
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 1710–1721

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Divergent Thoughts toward One Goal: LLM-based Multi-Agent
Collaboration System for Electronic Design Automation

Haoyuan Wu♠, Haisheng Zheng♡, Zhuolun He♠,♣, Bei Yu♠

♠The Chinese University of Hong Kong, Hong Kong SAR
♡Shanghai Artificial Intelligent Laboratory, China

♣ChatEDA Tech, China
{hywu24,byu}@cse.cuhk.edu.hk

Abstract

Recently, with the development of tool-calling
capabilities in large language models (LLMs),
these models have demonstrated significant po-
tential for automating electronic design automa-
tion (EDA) flows by interacting with EDA tool
APIs via EDA scripts. However, considering
the limited understanding of EDA tools, LLMs
face challenges in practical scenarios where
diverse interfaces of EDA tools exist across
different platforms. Additionally, EDA flow
automation often involves intricate, long-chain
tool-calling processes, increasing the likelihood
of errors in intermediate steps. Any errors
will lead to the instability and failure of EDA
flow automation. To address these challenges,
we introduce EDAid, a multi-agent collabora-
tion system where multiple agents harboring
divergent thoughts converge towards a common
goal, ensuring reliable and successful EDA
flow automation. Specifically, each agent is
controlled by ChipLlama models, which are
expert LLMs fine-tuned for EDA flow automa-
tion. Our experiments demonstrate the state-of-
the-art (SOTA) performance of our ChipLlama
models and validate the effectiveness of our
EDAid in the automation of complex EDA
flows, showcasing superior performance com-
pared to single-agent systems.

1 Introduction

Electronic design automation (EDA) is indispens-
able for the design of integrated circuits (ICs).
EDA tools are integrated into a complex design
flow and utilize programming interfaces to control
the design process. EDA platforms such as Open-
ROAD (Ajayi and Blaauw, 2019) and iEDA (Li
et al., 2024), consist of complex procedures with
various configurations. Circuit design engineers
utilize EDA tools iteratively to fulfill design tar-
gets, relying on tailored scripts that manipulate
these tools via programming interfaces. However,
interacting with EDA tools through scripting (Chen

et al., 2001) is often laborious and error-prone. This
complexity is further intensified when design teams
employ tools from various vendors in the circuit
design process.

Large language models (LLMs) (Achiam et al.,
2023; Anthropic, 2024; Dubey et al., 2024) have
demonstrated profound instruction comprehension,
planning, and reasoning capabilities. The potential
of LLMs to interact with diverse tools for execut-
ing complex tasks has gained increasing recogni-
tion (Qin et al., 2023). Researchers have explored
the automation of complex EDA flows by interfac-
ing with EDA tools via LLMs (Wu et al., 2024;
Liu et al., 2023). Specifically, ChatEDA (Wu et al.,
2024) uses LLMs as “brains” of the agent to gener-
ate EDA scripts, automating EDA tool utilization,
reducing the workload of circuit design engineers,
and minimizing errors.

Although LLMs have shown potential in EDA
flow automation, significant challenges remain.
Firstly, although LLMs excel at understanding nat-
ural language, they lack specialized knowledge of
EDA tool usage. These tools are designed for
specific tasks such as logic synthesis, floorplan-
ning, placement, and routing, each requiring de-
tailed domain-specific knowledge and familiarity
with various EDA tool interfaces. To solve these
problems, LLMs can be fine-tuned on datasets con-
taining tutorials and EDA scripts specific to EDA
tools (Wu et al., 2024). However, this approach
presents its problems. Each EDA platform has
a unique set of commands and flows that must be
mastered for effective use. If LLMs only focus on a
specific EDA tool or platform during the instruction
tuning process will limit their cross-platform utility,
potentially reducing the effectiveness in practical
scenarios. Furthermore, EDA flows typically in-
volve a sequence of intermediate steps. A single
error in any of these steps can lead to failure in
the overall process. This risk is compounded by
the probabilistic nature of LLMs, which may pro-

1710

duce varying solutions to the same task. Moreover,
errors may occur in intermediate steps during a
long-chain tool-calling process, introducing insta-
bility into the EDA flow automation.

To address these challenges, we introduce a
multi-agent collaboration system, EDAid, designed
for EDA flow automation through script generation
in response to natural language instructions. This
system is characterized by the collaboration of mul-
tiple agents, which are powered by the LLMs. As
mentioned earlier, EDA flow automation is chal-
lenging even for the greatest LLM such as GPT-
4 (Achiam et al., 2023). Consequently, we develop
ChipLlama models, expert LLMs fine-tuned for
EDA flow automation. We specifically focus on
improving the understanding of overall EDA flow
rather than simple EDA tool usage during the fine-
tuning process. We also employ few-shot chain-of-
thought (CoT) prompts for each agent to further
develop the performance and portability through
the in-context learning capability of LLMs. Based
on multiple agents, we propose the multi-agent sys-
tem, EDAid, to ensure stability and avoid erroneous
intermediate steps during the long-chain EDA tool
calling process. In this system, multiple agents
collaborate with divergent thoughts following dif-
ferent few-shot contexts and then make the final
decision based on divergent thoughts, working in
concert to automate the EDA process. Our EDAid
can interpret human instructions, plan EDA tasks,
and interface with EDA tools through APIs, serving
as a valuable assistant in automating EDA flows
and eliminating the need for manual intervention.
In summary, our contributions are as follows:

• We develop the ChipLlama-powered agent,
collaborating with few-shot CoT prompts, to
develop the performance and portability of the
single-agent system;

• Propose EDAid, a multi-agent system that col-
laborates multiple agents including divergent-
thoughts agents and a decision-making agent
for EDA flow automation;

• Perform extensive evaluations, which demon-
strate the SOTA performance of ChipLlama
models, the effectiveness of the few-shot CoT
prompting, and the superior performance of
our EDAid for EDA flow automation.

2 ChipLlama-powered Agent

For an autonomous agent for EDA flow automation,
users can provide the EDA task in natural language,

def floorplan(
 self,
 core_utilization: float = None,
 core_aspect_ratio: float = None,
 core_margins: int = None,
 macro_place_halo: int = None,
 macro_place_channel: int = None,
):
Run floorplan.

def placement(
 self,
 density: float = 0.7
):
Run placement.

Task Planning

Script Generation
EDA API Document

Planning Steps

EDA Script

CoT Prompt

EDA Task
ChipLlama

Figure 1: Overview of the ChipLlama-powered agent
for task planning and EDA script generation.

and the agent will generate executable scripts to
complete the EDA task via an LLM. To guarantee
the performance and reliability of the overall flow,
we introduce the expert LLM, ChipLlama, as the
“brain” of the single-agent system. Furthermore,
we apply few-shot CoT prompts to the single-agent
system to enhance the reasoning ability for EDA
flow automation as shown in Figure 1.

2.1 ChipLlama for EDA Flow Automation

ChipLlama models are expert LLMs fine-tuned
based on Llama3 (Dubey et al., 2024) via the hybrid
instruction tuning. The capability of the ChipLlama
models determines the performance of EDA task-
resolving. Previous expert LLMs for EDA flow
automation (e.g. AutoMage2 (Wu et al., 2024))
only show reliable performance on a single plat-
form. However, there are various EDA platforms in
real industrial scenarios. To address this challenge,
we enhance the generalization ability of LLMs by
broadening their understanding of the entire EDA
flow, beyond mere simple tool usage.

The invocation of EDA tools is dependent on
maintaining the correct logical order in contrast
to other fields where tool usage may not require
a strict logical sequence. This dependency arises
from the nature of EDA processes, which consist
of interconnected stages such as logic synthesis,
floorplanning, placement, and routing. Each stage
must be executed sequentially, relying on precise
inputs from preceding steps. Therefore, besides
domain-specific knowledge for EDA tool usage,
LLMs must exhibit advanced logical reasoning and
tool manipulation (via code) skills.

Instruction tuning is founded on the principle
that by engaging in supervised learning driven by
task-specific instructions, LLMs can acquire the
skill to adhere to directives for tasks they have not
previously encountered. This facilitates the appli-
cation of LLMs to EDA tasks utilizing datasets
from domains beyond EDA. Instruction datasets
from various fields provide a wealth of directives,

1711

System:
You are an AI assistant, capable of
utilizing numerous tools and functions.
User will give you a task. Your job is to
generate a Python script to complete the
task using the provided tools and
functions. While performing the task
think step-by-step and justify your
steps. You have access to the following
tools and functions:
<<<APIs Document>>>

User: <<<EDA Task>>>
Assistant:
<<<Task Planning and Script Generation>>>

EDAInstruct

MathInstruct

CodeInstruct

ChipLlama
(8B, 70B)

Instruction
Fine-Tuning

Llama3 Models
(8B, 70B)

Figure 2: Overview of hybrid instruction tuning.

promoting the ability of models to develop versa-
tile problem-solving strategies by correlating in-
puts with outputs. Consequently, as illustrated
in Figure 2, we utilize hybrid instruction tuning
for ChipLlama models, which integrates three spe-
cially curated datasets including MathInstruct (Yu
et al., 2023), CodeInstruct (Wei et al., 2023), and
EDAInstruct (Wu et al., 2024). Hybrid instruction
tuning fosters LLMs’ deep understanding of so-
phisticated EDA flow automation, which can be
generalized to various EDA platforms and enhance
the performance and reliability applying to a single
EDA platform. We show more details of hybrid
instruction tuning in Appendix A.

2.2 Few-shot CoT Prompting
Backend design involves complex procedures to in-
teract with various EDA tools. For example, achiev-
ing timing closure has to optimize cell placement,
clock trees, and signal routing iteratively until sat-
isfying performance is obtained. In this sense, it is
difficult for LLMs to generate a script that finishes
the job directly (Wu et al., 2024). The enhance-
ment for LLMs in such script generation can be
achieved through the application of CoT prompt-
ing (Wei et al., 2022b). As illustrated in Figure 1,
after receiving user instruction and API document,
ChipLlama models start to plan how to complete
the task in several steps following the CoT prompt
and then generate the corresponding script accord-
ing to the planning steps.

Let’s first focus on the standard prompt for EDA
task-solving without the task planning phase. For
standard prompting, the objective is to maximize
the probability of the script A given an EDA task
Q, a prompt T , and the probabilistic LLM pL rep-
resenting the utilized ChipLlama model. The prob-
ability is expressed as:

p(A|Q, T) =

|A|∏

i=0

pL(ai|Q, T ,A<i), (1)

where A<i = {a1, a2, · · · ai−1}, ai represents the

System: You are an AI assistant, capable of utilizing numerous tools
and functions. User will give you a task. Your job is to generate a Python
script to complete the task using the provided tools and functions. While
performing the task think step-by-step and justify your steps. You have
access to the following tools and functions:
<<<APIs Document>>>

User: <<<EDA Task 1>>>
Assistant: <<<Solution 1>>>

User: <<<EDA Task 2>>>
Assistant: <<<Solution 2>>>

User:
For the "aes" circuit, I want to run the steps from setup to detailed
routing on the platform "asap7"?
Let's first describe and explain what the task is asking. Then, analyze how
to complete the task step by step using the provided tools and functions.
Finally, generate the Python script according to your analysis.
Assistant:

Figure 3: Few-shot CoT prompt template utilized in
ChipLlama-powered agent.

i-th token and |A| denotes the length of the EDA
script A.

Zero-shot CoT prompting is a straightforward
concept that incorporates a sequence of task plan-
ning steps into the initial prompt. In this scenario,
pL0 processes Q and T to generate a models of
planning steps C and then generate the EDA script
A. In addressing Q, articulated in natural language,
the expert LLM from the ChipLlama models dis-
sects it into a sequential set of steps using V as per
the guidelines outlined in the API document within
T . This decomposition facilitates streamlined han-
dling through the utilization of EDA tools. Fur-
thermore, meticulous determination of parameters
required at each step occurs during the task plan-
ning phase, minimizing the potential for erroneous
parameter usage in EDA script generation. Follow-
ing the task planning phase, structured steps C are
formulated, enhancing the efficient orchestration
of the intricate EDA task. Each step is executable
through the corresponding APIs of the EDA tools.
Subsequently, LLMs can formulate the script A to
invoke these APIs for automating the EDA flow.
Therefore, Equation (1) can be modified to:

p(A | Q, T) = p(A | Q, T , C)p(C | Q, T), (2)

where p(A | Q, T , C) and p(C | Q, T) are defined
as follows:

p(C | Q, T) =

|C|∏

i=0

pL(ci | Q, T , C<i), (3)

p(A | Q, T , C) =
|A|∏

i=0

pL(ai | Q, T , C,A<i). (4)

Here, C<i = {c1, c2, · · · ci−1}. ci and |C| indicate
the i-th token and the length of the task planning
steps, respectively. Zero-shot CoT prompt is pro-
vided to guide LLMs in generating task planning
steps C before generating the EDA script A.

1712

EDA Script B
(correct)

stepstep
….

step
(wrong)

step
(wrong)

step
….

step
(wrong)

stepstep
….

….
step

EDA Script A
(wrong)

EDA Script C
(wrong)

EDA Script B
(correct)

EDA Flow
Automation

stepstep
….

step
(wrong) EDA Script

(wrong)

EDA Tools

ERRRTL

ChipLlama

Divergent-Thoughts Agent Decision-Making Agent

EDA Tool Usage Demo 1:
I would like to perform detailed
routing on the …
To accomplish detailed routing,
execute the following steps: …
<Script>
def perform_detail_routing():

EDA Tool Usage Demo 2:
Help me to execute detail
routing …
The user requires the execution
of detail routing on…
<Script>
def execute_detail_routing():

EDA Tool Usage Demo K:
Prepare a Python script to carry
out global routing …
The user needs to execute global
routing…
<Script>
def perform_global_routing():

…

EDA Tool Usage
Demo Database

EDA Task

Relevant Demos

Demo Group A

Few-shot
CoT prompt

Demo Group B

Retrieval

Few-shot CoT
Prompt Groups

Mapping

EDA Script A

Planning Steps A

System: You are an AI assistant, capable of
utilizing numerous tools and functions. User will
give you a task and corresponding Python script.
Your job is to judge whether the Python script can
complete the task using the provided tools and
functions. You need to analyze step-by-step and then
answer yes or no. You have access to the following
tools and functions:
<<<APIs Document>>>
User: EDA Task: <<<EDA Task>>>
EDA Script: <<<EDA Script>>>
Assistant: <<<Analysis>>>.
The answer is: yes/no

EDA Script C

Planning Steps C

EDA Script B

Planning Steps B

yes Token
Probability

0.82

0.32

0.41

EDA Tools

GDSIIRTL

EDA Flow Automation

Decision Making

Multi-Agent Collaboration System

ChipLlama

Divergent
Thoughts

KV Cache

EDA Script
Planning Steps

Single
Thought

Divergent Thoughts

Decision Making

EDA Script B
(correct)

Figure 4: Overview of EDAid, the multi-agent collaboration system. Given an EDA task, multiple agents (including
divergent-thoughts agents (role R0) and a decision-making agent (role R1)) collaborate to generate the EDA script.
Finally, the generated EDA script will automate the EDA flow interfacing the EDA tools via APIs.

Few-shot CoT prompting merges the paradigms
of in-context learning with zero-shot CoT prompt-
ing to enhance performance on complex EDA tasks
that necessitate planning guidelines for resolution.
In few-shot CoT scenario, T = (Qi, Ci,Ai)

N
i=1,

which consists of N instances of (Q, C,A) tuple.
For an instance (Q, C,A), this instance serves as
a guide for resolving the EDA task. Initially, it
directs LLMs to decompose the EDA task Q ac-
cording to the API document. Following the de-
composition steps, encompassing logic synthesis,
floorplan creation, placement, clock tree synthesis
(CTS), routing, and other relevant processes, is gen-
erated within the context of C. Ultimately, the in-
stance guides LLMs on generating the EDA script
A based on the decomposed steps C. As shown
in Figure 3, a few-shot CoT prompt is provided
to guide LLMs on how to generate task planning
steps C and the EDA script A following previous
EDA tool usage demos.

LLMs can acquire the skills to plan for an EDA
task and generate the corresponding script by learn-
ing from a set of N instances in a few-shot CoT
prompt T . Moreover, consider the scenario where
a design team has acquired a brand new EDA tool.
By providing ChipLlama models with brand new
EDA APIs, they can still draw knowledge for EDA
flow automation from few-shot CoT prompts.

3 Multi-Agent Collaboration System

Automating EDA flows within complex real-world
scenarios poses a formidable challenge for single-
agent systems (shown in Figure 6). These com-

plexities arise from the multidimensional nature of
EDA projects, which demand technical expertise
and the need for a long-chain EDA tool-calling pro-
cess. As shown in Figure 4, the single-agent system
will make mistakes in the intermediate steps during
the complex EDA task planning process, leading
to failure in EDA flow automation. In response, we
introduce EDAid, a collaborative multi-agent sys-
tem designed for EDA flow automation. Unlike the
single-agent system utilizing the vanilla CoT, this
system features multiple agents operating in syn-
ergy with self-consistency to resolve more complex
EDA tasks. In the following subsections, we will
elucidate the mechanisms within the multi-agent
system, which coordinate the efforts of multiple
LLM-powered agents to automate the EDA flow.

3.1 Multi-Agent System Definition

For clear clarification, we conceptualize the op-
erational environment of the multi-agent system
as a graph G = (V, E), where V represents the
nodes corresponding to the agents, and E signifies
the edges that delineate the communicative links
among the agents.
Agent Definition. Each agent i ∈ V is defined
by a tuple Vi = (Li, Ri). Here, Li denotes the
specific instances of LLMs employed by the agent,
including their types and configurations, and the
different prompt designs for different LLMs. Ri

designates the agent’s role, which determines its
duties and imparts a defined purpose and direction,
thereby steering its actions and interactions. As
shown in Figure 4, two distinct roles are identified.

1713

Specifically, divergent-thoughts agents (role R0)
are tasked with comprehending user inquiries and
generating scripts for EDA flow automation. The
decision-making agent (role R1) is the decision-
maker who selects the optimal solution from vari-
ous solutions to resolve the EDA task.
Connection and Message Definition. Each edge
eij ∈ E establishes a communicative link between
agent Vi and Vj , facilitating message exchange. A
message m encapsulates the content that includes
the task plan and the relative EDA script, which
can be transmitted from agent Vi to Vj via the es-
tablished channel eij .

3.2 Divergent Thoughts
Considering the superior performance of in-context
learning, most tasks in various domains can be
resolved by LLMs in one go. However, LLMs
exhibit errors in EDA flow automation consider-
ing their multiple complex planning steps. A no-
table characteristic of human cognition is the di-
versity of thought processes. Similarly, multiple
planning pathways can be employed to address
EDA tasks. Single-agent systems are not infalli-
ble in task planning, especially for scenarios that
require long-chain tool-calling processes. As de-
picted in Figure 4, a single-agent system may occa-
sionally pursue incorrect planning steps or commit
errors within the task planning process. Specifi-
cally, a single-agent system might engage in place-
ment without preceding floorplanning execution,
or it could employ parameters tailored for the CTS
stage at the placement phase. Such flawed plan-
ning can not converge on the correct EDA script
(shown in Figure 6). Consequently, multiple plan-
ning pathways searching via multiple divergent-
thoughts agents is necessary.

According to Equation (3), planning steps C are
contingent upon the prompt T when employing
greedy decoding in CoT prompting. By supply-
ing prompts derived from distinct distributions,
we can engender a variety of planning steps C,
which facilitates the generation of answers A from
divergent-thoughts agents that reflect divergent
thinking. In the context of few-shot CoT prompts,
where T = (Qi, Ci,Ai)

N
i=1, employing different

permutations of (Q, C,A) tuples can lead to the
generation of O = {O1, ...,Oi} that embody di-
vergent thoughts. The divergent thoughts process
consists of two core components: relevant EDA
tool usage demos retrieval and generation of differ-
ent few-shot prompts with varied (Q, C,A) tuples.

Relevant EDA Tool Usage Demos Retrieval. As
shown in Figure 4, the EDA tool usage demo
database contains numerous instances, each of
which includes a (Q, C,A) tuple. The embedding
model encodes each EDA task Q into a vector, cre-
ating an EDA task vector database. For a new EDA
task, the cosine similarity is computed between its
embedding and all vectors in the vector database.
The Top-K most similar tasks are identified, and
their corresponding IDs are mapped back to the
demo database to retrieve the K most relevant in-
stances with their respective (Q, C,A) tuples.
Different Few-shot Prompts Generation. As
shown in Figure 4, several instances are randomly
chosen from the retrieved pool of K relevant de-
mos to create a demo group. This random selec-
tion process is iterated to produce multiple demo
groups, such as Group A, Group B, Group C, etc.
Each demo group is concatenated with the few-
shot prompt template (displayed in Figure 3), yield-
ing several few-shot prompt groups with differ-
ent prompts T = (Qi, Ci,Ai)

N
i=1. Upon inputting

these differing few-shot prompts into divergent-
thoughts agents, they generate various outputs O
according to the given prompts, thus realizing the
objective of divergent thoughts.

3.3 Decision Making
Multiple divergent-thoughts agents Vi generate
diverse outcomes Oi = (Ci,Ai), reflecting di-
vergent thoughts with different few-shot prompts.
These outcomes Oi ∈ O are encapsulated within a
message m = {O1, ...,Oi} and subsequently dis-
patched to the decision making agent Vj with role
R1. Upon receipt, Vj start to perform a multiple
choice selection with various Oi as choices, and
determines which Oi should be selected as the rep-
resentative output of the multi-agent system. As
depicted in Figure 4, the generated EDA script will
automate the EDA flow interfacing with EDA tools.

As illustrated in Figure 4, we combine the EDA
task and prompt into a complete input and feed it
into the decision-making agent for multiple choice
selection. Specifically, we ask the decision-making
agent to analyze and judge whether the generated
EDA scripts can solve the EDA task. Next, we
calculate the probability of selecting the yes token
from {yes,no} at the end of the answer for each
candidate EDA script as shown in Figure 4. Finally,
we select the candidate answer with the highest yes
token probability as the representative output of
the EDAid. Moreover, considering that the input

1714

Simple Flow Calls
Case 1: Please show me how to complete the design flow for the "aes"
circuit on the platform "asap7".

Case 2: Can you help me to evaluate how channel values impact the
performance after the clock tree synthesis stage?

Complex Flow Calls
Case 1: Try to find out the smallest valid clock period for the
design "leon" on "asap7" platform. Note that a clock period is valid
only if the "wns" metric at the final stage is non negative.

Case 2: I want to conduct a grid search of the design space including
varying floorplan and placement parameters for my design called "how"
on the platform "nangate45". Can you do that?

Parameter Tuner Calls
Case 1: For the design "aes" on "nangate45" platform, please write me
a script to optimize ppa metrics using the parameter tuning method
while setting clock period to 5.

Case 2: I want to perform dse for my design "asadsf" on nangate45
with default placement and synthesis parameters. Using performance
and area as evaluation metrics for parameter tuning.

Figure 5: Examples of evaluation benchmarks.

part is the same for different candidate answers, we
store the system prompt in the KV Cache to avoid
redundant computation.

4 Experiments

4.1 Experiments Setting

We utilize a comprehensive evaluation benchmark
ChatEDA-bench (Wu et al., 2024), which com-
prises 50 distinct tasks with target APIs from Open-
ROAD (Ajayi and Blaauw, 2019), to evaluate the
performance of our EDAid and ChipLlama mod-
els. Moreover, we also design a benchmark, iEDA-
bench, based on iEDA (Li et al., 2024) comprising
50 distinct tasks to evaluate the generalization to
any EDA tools on different platforms of ChipLlama.
ChatEDA-bench and iEDA-bench use the accuracy
of the generated EDA script as the evaluation met-
ric. Specifically, accuracy is related to the suc-
cessful EDA flow automated through the correct
generated EDA script.

4.2 Examples of Evaluation Benchmarks

As illustrated in Figure 5, we show some examples
of our evaluation benchmarks including ChatEDA-
bench (Wu et al., 2024) and iEDA-bench, both of
which are comprehensive evaluation benchmarks
comprising 50 distinct tasks including three distinct
categories: simple flow calls (30%), complex flow
calls (30%), and parameter flow calls (40%).
Simple Flow Calls. This task requires the suc-
cessful execution of the whole process, including
evaluation. These cases test the fundamental appli-
cation of LLMs in EDA flow automation.
Complex Flow Calls. This task requires a higher
proficiency in EDA tool usage, including traversing
parameters, which examines logical reasoning and
understanding of each argument of EDA APIs.

System Powered LLM ChatEDA-bench iEDA-bench
Acc. Acc.

ChatEDA GPT-3.5♦ 28% 30%
ChatEDA GPT-4♦ 62% 70%
ChatEDA AutoMage-70B♦ 74% -
ChatEDA AutoMage2-70B♦ 82% -

EDAid ChipLlama-8B 88% 84%
EDAid ChipLlama-70B 100% 100%

♦ The accuracy values of GPT-3.5, GPT-4 and AutoMage models on the ChatEDA-bench
are directly cited from the ChatEDA (Wu et al., 2024). Moreover, we can only evaluate
AutoMage models on the ChatEDA-bench due to the unavailability of closed-source models.

Table 1: The main results of EDA script generation on
ChatEDA-bench (Wu et al., 2024) and iEDA-bench.

Parameter Tuner Calls. This task requires agent
systems to provide a parameter-tuning solution,
which is a vital step for EDA considering the com-
plexity of the entire process.

4.3 Implementation Details
We employ QLoRA (Dettmers et al., 2024) for
the hybrid instruction tuning of ChipLlama mod-
els based on Llama3 (Dubey et al., 2024) mod-
els. This involves adopting a constant learning rate
schedule with a warm-up ratio of 0.03, utilizing the
paged AdamW optimizer (Dettmers et al., 2021)
with a learning rate of 1× 10−4, no weight decay,
a batch size of 128, and a sequence length of 4096
tokens. The models are fine-tuned for 1 epoch on
16×A100 GPUs with 80G memory each. After hy-
brid instruction tuning, we obtain ChipLlama-8B
and ChipLlama-70B, two expert LLMs for EDA
flow automation. For clarity and differentiation, the
single-agent system refers to the divergent-thoughts
agent (role R0) in EDAid, while the multi-agent
system denotes our EDAid.

4.4 Main Evaluation Results
In this study, we integrate LLMs into our EDAid
to conduct a comprehensive evaluation. Accord-
ing to (Wu et al., 2024), AutoMage models serve
as “brains” of the ChatEDA system to execute
EDA tasks. Concurrently, we incorporate GPT-
3.5 (Brown et al., 2020) and GPT-4 (Achiam et al.,
2023) into the single-agent system (ChatEDA)
through their official APIs. Importantly, only open-
source models are utilized within our multi-agent
system, as the decision-making process requires
calculating the output logits of LLMs.

As demonstrated in Table 1, our multi-agent sys-
tem, EDAid, powered by ChipLlama-70B, achieves
the SOTA performance over all other previous
SOTA LLM-powered systems, establishing a signif-
icant margin. To explore the generalization of our

1715

System Base LLM Hybrid ChatEDA-bench iEDA-bench
Instruction Tuning Acc. Acc.

Single-Agent Llama3-8B ✗ 78% 50%
Single-Agent ✓ 78% 76%

Single-Agent Llama3-70B ✗ 88% 74%
Single-Agent ✓ 94% 96%

Table 2: Ablation study on hybrid instruction tuning.

ChatEDA-bench iEDA-bench

System Powered LLM Acc. Acc.

zero-shot few-shot zero-shot few-shot

Single-Agent GPT-3.5 28% 56% 30% 50%
Single-Agent GPT-4 62% 82% 70% 84%

Single-Agent ChipLlama-8B 74% 78% 64% 76%
Single-Agent ChipLlama-70B 90% 94% 90% 96%

Table 3: Ablation study on few-shot prompting and
powered LLMs of the single-agent system.

System Powered LLM ChatEDA-bench iEDA-bench
Acc. Acc.

Single-Agent ChipLlama-8B 78% 76%
Multi-Agent 88% 84%

Single-Agent ChipLlama-70B 94% 96%
Multi-Agent 100% 100%

Table 4: Ablation study on single/multi-agent systems
powered by different LLMs.

EDAid on utilizing EDA tools, we also evaluate it
on iEDA-bench, which requires LLMs to use EDA
tools from the iEDA platform. Similarly, EDAid
powered by ChipLlama-70B also demonstrates out-
standing accuracy. Our multi-agent collaboration
system manifests its potential in automating the
EDA flow by interfacing with diverse EDA tools
from various vendors.

4.5 Ablation Studies

In the following section, we conduct four ablation
studies to further illustrate the effectiveness of our
ChipLlama models and our multi-agent collabora-
tion system, EDAid.
Hybrid Instruction Tuning. We compare hybrid
instruction tuning and simple EDA-domain instruc-
tion tuning and show the results in few-shot sce-
narios in Table 2. These results underscore the
robust generalization capabilities of ChipLlama
models after hybrid instruction tuning in utilizing
EDA tools across different platforms (e.g. iEDA),
notwithstanding its initial training exclusively on
EDA tools on the single EDA platform (Open-
ROAD). Moreover, hybrid instruction tuning also
achieves improvement on the ChatEDA-bench,
which demonstrates that this strategy can also help

LLMs to improve their complex reasoning and
long-chain tool-calling capabilities.
Powered LLMs of Single-agent System. Consid-
ering the powered LLM of each agent in EDAid
is vital to reliable EDA flow automation, we test
various LLMs by serving them as the controller of
the single agent system. As shown in Table 3, our
ChipLlama-70B achieves significant improvements
compared to GPT-4 in zero-shot and few-shot sce-
narios across different EDA platforms. Notably,
ChipLlama-8B also achieves comparable perfor-
mance to GPT-4, which is impressive considering
its model parameters.
Few-shot CoT Prompts. We verify the per-
formance with zero-shot prompts and few-shot
prompts and the results are shown in Table 3. We
can observe that GPT models and ChipLlama mod-
els demonstrate their capabilities in few-shot learn-
ing, which demonstrates the advantages offered by
few-shot prompts compared to zero-shot prompts.
Meanwhile, it is worth noting that few-shot CoT
prompting is also of great benefit for models’ porta-
bility across different EDA platforms.
Multiple Agents Collaboration. To assess the
efficiency of multi-agent collaboration, we utilize
the ChipLlama models to control the agents in our
multi-agent collaboration system to perform EDA
script generation. Table 4 illustrates that the col-
laboration of multiple agents brings improvement
over the single agent for ChipLlama models. This
enhancement underscores the capacity of our multi-
agent collaboration system to provide dependable
assistance in automating the EDA flow.

5 Case Studies

In this section, we provide case studies about
agents of EDAid, including divergent thoughts
agent (role R0) and decision-making agent (role
R1), to demonstrate the core capabilities that en-
able EDAid to function effectively.

As shown in Figure 6, the divergent-thoughts
agent can generate correct task planning path-
ways and the corresponding EDA script that
can automate the EDA flow successfully. How-
ever, it is common that the divergent-thoughts
agent makes mistakes in intermediate steps dur-
ing the EDA flow automation, which requires
long-chain tool-calling capability. Specifically,
the “global_route” method does not have a pa-
rameter called “macro_place_channel”. The
“macro_place_channel” is a parameter for the

1716

Task Planning Pathway (Wrong)

EDA Script Generation (Wrong)

EDA Task

Task Planning Pathway (Correct)

EDA Script Generation (Correct)

EDA Task
Can you help me to experiment with different combinations of clock periods and
channel values for the "router" design on the platform "asap7"?

The task is to explore different combinations of clock periods and channel values
for the "router" design on the "asap7" platform. The goal is to find the optimal
combination that achieves the desired performance.

To complete this task, follow these steps:
Step 1: Initialize the "chateda" object.
Step 2: Define the grid search parameters:
 - Clock periods: Explore values from 1ns to 5ns with increments of 1ns.
 - Channel values: Explore values from 5 to 15 with increments of 5.
Step 3: Run a nested loop to iterate over each combination of clock periods and
channel values. For each combination, perform the following steps:
 Step 3a: Setup the EDA tool for the "router" design using the "asap7"
platform.
 Step 3b: Run logic synthesis using the current clock period.
 Step 3c: Run the floorplan using the current channel value.
 Step 3d: Run placement using the default density.
 Step 3e: Run the clock tree synthesis (CTS) using the default percentage of
timing violations to fix.
 Step 3f: Run the global routing using the default parameters.
 Step 3g: Run the detail routing using the default parameters.
 Step 3h: Evaluate the performance metrics after routing.

tool = chateda()
Define experiment parameters
clock_periods = [1, 2, 3, 4, 5]
channel_values = [5, 10, 15]
Run grid search over parameters
for clock_period in clock_periods:
 for channel_value in channel_values:
 # Setup EDA tool
 tool.setup(design_name="router", platform="asap7")
 # Run logic synthesis
 tool.run_synthesis(clock_period=clock_period)
 # Run floorplan
 tool.floorplan(macro_place_channel=channel_value)
 # Run placement
 tool.placement()
 # Run CTS
 tool.cts()
 # Run global routing
 tool.global_route()
 # Run detail routing
 tool.detail_route()
 # Evaluate performance metrics
 performance = tool.get_metric("route", ["performance"])

Can you help me to experiment with different combinations of clock periods and
channel values for the "router" design on the platform "asap7"?

The task is to run an experiment for the "router" design on the "asap7" platform,
exploring different combinations of clock periods and channel values. The goal is
to evaluate the impact of these parameters on the final design.

Here's how we can complete the task:
Step 1: Instantiate an object of the "chateda" class. This object will be used to
invoke the various methods provided in the APIs.
Step 2: Define lists of clock periods and channel values that you want to use for
the experiment.
Step 3: Run a nested loop to iterate over each combination of clock period and
channel value. For each combination, perform the following steps:
 Step 3a: Use the "setup" method to setup the EDA tool for the "router" design
using the "asap7" platform.
 Step 3b: Run logic synthesis using the "run_synthesis" method with the
current clock period.
 Step 3c: Run the floorplan using the "floorplan" method.
 Step 3d: Run placement using the "placement" method.
 Step 3e: Run the clock tree synthesis (CTS) using the "cts" method.
 Step 3f: Run the global routing using the "global_route" method with the
current channel value.
 Step 3g: Run the detail routing using the "detail_route" method.
 Step 3h: Evaluate the final design.

tool = chateda()
clock_periods = [1, 2, 3]
channel_values = [4, 6, 8]
Run experiment over parameters
for clock_period in clock_periods:
 for channel_value in channel_values:
 # Setup EDA tool
 tool.setup(design_name="router", platform="asap7")
 # Run logic synthesis
 tool.run_synthesis(clock_period=clock_period)
 # Run floorplan
 tool.floorplan()
 # Run placement
 tool.placement()
 # Run CTS
 tool.cts()
 # Run global routing
 tool.global_route(channel_value)
 # Run detail routing
 tool.detail_route()
 # Evaluate final design
 final_performance = tool.get_metric("final", ["performance"])

Figure 6: Divergent thoughts. Right: the divergent-thoughts agent (role R0) generates correct task planning
pathways and EDA script. Left: the divergent-thoughts agent (role R0) makes mistakes in intermediate steps.

“floorplan” method. Although most of the task plan-
ning pathways are correct, these single errors can
still lead to failure in the overall process.

As illustrated in Figure 7, the decision-making
agent can accurately identify and fix errors of
given EDA scripts according to the given EDA
tasks. This capability of error-correct provides a
solid base for our decision-making process in our
multi-agent collaboration system. Specifically, the
decision-making agent can select the correct EDA
script from divergent thoughts (shown in Figure 6),
which guarantees the performance and effective-
ness of our multi-agent system, EDAid.

Moreover, we also provide more case studies in
Appendix C.

6 Related Works

Chain-of-Thought. The CoT paradigm (Wei et al.,
2022b) encourages LLMs to break down complex
problems into several intermediate steps, emulating
the way humans reason through a problem. Rather
than directly outputting the final answer, LLMs are
required to generate a step-by-step reasoning pro-
cess, which can help models handle more complex
tasks. Self-consistency with CoT (CoT-SC) (Wang
et al., 2023a) improves upon CoT by generating dif-
ferent thought processes for the same problem and
the output decision can be more reliable by explor-

ing a richer set of thoughts. In this paper, we utilize
the CoT-SC paradigm to collaborate with various
agents in EDAid to perform EDA task planning
and script generation for EDA flow automation.
In-Context Learning. In-context learning (Min
et al., 2022) has emerged as a transformative
paradigm in machine learning, characterized by
the meticulous training of models to perform
specific tasks through examples and directives
provided within an interactive, conversational
framework. The ability of in-context learning
emerges (Wei et al., 2022a) in large-scale, versa-
tile LLMs (Achiam et al., 2023; Anthropic, 2024;
Dubey et al., 2024). These models demonstrate an
impressive ability to leverage their broad knowl-
edge across various downstream tasks through in-
context learning (Brown et al., 2020). In our re-
search, we apply few-shot prompts to enhance the
performance and reliability of each agent in EDAid
based on in-context learning.
LLM-powered Agent System. Single-agent sys-
tems driven by LLMs have demonstrated remark-
able cognitive capabilities (Sumers et al., 2023;
Wang et al., 2024; Xi et al., 2023; Wu et al., 2024).
These LLM-powered agents can decompose com-
plex tasks into manageable subtasks (Khot et al.,
2022) and methodically think through each compo-
nent to make better decisions. Moreover, the tool-

1717

EDA TaskEDA Task
Can you help me check whether the provided script can complete the task and
provide the reason.
Here is the task:
I want to optimize performance at final stage for my design asjdk on nangate45.
Here is the script:
def tune_performance():
 params = {
 "tns_end_percent": {"minmax": [0, 100], "step": 5}
 }
 def optimize(tns_end_percent):
 eda = chateda()
 eda.setup(design_name="asjdk", platform="nangate45")
 eda.run_synthesis()
 eda.floorplan()
 eda.placement()
 eda.cts(tns_end_percent=tns_end_percent)
 return eda.get_metric(stage="cts", metrics=["performance"])
 best_params = tune(optimize, params)
tune_performance()
If the script can't complete the task, please provide a script that can complete
the task.

Can you help me check whether the provided script can complete the task and
provide the reason.
Here is the task:
I want to perform cts for my design asjdk on nangate45.
Here is the script:
def perform_cts(tns_end_percent):
 eda = chateda()
 # Setup EDA tool
 eda.setup(design_name="asjdk", platform="nangate45")
 # Run logic synthesis
 eda.run_synthesis()
 eda.floorplan()
 # Run placement
 eda.placement(tns_end_percent=tns_end_percent)
 # Run CTS
 eda.cts()
perform_cts(10)
If the script can't complete the task, please provide a script that can complete
the task.

Task Planning Pathway

EDA Script Generation

Task Planning Pathway

EDA Script Generation

The task is to optimize the performance of the "asjdk" design on the "nangate45"
platform. The provided script attempts to tune the "tns_end_percent" parameter
during the clock tree synthesis (CTS) stage to optimize the performance. However,
the script only considers the performance after CTS and not at the final stage.

def tune_performance():
 params = {
 "tns_end_percent": {"minmax": [0, 100], "step": 5}
 }
 def optimize(tns_end_percent):
 eda = chateda()
 eda.setup(design_name="asjdk", platform="nangate45")
 eda.run_synthesis()
 eda.floorplan()
 eda.placement()
 eda.cts(tns_end_percent=tns_end_percent)
 eda.global_route()
 eda.detail_route()
 eda.density_fill()
 eda.final_report()
 return eda.get_metric(stage="final", metrics=["performance"])
 best_params = tune(optimize, params)
tune_performance()

The task is to perform Clock Tree Synthesis (CTS) for the design named "asjdk" on
the "nangate45" platform. The provided script attempts to do this, but it has an
error in the placement step. The "placement" method does not have a parameter
called "tns_end_percent". The "tns_end_percent" is actually a parameter for the
"cts" method.
Here's the correct way to complete the task:
1. Setup the EDA tool with the design name and platform.
2. Run logic synthesis.
3. Perform floorplanning.
4. Run placement.
5. Run CTS with the desired "tns_end_percent".

def perform_cts(tns_end_percent):
 eda = chateda()
 # Setup EDA tool
 eda.setup(design_name="asjdk", platform="nangate45")
 # Run logic synthesis
 eda.run_synthesis()
 # Run floorplan
 eda.floorplan()
 # Run placement
 eda.placement()
 # Run CTS
 eda.cts(tns_end_percent=tns_end_percent)
perform_cts(10)

Figure 7: Error correctness. The decision-making agent (role R1) can identify and fix errors in given EDA scripts
accurately according to the given EDA tasks.

calling capability (Qin et al., 2023) of LLMs en-
ables agent systems to leverage external resources
and tools, allowing them to operate more effec-
tively in various scenarios. Developed based on the
single-agent system, several studies (Hong et al.,
2024; Wang et al., 2023b; Du et al., 2023; Hao
et al., 2023) have enhanced the problem-solving
abilities of LLMs by integrating discussions among
multiple agents. The collaboration of multiple au-
tonomous agents, each equipped with unique strate-
gies, can address more dynamic and complex tasks.
In this work, multiple agents in EDAid collaborate
with divergent thoughts to automate EDA flow via
complex long-chain EDA tool-calling.

7 Conclusion

Automating EDA flow by interfacing EDA tools
via APIs is imperative to enhance efficiency in elec-
tronic design processes. In this study, we first intro-
duce the ChipLlama-powered agent, collaborating
with few-shot prompts for EDA flow automation.
Specifically, ChipLlama models are expert LLMs
instruction fine-tuned for the EDA flow automa-
tion, which achieve the SOTA performance in EDA
script generation and demonstrate versatility across
different platforms. Meanwhile, different few-shot
CoT prompts can guide LLMs to generate differ-
ent task planning pathways for divergent thoughts
generation. Building with divergent thoughts gen-

eration and decision-making, we present EDAid, a
novel multi-agent collaboration system that utilizes
multiple agents for EDA tasks. This system adeptly
handles intricate EDA tasks assigned by designers,
thereby automating the EDA workflow effectively.
Our experiments demonstrate the effectiveness of
our EDAid. Moreover, extensive experiments show
the significant performance of our ChipLlama mod-
els compared to other LLMs in automating the
EDA flow. In conclusion, we anticipate that our
work can catalyze the evolution of next-generation
EDA tools, inspiring advancements in the field.

Limitation

Our multi-agent collaboration system, EDAid,
introduces inference latency compared to the
single-agent system, considering that the divergent
thoughts and decision-making process require mul-
tiple inference steps of LLMs. We will provide
more discussion in Appendix B.

Acknowledgement

This work is partially supported by The Research
Grants Council of Hong Kong SAR (No. RFS2425-
4S02, No. CUHK14211824, No. CUHK14210723),
and AI Chip Center for Emerging Smart Systems
(ACCESS), Hong Kong SAR.

1718

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 Technical Re-
port. arXiv preprint arXiv:2303.08774.

Tutu Ajayi and David Blaauw. 2019. OpenROAD: To-
ward a self-driving, open-source digital layout imple-
mentation tool chain. In Government Microcircuit
Applications & Critical Technology Conference (GO-
MACTech).

Anthropic. 2024. Claude. https://www.anthropic.
com/index/claude-3.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Annual Conference on Neural Informa-
tion Processing Systems (NIPS), volume 33, pages
1877–1901.

Pinhong Chen, Desmond A Kirkpatrick, and Kurt
Keutzer. 2001. Scripting for EDA tools: a case study.
In IEEE International Symposium on Quality Elec-
tronic Design (ISQED).

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke
Zettlemoyer. 2021. 8-bit optimizers via block-wise
quantization. In International Conference on Learn-
ing Representations (ICLR).

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2024. QLoRA: Efficient Fine-
tuning of Quantized LLMs. In Annual Conference
on Neural Information Processing Systems (NIPS),
volume 36.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 Herd of Models. arXiv
preprint arXiv:2407.21783.

Rui Hao, Linmei Hu, Weijian Qi, Qingliu Wu, Yirui
Zhang, and Liqiang Nie. 2023. ChatLLM network:
More brains, more intelligence. arXiv preprint
arXiv:2304.12998.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jürgen Schmidhuber. 2024. MetaGPT: Meta Pro-
gramming for A Multi-Agent Collaborative Frame-
work. In International Conference on Learning Rep-
resentations (ICLR).

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Xingquan Li, Zengrong Huang, Simin Tao, Zhipeng
Huang, Chunan Zhuang, Hao Wang, Yifan Li, Yihang
Qiu, Guojie Luo, Huawei Li, et al. 2024. iEDA: An
Open-source infrastructure of EDA. In IEEE/ACM
Asia and South Pacific Design Automation Confer-
ence (ASPDAC), pages 77–82.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris
Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah
Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet
Bayraktaroglu, et al. 2023. ChipNeMo: Domain-
Adapted LLMs for Chip Design. arXiv preprint
arXiv:2311.00176.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022. Metaicl: Learning to learn
in context. In Annual Meeting of the Association for
Computational Linguistics (ACL).

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. ToolLLM: Facilitating large
language models to master 16000+ real-world APIs.
arXiv preprint arXiv:2307.16789.

Theodore R Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas L Griffiths. 2023. Cognitive ar-
chitectures for language agents. arXiv preprint
arXiv:2309.02427.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Xuezhi Wang et al. 2023a. Self-consistency improves
chain of thought reasoning in language models. In In-
ternational Conference on Learning Representations
(ICLR).

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2023b. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent Abilities of Large Language Mod-
els. Transactions on Machine Learning Research
(TMLR).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. In Annual
Conference on Neural Information Processing Sys-
tems (NIPS), volume 35, pages 24824–24837.

1719

https://www.anthropic.com/index/claude-3
https://www.anthropic.com/index/claude-3
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng
Yao, Su Zheng, Haisheng Zheng, and Bei Yu. 2024.
ChatEDA: A Large Language Model Powered Au-
tonomous Agent for EDA. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems (TCAD).

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. 2023. Meta-
Math: Bootstrap Your Own Mathematical Ques-
tions for Large Language Models. arXiv preprint
arXiv:2309.12284.

A Details of Hybrid Instruction Tuning

We show the proportion of MathInstruct (Yu et al.,
2023), CodeInstruct (Wei et al., 2023), and EDAIn-
struct (Wu et al., 2024) datasets for hybrid instruc-
tion tuning of ChipLlama models in Table 5.

Firstly, the MathInstruct dataset focuses on
CoT reasoning, strengthening the logical reasoning
skills required for EDA task planning. Then, the
CodeInstruct dataset presents complex coding tasks
and solutions, offering coding skills for EDA script
generation. Finally, we utilize the EDAInstruct
dataset which provides the EDA domain-specific
knowledge and instructions for EDA flow automa-
tion. The composition of these datasets creates a
hybrid corpus meticulously designed to expand the
capabilities of ChipLlama models.

MathInstruct CodeInstruct EDAInstruct

Proportion 80K 100K 8K

Table 5: The proportion of MathInstruct, CodeInstruct
and EDAInstruct datasets for hybrid instruction tuning.

B Agents in EDAid

In our experiments, we use three agents to generate
divergent thoughts and one agent to compute the
probabilities of these thoughts to make the final
decision. When the number of agents generating
divergent thoughts is less than three, the stability
and accuracy of EDA flow automation with EDAid
improve with the addition of more agents. How-
ever, once the number of agents reaches three, the
performance tends to saturate, meaning that further
increases in the number of agents do not necessarily
lead to significant improvements in performance.
In practical applications, considering the costs asso-
ciated with real-world EDA flows, as we mentioned
before, an appropriate increase in the number of
agents can still be acceptable if it enhances the
system’s overall stability and reliability.

C More Case Studies

We provide more case studies to figure out how our
EDAid resolves the given EDA task. As illustrated
in Figure 8, we provide two EDA tasks and their
corresponding task planning pathways and gener-
ated EDA scripts. Both EDA tasks require the
system to provide a parameter-tuning solution. Our
system appropriately grasps the need for the given
EDA task and shows an excellent understanding of
the details of each API interface parameter.

1720

Task Planning Pathway

EDA Script Generation

EDA Task

Task Planning Pathway

EDA Script Generation

EDA Task
My "h264_encoder" design needs to meet tough area constraints in "gf180". Please
suggest how I can automatically optimize cts and floorplan parameters to minimize
area.

The task is to minimize the area of the "h264_encoder" on the "gf180" platform by
optimizing the Clock Tree Synthesis (CTS) and floorplanning parameters.
To complete this task, we will follow these steps:
1. Initialize the EDA tool using "setup()" with the design name and platform.
2. Define a function that takes the floorplan aspect ratio, core utilization, core
margins, macro place halo, macro place channel, and tns_end_percent as input
parameters.
Inside the function, call the appropriate methods of the chateda instance in the
correct order, passing the parameter values and finally return the area metric.
 2a. Call "run_synthesis()" with default parameters.
 2b. Use "floorplan()" with aspect ratio, core utilization, core margins, macro
place halo, and macro place channel.
 2c. Execute "placement()" with default parameters.
 2d. Invoke "cts()" with the percentage of timing violations to fix.
 2e. Complete routing and perform finishing steps.
 2f. Obtain the final area metric using "get_metric()" after the entire
process.
3. Define the parameter ranges.
4. Utilize tune function to perfrom DSE and find the best combination.

def tuning_func(aspect_ratio, core_utilization, core_margins,
 macro_place_halo, macro_place_channel, tns_end_percent):
 tool = chateda()
 tool.setup("h264_encoder", "gf180")
 tool.run_synthesis()
 tool.floorplan(
 core_aspect_ratio=aspect_ratio,
 core_utilization=core_utilization, core_margins=core_margins,
 macro_place_halo=macro_place_halo, macro_place_channel=macro_place_channel
)
 tool.placement()
 tool.cts(tns_end_percent=tns_end_percent)
 tool.global_route()
 tool.detail_route()
 tool.density_fill()
 tool.final_report()
 return tool.get_metric("final", ["area"])
params = {
 "aspect_ratio": {"minmax": [0.5, 2], "step": 0.25},
 "core_utilization": {"minmax": [50, 90], "step": 10},
 "core_margins": {"minmax": [6, 12], "step": 2},
 "macro_place_halo": {"minmax": [2, 6], "step": 1},
 "macro_place_channel": {"minmax": [2, 6], "step": 1},
 "tns_end_percent": {"minmax": [50, 90], "step": 10}
}
tune(tuning_func, params)

The project's name is "hello", and we are using the "asap7" platform. We want to
perform an optimization of ppa at the final stage. Try to find the best
combinations of floorplan parameters.

To complete this task, we will follow these steps:
1. Initialize an object of the "chateda" class. This object will be used to
invoke the various methods provided in the APIs.
2. Define a function that takes the floorplan parameters as input and returns the
PPA metrics at the final stage. This function will be passed to the "tune" method
for optimization.
3. Inside the function, perform the following steps:
 3a. Setup the EDA tool for the "hello" project using the "asap7" platform.
 3b. Run logic synthesis.
 3c. Run floorplan with the given parameters.
 3d. Run placement.
 3e. Run clock tree synthesis (CTS).
 3f. Run global routing.
 3g. Run detail routing.
 3h. Run density fill.
 3i. Run final report.
 3j. Return the PPA metrics at the final stage.
4. Define the parameter ranges for the floorplan parameters.
5. Pass the function and parameter ranges to the "tune" method for optimization.

def tuning_func(core_utilization, core_aspect_ratio, core_margins,
 macro_place_halo, macro_place_channel):
 tool = chateda()
 tool.setup("hello", "asap7")
 tool.run_synthesis()
 tool.floorplan(
 core_utilization=core_utilization,
 core_aspect_ratio=core_aspect_ratio,
 core_margins=core_margins,
 macro_place_halo=macro_place_halo,
 macro_place_channel=macro_place_channel)
 tool.placement()
 tool.cts()
 tool.global_route()
 tool.detail_route()
 tool.density_fill()
 tool.final_report()
 return tool.get_metric("final", ["power", "performance", "area"])
params = {
 "core_utilization": {"minmax": [50, 90], "step": 10},
 "core_aspect_ratio": {"minmax": [0.5, 2], "step": 0.25},
 "core_margins": {"minmax": [1, 5], "step": 1},
 "macro_place_halo": {"minmax": [1, 5], "step": 1},
 "macro_place_channel": {"minmax": [1, 5], "step": 1}
}
tune(tuning_func, params)

Figure 8: Case Studies of EDA flow automation with our EDAid powered by ChipLlama models. Each case provides
an EDA task, its corresponding task planning pathway and the generated EDA script.

1721

