Bothello Chevrolet Corvette

2 June 4 Westwood Nick Engels Chevrolet Corvette

3 June 11 Portland Bob Matkowitch [/ Chevrolet Corvette

4 June 25 Mont-Tremblant Bob Tullius Jaguar XJS

5 July 8 Watkins Glen Brian Fuerstenau Jaguar XJS
Bob Tullius

6 August 13 Brainerd Bob Tullius Jaguar XJS

7 August 19 Mosport Bob Tullius Jaguar XJS

8 September 4 | Road America Bob Tullius Jaguar XJS

9 October 8 Laguna Seca Bob Tullius X Jaguar XJS

10 November 5 = Mexico City Bob Tullius Jaguar XJS

Example query: which tal vehicle won previous to the jaguar xjs?

ALTER w/o query augmentor

SQL:

SELECT Winning_vehicle_TA1 FROM DF WHERE
row_number = (SELECT MAX(row_number) FROM DF WHERE
Winning_vehicle_TAl = ‘Jaguar XJS') - 1;

Final Answer: Jaguar XJS x

Step-back query augmentation:
which vehicles won in the TA1 category before the Jaguar XJS?

SQL:
SELECT Winning_vehicle_TA1l FROM table WHERE row_number < 7;
Final Answer: Chevrolet Corvette «

Figure 5: Intuitive example for step-back query aug-
mentation, where ALTER correctly answers the query
utilizing broader information compared to directly out-
put SQL based on the original query.

C Error Analysis

We systematically examine the error patterns of
ALTER. We randomly sampled 100 error cases
from the WikiTQ dataset and manually analyzed
these errors. The errors were subsequently catego-
rized into six distinct types. Table 5 summarizes
the predominant error types. According to the error
distributions, ALTER may encounter failures due
to the limited possessed data. The issue can be
effectively mitigated by increasing the value of K.
However, expanding the sample size incurs higher
costs. In practice, it is essential to balance compu-
tational overhead and retrieval quality, achieving
trade-off by selecting an optimal K value.

D Impact Analysis of the Table
Augmentor

Within the ALTER framework, the integration of
three types of augmentation information in the ta-
ble augmentor is pivotal. For instance, schema
information is employed for the pre-normalization
of tables, while both table semantic and literal in-
formation are utilized concurrently during the gen-
eration of SQL queries. Consequently, isolating the
impact of a single type of augmented information
is complex. Nonetheless, in this section, we con-
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Table 5: Proportions of different error types on WikiTQ.

Error Types Ratio Description

Hallucination 34% LLMsl mcorrecFly {nterpret the table con-
tent with hallucination.

Coding Errors 20% LLMS produce inaccurate code, mainly due
to minor format errors.
Incorrect columns were selected in the col-

Selection Error 9g, umn filter; sampling (/) rows resulted in

biased data, leading to bias or incomplete-
ness in the augmentation phase

LLM:s exhibit failures in jointly reasoner;
Jointly Reasoner Error 16% contradictions or incorrect format, e.g., 1
minute and 46.7 seconds or 1:46.07

Errors or biases occur during schema nor-

Schema error 10% L
malization

Other Errors 11% Other uncategorizable errors

Table 6: Ablation results of table augmentor on the test
sets of WikiTQ and TabFact.

Methods WIKITQ TABFACT
ALTER 67.4 84.3

w/o semantic information  64.8 ([ 2.6) 83.4(] 0.9)
w/o literal information 63.9( 3.5 82221

duct an ablation study evaluating the performance
on the WikiTQ and TabFact datasets without the
use of either semantic or literal information throuth
the reasoning process. The experiments revealed
that omitting either type of information leads to
a decline in performance. Overall, a practical ex-
perience involves enriching the table augmentor
module with additional types of information, such
as the structural orientation of the table (horizon-
tal or vertical), web knowledge, efc., rather than
relying solely on a single type of augmentation.

E Details of Table Perturbation

We provide details of the perturbations imple-
mented in Section 5.5. We insert noise by adding
rows based on the size of the table, following the
row adding steps in Patnaik et al. (2024). How-
ever, we do not randomly extract values from
other tables, as this would compromise the pre-
augmented schema standardization. Based on the
augmented schema information, we randomly gen-
erated data for three types of features: Date, Nu-
merical, and Char. We believe the disturbance
intensity is quite similar for the model compared
to the previous approach. Based on the number
of cells (#cells = N) in the table, the exact
scheme of the n rows inserted is as follows: (i)
n =1if N <150, (i) n = 2 if 150 < N < 300,
(i) n = 4if 300 < N < 450, (iv)n =8if N >

450. Additionally, for each of these categories, we
vary the degrees of perturbation by multiplying the
number of added rows by 1, 2, and 4 times (i.e.,
perturbation factor used in Figure 4).

F Prompts in ALTER

We provide the prompt templates for each module
used within the ALTER framework. In these tem-
plates, the red text serves as a placeholder for spe-
cific input, the blue text stands for a special place-
holder for specific serialized table. In our work,
the sub-tables are serialized into HTML format
throughout the experiments following the practical
guide in Sui et al. (2024). For a clear demonstra-
tion, we illustrate one demo for serialized table in
Figure 10. The in-context few-shot examples are
selected from the training or validation set for each
task.

Prompts for the Query Augmentor. For each
augmentation method in the query augmentor, we
use 3 prompting examples. The detailed prompt is
illustrated in Figure 11. Low-quality sub-queries
are rejected by the joint reasoner module, and du-
plicate sub-queries are filtered out. This does not
introduce excessive consumption, as the sub-table
contains sufficiently few contents throughout the
process, and each sub-query reasoning is conducted
in parallel.

Prompts for the Table Organizer. In the table
organizer, we show the prompt for each augmen-
tation type in Figure 12 and the detailed prompt
for the remaining module in Figure 13. For the
column filter, we primarily use the global semantic
information of the table and its feature semantics.
In the SQL generation part, we focus on the global
table semantics and the semantic and literal infor-
mation of the filtered columns. In our experiments,
We use 3 prompting examples in the column filter.
We found that excessive inclusion of manually de-
signed examples can adversely affect the predictive
quality of the model, as also shown by Brown et al.
(2020b). We deploy the augmented SQL Genera-
tion process in a zero-shot manner, which provides
versatility in SQL generation and flexibility for ad-
justing to other text-to-SQL models as well.
Prompts for the Joint Reasoner. Before entering
the joint reasoner, sub-queries are transformed into
effective auxiliary descriptions. We provide the
prompt for the joint reasoner, as well as the prompt
for reasoning over sub-queries from the query aug-
mentor to obtain extra information in Figure 14.
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Boldklubben Frem

Name Nationali: c_From To Comments
Henrik Jensen Denmark | 1 July 2012 Present
John 'Tune' Kristiansen Denmark | 18 June 2012 | 23 June 2012 Caretaker for ...

Peer F. Hansen Denmark | 1 January 2012/ 18 June 2012

John 'Tune' Kristiansen Denmark | 27 July 2010 | 3 December 2011 | Originally had contract ...

René Heitmann Denmark[ 17 July 2010 | 27 July 2010 v I Never coached the team ...

Christian Andersen Denmark | 11 July 2009 | 19 June 2010 Club went bankrupt ...

Anders Theil Denmark | 7 November 20( 7 July 2009 Originally had contract until

summer 2011

Example query: how long was rené heitmann the head coach of
boldklubben frem?

ALTER w/o query augmentor

SQL:

SELECT * FROM DF WHERE Name = 'René Heitmann'
AND Comments LIKE '%head coach%';

Final Answer: No data from database x

Sub-query query augmentation:
1. when did René Heitmann start as head coach of boldklubben frem?
2. when did René Heitmann stop being head coach of boldklubben frem?

SQL:
SELECT c_From FROM DF WHERE Name = 'René Heitmann’;
SELECT To FROM DF WHERE Name = 'René Heitmann’;

Final Answer: 10 days \/

Figure 6: Intuitive example for sub-query query augmen-
tation, where ALTER correctly answers the query utilizing
sub-queries compared to directly output SQL based on the
original query.

1998 Sydney to Hobart Yacht Race

Position  Yacht State_Country Skipper Elapsed_Time
1 Sayonara x USA Larry Ellison 2:19:03:32
2 NSW George Snow | 2:21:55:06
3 Ausmaid SA Kevan Pearce | 3:06:02:29
4 Ragamuffin NSwW Syd Fischer 3:06:11:29
5 Nokia Cl David Witt 3:09:19:00
6 Fudge VIC Peter Hansen | 3:11:00:26
7 Quest NSwW Bob Steel 3:14:41:28
8 Industrial Quest QLD Kevin Miller 3:14:58:46

2008-09 Sacramento Kings season

Date Team Score High_points Record
January 2 @ Detroit L 92-98 \/ l Brad Miller (25) 8-25
January 3 @ Indiana L117-122 Kevin Martin (45) 8-26
January 5 @ New Jersey L 90-98 Kevin Martin (36) 8-27
January 6 @ Chicago L 94-99 Kevin Martin (29) 8-28
January 14 | @ Golden State | W 135-133 (30T) Brad Miller (30) 10-30
January 20 | @ Denver L 99-118 Kevin Martin (25) 10-32
January 24 | @ Milwaukee L 104-106 Kevin Martin (20) 10-34

Example query: what was the point difference between the sacramento
and detroit for game 33?

ALTER w/o table augmentor

SQL:

SELECT ABS(CAST(SUBSTR(Score, 3) AS INTEGER)

- CAST(SUBSTR(Score, 6) AS INTEGER)) AS Point_Difference
FROM DF

WHERE Team = 'Detroit' AND Game = 33;

Final Answer: No data from database x

Table organizer augmentation:

Team: Team names with @ indicating away games

Score: Scores in the format W/L followed by points in the format of
x-y for each team

SQL:

SELECT ABS(SUBSTR(Score, INSTR(Score, '-') + 1, 2) -
SUBSTR(Score, INSTR(Score, ' ') + 1, 2))

AS Point_Difference FROM DF

WHERE Team = '@ Detroit' AND Game = 33;

Final Answer: 6 ¢

Figure 7: Intuitive example for table augmentor, where AL-
TER correctly answers the query utilizing information about
data format and composition compared to directly output SQL
without any augmentation information.

Skoda Auto

Model ©_2000 ¢_2001 2002 c_2003 c_2004 C_2005 c_2006
Skoda Felicia 148,028 44,963 - - - - -
8koda Octavia 158,503 | 164,134 | 164,017 165,635 181,683 233,322 270,274
Skoda Fabia 128,872 | 250,978 | 264,641 260,988 | 247,600 | 236,698 | 243,982
8koda Superb - 177 16,867 23,135 22,392 | 22,091 | 20,989
Skoda Roomster | — - - - - - 14,422
Skoda Yeti - - - - - - -
Skoda Rapid = - - - - - -
Skoda Citigo = = = = - - _

Example query: what yacht had the next best time (smaller time is
better) than ausmaid?

Example query: what is the total number of skoda cars sold in the year
2005?

Step-back query from query augmentor:
which yacht had a better time than Ausmaid?

SQL:
SELECT Yacht FROM DF WHERE Elapsed_Time_nd_hh_mm_ss <
'3:06:02:29' AND Yacht != 'Ausmaid';

Answer from sub-query: the yacht that had a better time
than Ausmaid is Sayonara

SQL in the primary workflow:
SELECT Yacht FROM DF ORDER BY Elapsed_Time_nd_hh_mm_ss
LIMIT 1 OFFSET 1;

SQL result: Brindabella

Augmentation information: 3
The table shows the sales figures for different Skoda models from
1991 to 2013. (Lack of column semantic information)

SQL:
SELECT COUNT(*) FROM DF WHERE c_2005 != '-'

Answer: 3 x

Add augmentation information:
1. c_2005: The sales figure for the year 2005

SQL:
SELECT SUM(*) FROM DF WHERE c_2005 != ‘-'

SQL result: 492,111

Final Answer: Sayonara x

Final Answer: 492,111 ¢

Figure 8: Error case when the query augmentor generates
biased demonstrations.

Figure 9: Error case when the table augmentor fails to gener-
ate effective augmentation information



<table>

<caption>Oklahoma State Regents for Higher Education</caption>

<thead>

<tr><th> Name</th><th> Profession</th><th> Hometown</th><th>

Term_Expires</th><th> O0Office</th></tr>

</thead>

<tbody>

<tr><td>William Stuart Price</td><td>Businessman </td><td>Tulsa </td><td>2013
</td><td> </td></tr>

<tr><td>Joseph L. Parker Jr.</td><td>Businessman </td><td>Tulsa </td><td>2014
</td><td>Chair </td></tr>

<tr><td>Bill W. Burgess Jr. </td><td>Attorney </td><td>Lawton </td><td>2011
</td><td> </td></tr>

</tbody>

</table>

Figure 10: Demo for table format encoding used in ALTER, all tables are serialized in HTML format and include
only K rows from the original table (where K=3 for the demo).

Algorithm 1 ALTER Workflow
Input: original table-question pair (7', Q).
Output: predicted answer to the question A.
1: function ALTER(T, Q)
2: # Function table organizer (Taborg) defined
3 function TABORG(T', (Q)
4 # Sample row index R using embedding-based similarity
5 R = RowSample(T, Q)
6: # Store table augmentation information in advance
7
8
9

Aug = TabAug (T}, .)
(Auge,, - - -, Auge,o,, Augr) < Aug

: C = ColFilter(T} ., Q, Aug)
10: Sql=CallLLM(TR O,Q,Aug)

11: return Execute(sql)
12: end function
13: # Generate sub-queries with the query augmentor

14: R = RowSample(T, Q)
15 {Qu}, = QueryAug(T, , Q)

16: #Run sub-queries in parallel

17: foriinl,--- ,mdo

18: 17 =TabOrg(T, Q)

19: # Get effective response for the sub-query
20: ATes = CallLLM(TT**)

21: end for

22: # Get accessible sub-table in the primary workflow
23: 77 =Taborg(T, Q)

24: # Joint reasoner

25:  A=CallLLM(T"®®, A7¢5)

26: return A

27: end function
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=========================== %% Step-back Augmentor #** ===========================
Below is a sub-table with rows randomly sampled from the original table. Based on

the sub-table, your task is to step back and paraphrase a question to a more
generic step-back question, which is easier to answer.

Sub-table: {Sub-table from in-context example}
Query: what is the next most populous district after haridwar?
New query: what districts are more populous than haridwar?

Sub-table: {Sub-table from in-context example}
Query: who was the only judge appointed by mckinley?
New query: which judge was appointed by mckinley?

Sub-table: {Sub-table from in-context example}
Query: was chuck bednarik or frank tripucka the first draft pick?
New query: who was the first draft pick?

Sub-table: {Sub-table from input}

Query:{Query}

New query:

=========================== %% Sub-query Augmentor #** ===========================

You are capable of converting complex queries into sub-queries. Below is a sub-
table with rows randomly sampled from the original table. Based on the sub-table,
decompose the original query into 2-3 complete sub-queries that can solve the
original query.

Sub-table: {Sub-table from in-context example}

Query: what was the time difference between the first place finisher and the

eighth place finisher?

New query: what was the time for the first place finisher?; what was the time for
the eighth place finisher?

Sub-table: {Sub-table from in-context example}
Query: other than william stuart price, which other businessman was born in tulsa
5

New query: where was william stuart price born in?; who was born in tulsa?

Sub-table: {Sub-table from in-context example}

Query: which canadian city had the most passengers traveling from manzanillo
international airport in 20137

New query: how many passengers do each airline from canadian city have?; which
canadian city had the most passengers?

Sub-table: {Sub-table from input}
Query:{Query?}
New query:

Figure 11: The prompt template for the query augmentor in WikiTQ
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============================== %% Schema Info ** ==============================
Instruction: Given the following table, you will add schema type about the
columns in the table.

Schema type includes:

- Numerical: consists of digits and numerical symbols like decimal points or
signs.

- Char: whether column content is a phrase or description.

- Date: whether column content represents time or date.

You need to output all the column names with metadata in angle brackets, e.g.
name<Char> launched<Date> count<Numerical>

Table: {Sub-table from input}

OQutput:

============================== %% Semantic Info *% ===============-=-----=-----o-os
Instruction: Given the following table, you need to first summarize the contents
of the table, then based on the summary, give a concluded description of each of
the columns.

The output should use the following format:

table summary: summary for table contents

column description: output all the column names with description in angle
brackets, e.g. launched<The launched date for the competition>

Table: {Sub-table from input}

Output:

============================== %% Literal Info #** ==============================
Instruction: Below is a sub-table with rows sampled, you are required to infer
the data distribution and format from the sample data. Refine commonalities in
literal representations within each table column.

You need to output in the following format:

Column_name: Commonalities

e.g. championship: Names of golf tournaments are listed with some additional
information (e.g., ’s open, classic)

Sub-table: {Sub-table from input}
OQutput:

Figure 12: The prompt template for three types of augmentation in the table augmentor in WikiTQ
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============================== %% Column Filter ** ==============================
Based on the Table below, your task is to accurately output columns related to
the query.

Approach this task as follows:

Read the query and extra information thoroughly and list every possible link from
query term to column in the Table.

Then based on the column linking, output all useful columns at last. Make sure

all columns in the linking step are included and every column is in the Table.

Table: {Sub-table from in-context example}

Extra information: The table contains information about the Hoot Kloot animated
series, including the episode number, title, director, and release year.

Column information:

1. Number: The episode number in the series

2. Title: The title of the episode

3. Directed_by_: The director of the episode

4. Released_: The release year of the episode

Query: what was the last title that sid marcus directed?

Column linking: the last title -> Released_, the last title-> Number, title ->
Title, sid marcus -> Directed_by_

Columns: Released_, Number, Title, Directed_by_

Table: {Sub-table from input}
Extra information: {Augmentation}

Query: {Query}

=================== %% Augmented SQL Generation(Zero-shot) ** ===================

Our ultimate goal is to answer the query based on the original table. Now we have
a sub-table with rows sampled from the original table, you are required to infer
the data distribution and format from the sample data of the sub-table. Based on
the augmentation information, carefully analyze the query and write an SQLITE3

SELECT SQL statement using table DF that completes the query. Directly output SQL
, do not add other string.

Sub-table: {Sub-table from column filter}
Augmentation information: {Augmentation}

Query: {Query}
SQL:

Figure 13: The prompt template for the column filter module and augmented SQL generation module inside the
table organizer in WikiTQ

197



===================== %% Reasoning from Query Augmentor #** =====================
Below is a sub-table generated by executing the corresponding SQL. You need to
understand the logic behind the SQL filtering. Based on the sub-table, answer the
query using the final sub-table.

SQL Excuted:

“‘{SQL}“‘

Sub-table: {Sub-table from executing SQL}
Query: {Sub-query}

Please provide a clear, complete statement in response to the query. If you
cannot answer the query based on the sub-table, return ’Cannot get answer from
sub-table’.

=========================== %% Joint Reasoner *% ===========================
Below is a sub-table generated by executing the corresponding SQL with extra
information may be useful. You need to understand the logic behind the SQL
filtering. Based on the sub-table and extra information provided, think step by
step and answer the query.

You should output in the following format:

Thought: your step by step thought

Answer: Only return the concise string instead of other format information. Do
not repeat the question.

Below is an example.

SQL Excuted:

¢¢““SELECT DISTINCT Type FROM DF WHERE Type != ’audio’;‘‘‘
Sub-table: <table>

<thead>

<tr><th> Type </th></tr>

</thead>

<tbody>

<tr><td>video </td></tr>

<tr><td>audio/video </td></tr>

</tbody>

</table>

Extra information:
The payload types for audio include audio, video, and audio/video.

Query: other than audio, what type of payload types are there?

Thought: Based on the executed SQL query and the extra information provided, the
types include audio or video. Therefore, other than audio, the payload type is
video.

Answer: video

SQL Executed:

fee{sQLy i

Sub-table: {Sub-table from executing SQL}
Extra information:

{Extra information from query augmentor}

Query: {Query}

Figure 14: The prompt template for joint reasoner in WikiTQ
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