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Abstract

Designing emotionally intelligent conversa-
tional systems to provide comfort and advice
to people experiencing distress is a compelling
area of research. Recently, with advancements
in large language models (LLMs), end-to-end
dialogue agents without explicit strategy predic-
tion steps have become prevalent. However, im-
plicit strategy planning lacks transparency, and
recent studies show that LLMs’ inherent pref-
erence bias towards certain socio-emotional
strategies hinders the delivery of high-quality
emotional support. To address this challenge,
we propose decoupling strategy prediction from
language generation, and introduce a novel dia-
logue strategy prediction framework, EmoDy-
namiX, which models the discourse dynamics
between user fine-grained emotions and sys-
tem strategies using a heterogeneous graph for
better performance and transparency1. Experi-
mental results on two ESC datasets show Emo-
DynamiX outperforms previous state-of-the-
art methods with a significant margin (better
proficiency and lower preference bias). Our
approach also exhibits better transparency by
allowing backtracing of decision making.

1 Introduction

Providing early intervention for individuals experi-
encing distress from life challenges is crucial for en-
abling them to transition toward positive lifestyles
and, consequently, fostering a more caring soci-
ety. This need has inspired the NLP community to
develop effective Emotional Support Conversation
(ESC) systems (Liu et al., 2021). These systems
aim to alleviate the distress of help-seekers and
can be seen as a first step in helping them to find
healthcare professionals. Recently, with the release
of multi-turn and human-evaluated ESC datasets

*Work done during the first author’s internship at Inria.
1Our code is available at https://github.com/cw-wan/

EmoDynamiX-v2.

I'd love to chat with you! What's been on your mind?
Question

Oh hello!

I'm having problems with friends - or more precisely 
the lack of them. I don't have any.

Oh I see. You feel as though you don't have any 
friend currently? I totally get that. I feel like that a 
lot too …

Restatement

Well it's more that I think I've never had friends. Not 
anyone I can confide in or laugh with.
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Figure 1: This figure shows a possible modular ESC
dialogue system, within which our dialogue strategy
prediction framework outputs the next dialogue strategy
to be used to guide an external generative model.

(Liu et al., 2021; Wu et al., 2022), data-driven ap-
proaches have begun to surpass rule-based methods
(Van der Zwaan et al., 2012; van der Zwaan et al.,
2012).

Previous work on data-driven ESC has primarily
focused on modular dialogue systems as defined
by Clavel et al. (2022). Modular systems feature
a three-fold workflow: recognizing, planning, and
generating. Examples include Tu et al. (2022),
Deng et al. (2023), Liu et al. (2021) and Cheng
et al. (2022). In these systems, the socio-emotional
strategy is selected based on the recognition of
the user’s state, and responses are generated using
customized language decoders conditioned on the
predicted strategy. With the emergence of Large
Language Models (LLMs) offering enhanced capa-
bilities, LLMs have increasingly dominated both
modular and, particularly, end-to-end ESC systems
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(Chen et al., 2023b; Zheng et al., 2023), where strat-
egy planning has shifted from an explicit process
to a more implicit, hidden mechanism.

However, implicit dialogue strategy planning
with LLMs faces two challenges. First, trans-
parency is often lacking in such implicit decision-
making processes due to the well-known "black-
box" property of LLMs (Ludan et al., 2023; Chhun
et al., 2024; Lu et al., 2024). Second, recent stud-
ies show that preference biases inherited from pre-
training data often cause LLMs to struggle with bal-
ancing social-oriented and task-oriented goals. Ab-
ulimiti et al. (2023) found that in peer-tutoring dia-
logues, LLMs like ChatGPT frequently prioritize
non-hedging strategies, even in situations where
hedging strategies would be more appropriate for
repairing low rapport between peers. Similarly,
Kang et al. (2024) observed that LLMs’ strong
predisposition towards certain strategies can under-
mine the outcome of the current stage of ESC. As
a result, the overall objectives may be significantly
compromised.

To address this limitation, introducing external
strategy planners, which offer greater controlla-
bility by enabling us to explicitly exclude inap-
propriate strategies in specific contexts, stands
out to be a promising solution. It has been evi-
denced by both automatic metrics and human eval-
uations that, an explicit decision-making module
can more effectively mitigate preference bias, and
improved proficiency in dialogue strategy actually
enhances overall generation quality (Kang et al.,
2024). This foundational insight leads us to isolate
and focus specifically on dialogue strategy predic-
tion—a previously intermediate step—with three
primary goals: (1) better alignment with human
expert strategies, (2) reduced preference bias, and
(3) improved transparency.

Additionally, as more powerful LLMs and im-
proved controlled generation techniques continue
to emerge (Dathathri et al., 2020), focusing on dia-
logue strategy prediction offers a more economical
pathway to addressing current dialogue system lim-
itations. Explicit dialogue strategy prediction can
serve as a flexible, plug-and-play module compati-
ble with state-of-the-art LLMs or as a foundational
component for future RL-based methods, where
better alignment with human expert strategies is
typically a critical first step (Deng et al., 2024).

Therefore, we treat socio-emotional strategy pre-
diction as an independent task, as previously ex-
plored by Vanel et al. (2023). We illustrate the

scope of this task in Figure 1. From this perspec-
tive, we raise the following research questions:

• RQ1: Can we build a dedicated framework for
socio-emotional dialogue strategy prediction
that is more transparent by design, while out-
performing prompting or fine-tuning LLMs in
terms of proficiency?

• RQ2: Given the importance of emotional in-
telligence in delivering effective emotional
support, can we boost strategy prediction in
ESC by by accounting the user’s emotion us-
ing an ERC (Emotion Recognition in Conver-
sations) module?

In addressing RQ1, we introduce EmoDynamiX,
a decision-making framework that integrates multi-
ple expert models and incorporates a heterogeneous
graph learning module to capture the dynamic in-
teractions between system strategies and user emo-
tions. With graphs, we backtrace the decision-
making process, making a step towards greater
transparency. We also utilize dummy nodes (Liu
et al., 2022; Scarselli et al., 2008) for role-aware
information aggregation, enhancing the overall per-
formance.

For RQ2, we design a mixed-emotion module
to effectively integrate ERC into our framework:
(1) By using emotion distributions instead of dis-
crete labels, we reduce the risk of error propagation,
as there are domain gaps between ERC and ESC
datasets. (2) By tuning emotion distributions, we
can effectively model nuanced emotion categories
by fusing primary emotions.

We validate the effectiveness of our proposed
framework through comparative experiments on
two public ESC datasets. The results demonstrate
that EmoDynamiX significantly outperforms all
previous baselines, achieving superior F1 scores
and a notable reduction in preference bias.

2 Related Works

2.1 Emotional Support Conversation

The goal of ESC is both social-oriented and task-
oriented. It aims to alleviate distress by express-
ing empathy and providing suggestions (Liu et al.,
2021; Cheng et al., 2022). Modelling user states
is thus a critical topic in ESC. Previous work com-
monly approaches this by querying commonsense
knowledge graphs (Tu et al., 2022; Deng et al.,
2023; Peng et al., 2022; Zhao et al., 2023; Li et al.,
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2024). These queries are constructed by concatenat-
ing the current utterance with specific knowledge
relations, such as xReact. The queries are then
fed into COMET (Hwang et al., 2021), a genera-
tive model pre-trained on commonsense knowledge
graphs, which returns the user’s emotional reaction
(xReact) to the situation. However, commonsense
knowledge is too general to capture the fine-grained
emotional states.

In contrast, models specialized in dialogue with
context-aware architectures, such as sequential or
graph-based models, trained on ERC datasets, can
handle these nuances more effectively. Addition-
ally, emotions are frequently mixed in real-life
situations, and contradictory emotions (like Sad-
ness and Joy) could coexist in specific contexts
(Braniecka et al., 2014). Our mixed-emotion mod-
elling approach handles this complexity better and
can model a large set of subtle emotional expres-
sions by combining primary emotions without fur-
ther human annotations (as demonstrated in Sec-
tion 6).

EmoDynamiX features two key distinctions: (1)
We provide an alternative to knowledge-based user
state modelling: a mixed-emotion module based on
label distributions predicted by a pre-trained ERC
model (2) While previous works have explored
various dialogue graph structures (Li et al., 2024;
Peng et al., 2022; Zhao et al., 2023), our method
incorporates discourse structure, which has been
proven effective in various dialogue tasks (Chen
and Yang, 2021; Li et al., 2023; Zhang et al., 2023),
but remains underexplored in ESC.

2.2 Graph Learning in Conversational Tasks
Graph-based approaches have proven effective in
various dialogue-related tasks. In recognition tasks,
such as conversational emotion recognition and
dialogue act recognition, the target speaker turn
aggregates information from its neighbors accord-
ing to the graph structure. Studies by Ghosal et al.
(2019), Ishiwatari et al. (2020), Wang et al. (2020),
Fu et al. (2023), and Shen et al. (2021) design dia-
logue graphs based on interactions between speaker
roles. Li et al. (2023) and Zhang et al. (2023) con-
struct dialogue graphs based on discourse depen-
dencies parsed with a pre-trained expert model, an
approach also applied by Chen and Yang (2021)
and Feng et al. (2021) in dialogue summarization.
Yang et al. (2023) incorporate commonsense knowl-
edge as heterogeneous nodes. Furthermore, Hu
et al. (2021b) and Chen et al. (2023a) model multi-

modal fusion in dialogue graphs.
In predictive dialogue tasks, such as forcasting

the next dialogue act, decisions rely on global in-
formation extracted from graphs. Previous works
have utilized simple readout functions, such as
mean/max pooling (Joshi et al., 2021) and linear
layers (Raut et al., 2023). Our approach introduces
dummy nodes as special placeholders for informa-
tion aggregation. While dummy nodes have been
previously used in other graph-learning tasks, such
as graph classification and subgraph isomorphism
matching (Liu et al., 2022), they have primarily
served as alternatives to readout functions, which
are used for obtaining embeddings of graphs or sub-
graphs. We are the first to employ dummy nodes
in a predictive dialogue task, which is particularly
useful, since it allows to clearly model role-aware
interactions with previous speaker turns.

3 Problem Formulation

The task of predicting the next dialogue strat-
egy can be written as a multi-class classifica-
tion problem: assuming a dialogue comprising T
speaker turns, we define the dialogue history as
HT = {UT , AT , ST T } where UT = {ut}Tt=1

is the sequence of utterances, and each ut =
{wn}Nt

n=1 is a sequence of N t words. AT =
{at}Tt=1is the sequence of speaker roles, with at ∈
{user, system}. ST T = {stt}Tt=1 is the sequence
of possible strategies, but they only exist for the
agent. Noting S the set of strategies, Iuser =
{t, at = user} the indexes of turns where the user
is speaking, and denoting similarly Iagent, we have
that ∀t ∈ Iagent, stt ∈ S and ∀t ∈ Iuser, stt = ∅.
Our task is, given a fixed window size of N − 1, to
predict the strategy for agent speaker turns, which
we formulate as estimating the probability distri-
bution P(stN | HN−1

1 ) upon S when t ∈ Iagent.
For the sake of simplicity, from now on we will use
indexing from the beginning of the context window
and no longer from the entire conversation.

4 Methodology

Our framework (see Figure 2) comprises three main
components: (1) a semantic modelling module for
capturing the semantics of the dialogue context; (2)
a heterogeneous graph learning module, designed
to capture the complex interplay between the user’s
emotions and system strategies within the dialogue
history; and (3) an MLP classification head which
integrates the features obtained from the previous
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modules to produce the prediction result.

4.1 Semantic Modelling
To effectively capture the global semantic informa-
tion in the dialogue history, we adopt a common
method of representing the context in a flattened
sequence format:

<context> = [a1], u1, [a2], u2, ... (1)

For each speaker turn, we use its speaker role as
the separating token indicating the start of the cor-
responding utterance. This sequence is encoded
using RoBERTa (Liu et al., 2019):

C = Roberta([CLS], <context>) (2)

We use the embedding of the [CLS] token C[CLS]

from the last hidden layer output as the global
semantic representation of the dialogue history
HN−1

1 .

4.2 Heterogeneous Graph Learning
We propose to use a heterogeneous graph (HG)
to model the interaction dynamics in the history
HN−1

1 . This graph is formally defined as G =
{V,B}, which are respectively the set of nodes
and edges. Both can be of several types: broadly,
node types correspond to past strategies adopted
by the conversational agent, the user’s previous
emotional states, and the strategy to be predicted;
while edge types model the discourse dependencies
between dialogue turns and facilitate information
aggregation.
Node Types: Our heterogeneous graph contains
N nodes V = {vi}Ni=1, each corresponding to a
speaker turn, including the target turn N . For user
turns i ∈ Iuser, vi is an emotion node, which encap-
sulates the fine-grained emotion state of the user.
For agent turns i ∈ Iagent, vi is a system strategy
node, that represents the specific conversational
strategy implemented by the agent. Lastly, we in-
troduce the dummy node vN as a placeholder for
the target utterance, aggregating information from
the two other node types and their interactions.
Edge Types: The edges in our heterogeneous
graph fulfill dual roles: they model the discourse
dependencies between dialogue turns and facili-
tate information aggregation towards the dummy
node. Discourse dependencies correspond to edges
between and within emotion and system strategy
nodes: we follow Asher et al. (2016)’s definition
(which include categories such as Comment and

Elaboration) and pre-train a discourse parser as
proposed by Chi and Rudnicky (2022) on the multi-
party discourse dataset STAC (Asher et al., 2016).
Details regarding the training procedure can be
found in Appendix D.2. We note RDiscourse the
set of possible dependencies; then, ∀(i, j) such
that 1 ≤ i, j ≤ N − 1, ⟨vi, vj⟩ ∈ RDiscourse. We
give more details on these dependencies in Ap-
pendix A.2. The remaining edges are aggregating
information from system strategy nodes, which we
call self-reference: ∀i ∈ Iagent, ⟨vi, vN ⟩ = rself;
and from user emotion nodes, which we call inter-
reference: ∀i ∈ Iuser, ⟨vi, vN ⟩ = rinter. We note
R = RDiscourse ∪{rself, rinter} the set of edge types.

We will describe next how we obtain node em-
beddings for these three node types, and how the
different edge types affect their aggregation.

4.2.1 User Emotion Node Embedding: Mixed
Emotion Method

Unlike previous work that relies on commonsense
knowledge, we propose leveraging a pre-trained
ERC model to predict emotion distributions from
user utterances. We then utilize the knowledge con-
tained in these distributions to create embeddings
for fine-grained user states using a mixed-prototype
approach.

Training an ERC model Our emotion recogni-
tion model consists of a RoBERTa encoder with
an MLP classifier. To incorporate the global di-
alogue context while classifying individual utter-
ances, we concatenate all utterances into a single
sequence. We train our model with the DailyDialog
dataset (Li et al., 2017); since it does not provide
annotations for speaker roles, we use the special
token [SEP] as the common delimiter between all
utterances:

<ucontext> = [SEP]1, u1, [SEP]2, u2, ... (3)

This concatenated sequence is then encoded by
RoBERTa, from which we extract the embeddings
of the [SEP]i tokens (preceding each utterance)
from the last hidden layer. These embeddings
serve as representations for the corresponding ut-
terances. We note E the set of emotions; then, the
embeddings are fed into an MLP to derive a vector
zi ∈ R|E| of scores for each utterance ui:

CERC = Roberta([CLS], <ucontext>)

zi = MLP(CERC
[SEP]i)

(4)
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Figure 2: The overview of our proposed model that consists of a semantic modelling module, a heterogeneous graph
learning module, and an MLP classification head.

For DailyDialog, we categorize emotions into
seven groups: Ekman’s six basic emotions plus
Neutral, collectively referred to as E . Additional
statistical details about DailyDialog, along with
our motivation for selecting it, are available in Ap-
pendix A.2. Detailed information regarding the
implementation and training hyperparameters can
be found in Appendix D.2.

Mixed-emotion module: To model the user’s
emotional states, we employ a trainable emotion
codebook. It takes the form of a parameter matrix
E ∈ R|E|×h with h the embedding size for our het-
erogeneous graph; each of the |E| vector {Ek}|E|k=1

encodes a distinct emotion. For an emotion node
vi, they are combined into a node embedding gi

e

using the adjusted emotion distribution:

gi
e = pi ·E (5)

This distribution is directly obtained through the
output scores of our ERC model:

pi =

[
exp(zij/τ)∑
k exp(z

i
k/τ)

]|E|

j=1

(6)

To utilize the information in the emotion label dis-
tribution more effectively, we employ a learnable
temperature parameter τ ; details on the impact of
the initialization of τ can be found in Appendix E.1.

Our mixed emotion approach draws inspiration
from MISC, where a mixed-strategy module is pro-
posed to condition the response generation (Tu
et al., 2022), yet MISC does not study the tun-
ing of the label distribution p: for example, in an

ERC dataset where the label "Neutral" is preva-
lent, refining the distribution to become a little
"sharper" could greatly mitigate the ambiguity in
the model’s predictions, especially for underrepre-
sented classes.

4.2.2 System Strategy Node Embedding
For a speaker turn i ∈ Iagent, the dialogue strat-
egy information is encoded as a one hot vector
si ∈ {0, 1}|S|. Strategies themselves, as emo-
tions, are represented through a parameter matrix
S ∈ R|S|×h. Then, we simply obtain:

gi
st = si · S (7)

as the embedding of the system strategy node vi.

4.2.3 Dummy Node Embedding
Previous work relies on aggregating heterogeneous
graph information using simple readout functions
and linear layers, which do not consider speaker
roles and lack transparency regarding the contribu-
tion of each node to the final decision. To address
this, we propose using the dummy node vt as a
placeholder for the target of prediction, which in-
teracts with previous speaker turns in a role-aware
manner. We set the embedding of the dummy node
as a parameter vector gd ∈ Rh, hence being train-
able and shared among all dialog graphs.

4.2.4 Relational Graph Attention Layers
We previously defined the initial node represen-
tations for our three node types. Then, we can
employ relational graph attention networks (Bus-
bridge et al., 2019) to update these node representa-
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tions. Choosing a number K of attention heads, we
define a relation graph attention (RGAT) layer by
defining keys, queries and values parameter matri-
ces W (r,k)

K ,W
(r,k)
Q ,W

(r,k)
V for each attention head

k and possible type of edge r ∈ R. We begin by
computing the attention weights α(rij ,k)

i,j between
vi and vj under relation type rij = ⟨vi, vj⟩ using:

a
(rij ,k)
i,j = σ(W

(rij ,k)
Q gi +W

(rij ,k)
K gj)

α
(rij ,k)
i,j =

exp(a
(rij ,k)
i,j )

∑
r∈R

∑
m∈Nr(i)

exp(a
(r,k)
i,m )

(8)

where σ denotes the LeakyReLU function and
Nr(i) denotes the set of the indexes of neighbour-
ing nodes of vi under the edge type r. The result
of the multi-head attention for node vi is then:

hi = ∥Kk=1σ(
∑

r∈R

∑

m∈Nr(i)

α
(r,k)
i,m W

(r,k)
V gm) (9)

where ∥ denotes concatenation. To avoid gradi-
ent vanishing, we also add residual connections
between RGAT layers and obtain the new represen-
tation for node vi:

g(1),i = hi + gi (10)

In our model, we use the embedding g(L),N of the
dummy node after applying L RGAT layers as rep-
resentation for the entire heterogeneous dialogue
graph.

4.3 Next Dialogue Strategy Prediction
We concatenate our global semantic embedding
C[CLS] with the heterogeneous graph embedding
g
(L)
N ; this combined representation is fed into a

simple MLP classification layer to compute a prob-
ability distribution upon S:

o = softmax(MLP(C[CLS]∥g(L),N )) (11)

which finally gives P(stN | HN−1
1 ) = ostN . We

adopt the weighted cross-entropy loss as our train-
ing objective: to address class imbalance, we adjust
the loss contribution from each class based on its
prevalence, weighting it in proportion inverse to its
frequency in the training dataset.

5 Experiments

5.1 Experimental Setups
Datasets To make our model learn strategies ben-
eficial for both social and task-oriented goals, we

select two ESC datasets (in English) where dia-
logues have been human-evaluated and filtered to
ensure that the conversational outcomes are posi-
tive and the strategies applied are socially appro-
priate: (i) ESConv (Liu et al., 2021), an ESC
dataset annotated by trained crowd-workers. It
comprises 1,300 dialogues and features 8 dialogue
strategies. We adhere to the official train/dev/test
split2.; (ii) AnnoMI (Wu et al., 2022), an expert-
annotated counselling dataset. It includes 133 dia-
logues and features 9 therapist strategies. We make
the train/dev/test split with an 8:1:1 ratio. Detailed
dataset statistics are provided in Appendix A.1. For
both datasets, we set the context window size to
5 utterances3, resulting in 18,376 samples for ES-
Conv and 4,442 samples for AnnoMI.
Baselines To provide extensive comparisons, we
choose baselines from three criteria: (i) prompt-
ing LLMs SOTA in dialogue tasks, using task de-
scription and supplementary information: Chat-
GPT4 (OpenAI, 2023) and LLaMA3-70B (Meta,
2024) with 2-shot learning (+2 shot) or emotion la-
bels (+ ERC). We excluded Chain-of-Thought (Wei
et al., 2024) prompting because it has already been
shown to be ineffective for our task (Kang et al.,
2024); (ii) fine-tuning LLMs as general-purpose
dialogue strategy predictors: RoBERTa (Liu et al.,
2019), BART (Lewis et al., 2020) and LLaMA3-
8B (Meta, 2024); (iii) specialized models for emo-
tional support dialogue strategy prediction: MISC
(Tu et al., 2022), MultiESC (Cheng et al., 2022),
KEMI (Deng et al., 2023) and TransESC (Zhao
et al., 2023). For more details see Appendix C.
Evaluation Metrics We use macro F1 score (M-
F1) and weighted F1 score (W-F1) as metrics for
evaluating the proficiency of strategy prediction
models, since the ground truth strategies in the two
datasets have been validated by human evaluators.
Given the unbalanced nature of ESC datasets, the
accuracy score is not an ideal choice as it can un-
fairly favor models that predominantly predict the
majority classes. We also incorporate the prefer-
ence bias score (B) as defined by Kang et al. (2024)
to quantify the extent to which the model favors its
preferred strategies over non-preferred ones (im-
plementation details in Appendix D.1). An ideal

2https://huggingface.co/datasets/thu-coai/esconv
3We employ a sliding window method to generate training

samples: for each supporter utterance in a dialogue, we take
the five preceding utterances as the dialogue history and use
the current dialogue strategy as the target for prediction.

4The version of ChatGPT is gpt-3.5-turbo-0301
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Model ESConv AnnoMI
M-F1↑ W-F1↑ B↓ M-F1↑ W-F1↑ B↓

Prompting
LLMs

LLaMA3-70B (Meta, 2024) 15.36 18.45 1.03 8.38 9.01 1.24
+ 2 shot 17.70 21.47 1.29 9.52 9.13 1.11
+ ERC 15.70 19.32 1.12 8.28 9.02 1.30
ChatGPT (OpenAI, 2023) 18.14 20.27 0.88 20.31 18.12 1.21
+ 2 shot 16.55 20.01 0.73 15.29 14.22 1.39
+ ERC 16.50 18.79 0.77 16.17 15.60 0.89

Finetuning
LLMs

RoBERTa (Liu et al., 2019) 25.04 27.94 0.68 22.26 27.25 0.64
BART (Lewis et al., 2020) 25.66 29.08 0.64 22.94 29.68 1.07
LLaMA3-8B (Meta, 2024) 25.91 29.82 0.83 23.77 29.98 0.81

Specialized
Models

MISC (Tu et al., 2022) 20.91 24.93 0.89 - - -
MultiESC (Cheng et al., 2022) 25.73 29.31 0.61 - - -
KEMI (Deng et al., 2023) 24.69 26.80 0.86 - - -
TransESC (Zhao et al., 2023) 26.28 31.33 0.73 - - -

Ours EmoDynamiX 27.70† 32.71† 0.45† 27.92† 35.33† 0.50†

Table 1: Experimental results on two ESC datasets. The best results are bolded and the second best are underlined.
† indicates statistically significant improvement (p < 0.05). Since MultiESC has adopted a new set of labels, we
merge the updated ones with the original annotations to ensure a fair comparison. Due to the unavailability of
TransESC’s data preprocessing pipeline, we report the reproduced results based on their released train/dev/test split.

dialogue strategy predictor should achieve strong
F1 scores while minimizing preference bias.
Implementation Details We implemented our
proposed method using PyTorch (Paszke et al.,
2019), initializing with the pre-trained weights
from RoBERTa and employing the tokenization
tools from Huggingface Transformers (Wolf et al.,
2020). For optimization, we used the AdamW
optimizer (Loshchilov and Hutter, 2019). De-
tailed hyperparameter settings can be found in Ap-
pendix D.3.

5.2 Overall Performance

As shown in Table 1, EmoDynamiX outperforms
previous SOTA methods across all evaluation met-
rics. Compared to TransESC, EmoDynamiX sig-
nificantly reduces the preference bias score by 38%
and achieves higher F1 scores. This suggests that
while TransESC also models dialogue state tran-
sitions, our ERC-based mixed-emotion approach
captures the nuances of user emotion states more
effectively, leading to better predictions, as fur-
ther validated by our ablation study. Furthermore,
compared to MultiESC, the previous SOTA model
with a low bias score, EmoDynamiX excels across
all metrics by a substantial margin. Another in-
teresting result is that models based on specific
case knowledge (KEMI) and general commonsense
knowledge (MISC) are less effective as dialogue
strategy predictors.

Comparisons with two LLM prompting base-
lines indicate that using LLMs alone for emotional
support dialogue prediction is significantly con-

strained by their inherent biases, even when exam-
ples or emotion recognition is provided through
prompts. The bias scores for LLM-prompting
baselines are significantly higher, ranging from
0.77 to 1.39. Among the LLM-fine-tuning base-
lines, LLaMA3-8B achieves the highest F1 scores.
RoBERTa generally exhibits a lower bias score,
while BART emerges as a balanced option. Nev-
ertheless, these baselines still lag behind EmoDy-
namiX by a considerable margin.

5.3 Ablation Study

We conducted ablation studies (Table 2) and inves-
tigated whether the following modules improves
the results of next strategy prediction:
Modelling user emotions and agent strategies
in dialogue context. We compared two sim-
plified versions: (1) flattened dialogue history
only (RoBERTa in Table 1); (2) flattened con-
text with emotions and strategies inserted as tags
(w/o Graph). Although w/o Graph outperforms
RoBERTa, there remains a significant gap com-
pared to EmoDynamiX. This indicates that while
incorporating emotions and strategies is beneficial,
the effectiveness is still limited without our graph-
learning module.
Modelling mixed emotions. We modelled user
emotional states with one-hot vectors instead (w/o
Mixed Emotion). The resulting decreases in all met-
rics highlight the importance of leveraging emo-
tion distributions, not just labels, for capturing fine-
grained user emotion states.
Modelling discourse structure. We connected

1684



Model ESConv AnnoMI
M-F1↑ W-F1↑ B↓ M-F1↑ W-F1↑ B↓

EmoDynamiX 27.70 32.71 0.45 27.92 35.33 0.50
w/o Graph Learning 25.72↓1.98 29.31↓3.40 0.78↑0.33 26.95↓0.97 29.46↓5.87 0.73↑0.23
w/o Mixed Emotion 25.90↓1.80 29.45↓3.26 0.66↑0.21 24.71↓3.21 30.25↓5.08 0.70↑0.20
w/o Discourse Parser 26.64↓1.06 30.12↓2.59 0.59↑0.14 27.04↓0.88 31.59↓3.74 0.60↑0.10
w/o Dummy Node 25.46↓2.24 29.80↓2.91 0.73↑0.28 24.73↓3.19 29.00↓6.33 0.72↑0.22

Table 2: Evaluation results of ablation study.

(Providing Suggestions) Well, what about you 
finding a counsellor for yourself who could help 
you with your own self-care? Perhaps it could be 
a start and then he/she could help you end your 
marriage if you still want to.

(Self-disclosure) It took me a while to learn my 
own value and how important self-care is.

Maybe you are right I might get then some self-
esteem as well again.

I turned this situation in every direction and I just 
am not able to find a solution. 

You know what I like that idea!

Role: User Role: Agent

𝑢!

𝑢"

𝑢#
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𝑢%
Dialogue History

(Affirmation and Reassurance) I know from 
experience that our self-esteem suffers when 
we‘re in an unhappy marriage. It takes a lot of 
courage to seek help so I applaud you!
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Figure 3: Case study: Dialogue history and ground truth (left); visualization of the heterogeneous graph structure
(middle); attention weights of the dummy node edges (right).

the nodes in simple sequential order instead of dis-
course structure (w/o Discourse Parser). Although
this led to drops in all metrics, the declines were not
substantial. We hypothesize that the domain gap be-
tween the STAC dataset and the ESC datasets may
limit the discourse parsing module’s effectiveness.
Use of dummy nodes for information aggrega-
tion We replaced dummy nodes with traditional
mean-max pooling (Joshi et al., 2021) (w/o Dummy
Node). We observed performance decreases, with
a more significant decline on AnnoMI, indicating
that our dummy node design is particularly benefi-
cial in low-resource settings.

6 In-depth Analysis of EmoDynamiX

We illustrated a case study using a snippet from
ESConv, as shown in Figure 3. The case involves
the agent deciding which strategy to apply after the
user’s emotional state has transitioned positively
from Frustration (as Frustration is not a category
in DailyDialog, our mixed-emotion module mod-
els it as moderated sadness with a little anger) to
Joy. The ground truth here is Affirmation and Re-
assurance, which acknowledges the user’s positive
transition and encourages consolidation of posi-
tive mood. By looking at the attention weights
of dummy node edges, we can observe the con-

Figure 4: Analysis on the correlation between the top-
10 disagreement patterns (Ground Truth -> Prediction)
and their most influential emotion categories.

tribution of each node in decision-making. We
notice that, as the RGAT layer deepens, the dummy
node shifts its attention from previously applied
strategies to the user’s emotional transition, with
higher weights applied to edges connecting with
the emotion state nodes (especially Frustration). In
short, our graph-learning module effectively cap-
tures clues from emotion/strategy dynamics.

We further study the disagreements between the
predictions and human strategies using the con-
fusion matrix (Appendix E.3). Determining the
appropriate timing for emotion-related dialogue
strategies versus task-oriented ones is particularly
challenging. The model frequently predicts Pro-
viding Suggestions whereas the human strategies
are among the three emotion-related ones: Reflec-
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tion of feelings, Self-disclosure, and Affirmation
and Reassurance. Notably, over 60% of emotion-
related strategies were categorized as task-oriented
ones, highlighting the difficulty in making choices
between these two strategy categories, as also dis-
cussed by Galland et al. (2022). We further ana-
lyze the disagreement patterns between predicted
and human strategies. By looking at their cor-
relations with the primary emotion categories of
emotion nodes with the highest attention weights
(Figure 4), we find that "Neutral" contributes a
larger proportion to these disagreements in general
compared to its overall representation in the ERC
module’s output distribution (59.22%, as shown in
Appendix E.2). This suggests that strategies are
easier to predict when the model can pick up the
user emotions expressed in the context.

7 Conclusions

In this paper, we propose EmoDynamiX, a socio-
emotional dialogue strategy prediction framework
that aggregates expert models and uses heteroge-
neous graphs to model the conversational dynamics
of user states and system strategies. Our approach
significantly improves all baselines on two pub-
lic ESC datasets, and takes a step towards trans-
parency by analyzing attention weights in the in-
depth study.

Limitations

Limitations on Ground Truths Although the ESC
datasets we use have all been evaluated by humans,
we cannot fully ensure that no other strategies,
aside from the ground truth, could have been effec-
tive in the same context. However, we currently
lack a protocol for human evaluation at the strategy-
planning stage. Besides, human evaluation is more
suitable to be performed after the generation stage.
Generalizability to Other Languages We evalu-
ated the effectiveness of our proposed architecture
using only two English datasets. It remains to be
seen whether our approach can generalize to other
languages or multi-language settings. It is also
worth noting that since EmoDynamiX is based on
expert models pre-trained on English datasets to ac-
quire knowledge about discourse structure and emo-
tion recognition, it may inherit cultural biases from
these datasets (Gelfand et al., 2011; Hall, 1976),
potentially influencing the strategy prediction.
Limitations on Expert Modules Since ERC and
discourse parsing are not the primary contributions

of our research, we did not investigate the impact
of using different model architectures or datasets
for their training. The training and integration of
a cross-domain ERC module and discourse parser
could be considered in future studies.
Distance to Practical Application Although our
method outperformed previous baselines signif-
icantly, its performance remains unsatisfactory.
This underscores the complexity of the task and
indicates that additional work is required to make
the socio-emotional strategy predictor a robust com-
ponent in future ESC agents.

Ethics Statement

Intent of Technology We insist that conversational
AI should not be developed to replace humans.
Therefore, it is crucial to maintain a clear line be-
tween AI and humans (Ethique et al., 2024). Given
that the training data for conversational AI, includ-
ing the two datasets we selected, are primarily cu-
rated by humans, the AI (especially those trained
using end-to-end methods) may exhibit human-like
behaviors. For instance, in Figure 1, the system
learns to utilize Self-disclosure strategy by express-
ing feelings of loneliness, which is not consistent
with ethical recommendations. We stress that strate-
gies leading to such human-like behaviors should
be applied cautiously and potentially restricted in
real-world applications to ensure safety. We believe
that our approach, which allows us to explicitly set
desired behaviors for AI, can provide better control
over conversational AI in the future.
Data Privacy All experiments were conducted us-
ing existing datasets derived from public scientific
research. Any personally identifiable and sensitive
information, such as user and platform identifiers,
has been removed from these datasets.
Medical Disclaimer We do not provide treatment
recommendations or diagnostic claims.
Transparency We detail the statistics of the
datasets and the hyper-parameter settings of our
method. Our analysis aligns with the experimental
results.
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A Datasets

A.1 ESC Datasets

Following are the two public ESC datasets we use
to evaluate our method.
ESConv (Liu et al., 2021) utilizes eight dialogue
strategies: Reflection of Feelings, Self-Disclosure,
Question, Affirmation and Reassurance, Provid-
ing Suggestions, Restatement or Paraphrasing, In-
formation, and Others. The distribution of these
strategies is depicted in Figure 5. ESConv col-
lects user feedback scores (ranging from 1 to 5)
after every few speaker turns to evaluate the effec-
tiveness of emotional support. Notably, 79.9% of
the scores are above 4 (Good), indicating a high
overall quality of emotional support conversations
in ESConv, which successfully alleviated users’
negative moods. To ensure fair comparisons with
previous baselines, we did not perform filtering,
though training the strategy predictors on highly
rated strategies and using poorly rated ones as neg-
ative samples could be beneficial. The top-3 topics
include Ongoing depression, Job crisis and Break
up with parterner.
AnnoMI (Wu et al., 2022) categorizes therapist
behaviors into 4 high-level types: Reflection, Ques-
tion, Input, and Other. These high-level behav-
iors are further broken down into 9 fine-grained
strategies: Simple Reflection, Complex Reflection,
Open Question, Closed Question, Information, Ad-
vice, Giving Options, Negotiation/Goal-setting,
and Other. Since AnnoMI is a small dataset and has
very unbalanced strategy distribution, we merged
Advice, Giving Options, and Negotiation/Goal-
setting into a single strategy: Provide Suggestion,
which is aligned with ESConv. The distribution of
these strategies is illustrated in Figure 5. AnnoMI
comprises 110 (82.7%) high-quality dialogues and
23 (17.3%) low-quality dialogues. To ensure our
strategy predictor learns strategies that positively
impact users, we excluded all low-quality conver-
sations, retaining only the high-quality ones. The
top-3 topics in AnnoMI are Reducing alcohol con-
sumption, Smoking cessation and Weight loss.

A.2 Datasets for Pre-training Expert Models

STAC (Asher et al., 2016) is used for pre-training
our discourse parser. It is a multi-party dialogue
corpus collected from an online game. It contains
1,081 dialogues, with an average of 8.5 speaker
turns per dialogue. STAC includes 16 discourse
dependency categories: Comment, Clarification

Question, Elaboration, Acknowledgment, Continu-
ation, Explanation, Conditional, Question-Answer
Pair, Alternation, Question-Elaboration, Result,
Background, Narration, Correction, Parallel, and
Contrast.
DailyDialog (Li et al., 2017) is used to pre-train
our emotion recognition module. It is an ERC
dataset collected from an English learning web-
site. Its topics are closer to everyday issues and
thus better suited for ESC compared to other pop-
ular counterparts collected from TV shows (Poria
et al., 2019; Zahiri and Choi, 2018) or actor perfor-
mances (Busso et al., 2008). DailyDialog includes
13,118 multi-turn dialogues, with an average of 7.9
speaker turns per dialogue. The emotion labels in
this dataset encompass Ekman’s six basic emotions
(Anger, Disgust, Fear, Joy, Sadness, Surprise) and
a Neutral class.

B Definitions of ESC Strategies

B.1 Strategies in ESConv

Question: asking for information related to the
problem to help the seeker articulate the issues that
they face.
Restatement or Paraphrasing: a simple, more
concise rephrasing of the seeker’s statements that
could help them see their situation more clearly.
Reflection of Feelings: describe the help-seeker’s
feelings to show the understanding of the situation
and empathy.
Self-disclosure: share similar experiences or emo-
tions that the supporter has also experienced to
express your empathy.
Affirmation and Reassurance: affirm the help-
seeker’s ideas, motivations, and strengths to give
reassurance and encouragement.
Providing Suggestions: provide suggestions about
how to get over the tough and change the current
situation.
Information: provide useful information to the
help-seeker, for example with data, facts, opinions,
resources, or by answering questions.
Others: other support strategies that do not fall
into the above categories.

B.2 Strategies in AnnoMI

Question open: encourage seekers to elaborate on
their thoughts, feelings, and experiences, fostering
self-exploration and insight. These questions can-
not be answered with a simple yes or no and help
build rapport and understanding.
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Figure 5: Strategy distributions of ESConv (left) and AnnoMI (right).

Question closed: gather specific information, con-
firm details, or clarify points with concise re-
sponses. They are less exploratory but essential
for obtaining precise information and ensuring clar-
ity in the conversation.
Reflection simple: use statements that convey
understanding or facilitate seeker-supporter ex-
changes. Simple reflection conveys understanding
of what the seeker has said and adds little extra
meaning.
Reflection complex: use reflective statements that
show a deeper understanding of the perspective of
the seeker and add substantial meaning or emphasis
to what the seeker has said.
Provide suggestion: provide suggestions (Advice,
Options, Goal-Setting) about how to change, but
be careful to not overstep and tell them what to do.
Provide information: provide useful information
to the help-seeker, for example with data, facts,
opinions, resources, or by answering questions.
Other: exchange pleasantries and use other support
strategies that do not fall into the above categories.

C Baselines

ChatGPT (OpenAI, 2023) is an advanced lan-
guage model with 175 billion parameters devel-
oped by OpenAI. Using reinforcement learning
from human feedback (RLHF), it generates human-
like text and excels in natural language processing
tasks such as conversation and content creation.
The prompting is constructed with the template
in Figure 6 and corresponding strategy definitions
in Appendix B.1 or Appendix B.2. To facilitate
few-shot learning, we built a case library using

Prompting Template

Task Description
You are an intelligent emotional support assistant
dedicated to helping people cope with stress and de-
pression. To effectively comfort your users, you must
select the appropriate dialogue strategy based on the
context of the conversation and the user’s emotional
state. Choose from the following x types of strate-
gies:
## Strategy Descriptions ##
...
Example 1
# Dialogue context #
...
# Output #
...
Example 2
...
Dialogue Context
supporter: (strategy) ...
seeker: (emotion: optional)...

Task
Now select the appropriate dialogue strategy for the
next utterance according to the task description and
dialogue context above (one answer only, no descrip-
tion), output should be in this format: (strategy).

Figure 6: Prompting template for LLMs. Examples are
optional.
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the training data and extracted two examples from
this library for each inference on the test data. We
employed example extraction based on similarity
scores computed from sentence-BERT (Reimers
and Gurevych, 2019) embeddings.
LLaMA3 (70B & 8B) (Meta, 2024) is a series of
instruction-tuned language models developed by
Meta, featuring parameter sizes ranging from 8
to 70 billion. These models are specifically opti-
mized for dialogue use cases and demonstrate supe-
rior performance compared to many existing open-
source chat models on standard industry bench-
marks. For the 70B variant, the prompting tem-
plates and few-shot methodologies align with those
previously described. In contrast, the 8B variant
uses flattened dialogue context with speaker tags as
input (same for RoBERTa and BART) and employs
LoRA (Hu et al., 2021a) for parameter-efficient
fine-tuning.
RoBERTa (Liu et al., 2019) is a transformer-based
language model that enhances BERT by using more
training data, larger batch sizes, and dynamic mask-
ing, while removing the Next Sentence Prediction
objective. Its robust training approach makes it
more effective than the original BERT model across
multiple benchmarks.
BART (Lewis et al., 2020) is a sequence-to-
sequence model that combines a bidirectional en-
coder and an autoregressive decoder, effectively
blending BERT and GPT architectures. It’s trained
to reconstruct original text from corrupted input,
making it highly versatile for tasks like text genera-
tion, summarization, and translation.
MISC (Tu et al., 2022) is based on BlenderBot and
integrates commonsense knowledge from COMET
with a mixed strategy mechanism to simultaneously
predict support strategies and generate responses.
MultiESC (Cheng et al., 2022) is a specialized
ESC framework based on BART. It features a look-
ahead strategy planning mechanism inspired by A*
search algorithm to maximize the expected user
feedback.
KEMI (Deng et al., 2023) is based on Blender-
Bot and integrates domain-specific case knowledge
from HEAL with graph querying. The queries
are constructed with commonsense knowledge ex-
tracted from COMET. KEMI also simultaneously
predict support strategies and generate responses.
TransESC (Zhao et al., 2023) is a specialized ESC
framework built upon BlenderBot. It models di-
alogue state transitions using a graph-based ap-
proach and integrates emotion recognition as an

additional training objective, utilizing ground-truth
emotion labels predicted by an off-the-shelf ERC
model. TransESC’s modeling of the user’s emo-
tional state also leverages commonsense knowl-
edge from COMET.

D Implementation Details

D.1 Implementation of the Preference Bias
Score

Preference pi indicates the degree to which the
model favors strategy i over others. It is calculated
iteratively using the confusion matrix according to
the following formula:

p′i =

∑
j(wijpj)/(pi + pj)∑

j wji/(pi + pj)
(12)

Here, p′i denotes the updated preference for strat-
egy i in the next iteration, and wij represents the
frequency with which the model predicts strategy i
when the actual ground truth is strategy j. Initially,
all preferences pi are set to 1. In our implementa-
tion, we perform 20 iterations of this process.

Preference Bias is the standard deviation of p:

B =

√∑N
i=1(pi − p)2

N
(13)

D.2 Implementation Details for Submodules

Discourse Parser We followed exactly the same
train/dev/test split and training hyperparameters in
the original paper (Chi and Rudnicky, 2022). The
initial learning rate is set to 2e-5 with a linear decay
to 0 for 4 epochs. The batch size is 4. The first 10%
of training steps is the warmup stage. We tested
the discourse parser on the test set and got a 59.0
F1 on link and relation predictions.
ERC Module For the pre-training of the ERC mod-
ule, we split the DailyDialog dataset as provided
in the original repository5. The learning rate was
set to 2e-5, with 500 warm-up steps and a weight
decay of 1e-3. The model was trained for 12,000
steps, and the best model, determined based on
performance on the validation set, was used for
inference on the test split. The results on the test
set were as follows: an accuracy score of 82.26, a
macro F1 score of 53.0, and a weighted F1 score
of 83.54.

5http://yanran.li/dailydialog
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D.3 Hyperparameter Settings

For training EmoDynamiX, we configured the
batch size to 16 and set the learning rate to 4e-
6, with 500 warm-up steps and a weight decay of
1e-3. Additional hyperparameters included a di-
mensionality of 512 for the heterogeneous graph
embeddings, an initial temperature parameter τ of
0.5 for the mixed user emotion state module, and 3
layers for relational graph attention. EmoDynamiX
was trained for 3000 steps on ESConv and 1200
steps on AnnoMI, separately.

For the pre-training of the ERC module, we set
the learning rate to 2e-5, with 500 warm-up steps
and a weight decay of 1e-3, training the model for
12,000 steps. For the pre-training of the discourse
parser, we adhered to the hyperparameter settings
detailed in Chi and Rudnicky (2022). All train-
ing procedures were conducted on a single Nvidia
GeForce RTX 4090 GPU.

E Supplementary Materials for Analysis

E.1 Impact of the Initialization of τ

The temperature parameter τ adjusts the shape of
the probability distributions used in our mixed-
emotion module. To understand the impact of the
initial value of τ , we performed extensive exper-
iments, and the results are displayed in Figure 7.
We observed that while both "sharpening" (lower
τ ) and "softening" (higher τ ) the distribution can
positively impact the overall model performance,
outperforming the original distribution (τ = 1),
"sharpening" the distribution makes the best re-
sults. This differs slightly from our expectations,
as soft probabilities are typically more advanta-
geous in learning paradigms like knowledge dis-
tillation (Hinton et al., 2015), which uses distribu-
tional knowledge to transfer learning from teacher
to student models. We speculate that this outcome
might be influenced by the data distribution in the
DailyDialog dataset. Since "Neutral" comprises
83% of the labels, it is usually the largest or sec-
ond largest category in label distributions. If the
label is not "Neutral," "Neutral" plays a significant
role, modulating the level of the primary emotion
label, such as joy or anger. Conversely, when the
label is "Neutral," the second largest category pro-
vides additional information, like "Neutral" with a
hint of anger or sadness. Our results indicate that
emphasizing the primary emotion category while
retaining the contribution of the second-highest
"moderator" category is beneficial to the overall
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Figure 7: Analysis on the initialized value of τ .

predictive performance.
We also explored more extreme settings. When τ

approaches 0, the distribution resembles a one-hot
vector, leading to performance similar to the model
without the mixed-emotion module (indicated by
the red line in the figure). Conversely, initializing
τ too high (100 or more) over-softens the distri-
butions, allowing minor classes to introduce noise,
which results in a decline in performance compared
to lower τ values.

E.2 Output Statistics of the ERC Module
Table 3 presents the output statistics of our pre-
trained ERC module on the ESConv test set, along-
side a comparison with the original label distribu-
tion of DailyDialog. Notably, the dialogue scenes
in ESConv exhibit a higher emotional intensity
compared to those in DailyDialog.

ESConv DailyDialog
Anger 1.83 0.99

Disgust 0.70 0.34
Fear 0.61 0.17
Joy 20.17 12.51

Sadness 17.17 1.12
Surprise 0.31 1.77
Neutral 59.22 83.10

Table 3: Comparison between the output label distribu-
tion of our ERC module on ESConv and the original
label distribution of DailyDialog.

E.3 Confusion Matrix of EmoDynamiX on
ESConv

See Figure 8.
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