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Abstract

Human Preference Alignment (HPA) can assist
large language models (LLMs) to generate safe
content. Due to the heavy cost of fine-tuning,
tuning-free methods have emerged, typically
modifying LLM decoding via post-processing.
In this paper, we propose a novel and effec-
tive approach for HPA in a tuning-free way,
named In-Context Direct Preference Optimiza-
tion (ICDPO). We first rethink the derivation
procedures of DPO, based on which we con-
versely build an instant scorer using the states
of the LLM before and after ICL. It enables
LLMs to both generate and select the well-
aligned response, which is precisely estimated
by the aforementioned instant scorer, thereby
enhancing the final performance. ICDPO can
be further enhanced with a two-stage retriever
and an upgraded scorer. Extensive experiments
show its effectiveness, particularly in outper-
forming multiple tuning-free baselines, even
competitiveness with SFT and DPO. We also
conduct detailed analyses to offer comprehen-
sive insights into ICDPO.

1 Introduction

Human Preference Alignment (HPA) is crucial
within the LLM industry as it prevents LLMs
from generating content contrary to human values.
Presently, mainstream approaches to HPA heavily
depend on fine-tuning, exemplified by RLHF (Sti-
ennon et al., 2020; Ouyang et al., 2022; Zhu et al.,
2023), RAFT (Dong et al., 2023a), RRHF (Yuan
et al., 2023), or DPO (Rafailov et al., 2023).

Nevertheless, the huge computational and anno-
tation costs of fine-tuning are hard to ignore. As
a response, tuning-free methods with external su-
pervision in decoding have gained popularity. For
instance, external scorers capable of distinguishing
human preference can be involved to apply best-
of-N selection for multiple candidates or enhance
block selection in inference (Mudgal et al., 2023).

In this work, we propose a novel and effective
approach, named In-Context Direct Preference
Optimization (ICDPO). Specifically, we rethink the
derivation of DPO (Rafailov et al., 2023), which
transforms the RLHF objective and bridges the re-
lation between the provided reward model (RM)
and expert policy π∗, where the RM is in sync with
the distributional disparity between π∗ and its ref-
erence model π0. Conversely, given π∗ aligned
with human preference, it can both empower re-
sponse generation, as well as work with its refer-
ence model (amateur) to enhance the scoring of
HPA for candidate responses. Meanwhile, ICDPO
avoids fine-tuning by utilizing In-context Learn-
ing (ICL) to shift the distribution of base models in
the part response, thus instantly acquiring π∗.

The superiority of ICDPO is attributed to two
points: (1) Existing approaches focus on the post-
processing of token distribution in decoding, while
ICDPO employs ICL to directly bring the HPA
capability to LLMs, requiring just several good
demonstrations wherever they come from. Figure 1
shows its similarity with fine-tuning by parame-
ter updates. (2) The proposed mechanism of con-
trastive scoring by the expert-amateur collaboration
in Figure 1(b) provides a more reliable estimation
than the process of independent decision.

Furthermore, we are inspired by the prevalent
contrastive decoding to facilitate the formulation
of the expert-amateur collaboration. In detail, we
incorporate both chosen and rejected demonstra-
tions by annotators, driving the initial π0 to a favor-
able π+ and unfavorable π− by ICL, respectively,
which amplifies the disparity between them. It
works as further debiasing the final distribution
of candidates to consolidate ICDPO. On the other
hand, Since ICDPO harnesses LLMs through con-
textual demonstrations, the selection and ordering
of demonstrated samples become crucial. Inspired
by the nature of fine-tuning, where aligned distri-
butions between training and test sets maximize
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Figure 1: The overview of ICDPO. (a) The similarity in utilizing superior data between normal fine-tuning and ICL
without fine-tuning. (b) The core of ICDPO is that expert-amateur coordination maximizes S which represents the
disparity between the expert and the amateur. It brings more accurate estimation than using only the expert LLM.

effectiveness, we develop a two-stage retriever to
identify demonstrations that are most similar to the
test samples in both form and semantics, thereby
improving the performance of ICDPO.

Extensive experiments are conducted to evalu-
ate the proposed ICDPO, encompassing evalua-
tions using both a reward model (RM) and GPT-4,
along with an ablation study validating each mod-
ule and comprehensive analyses to explore from
fine-grained perspectives.

The observations of this work are as follows:
1. With a novel formulation, ICDPO can instantly
endow base models with effective HPA through
a generation-scoring workflow. It consistently
outperforms multiple tuning-free baselines and
even competes with techniques like SFT/DPO plus
LoRA(Hu et al., 2022). The proposed two-stage
retriever R and upgraded scorer Ŝ further enhance
the effectiveness of ICDPO, as shown in both RM
and GPT-4 evaluations.
2. Demonstrations and the capacity of base models
are closely tied to the final performance. Both bet-
ter base models and larger/higher-quality demon-
strations have positive impacts, while R enlarges
the effect of demonstration quality.
3. Regarding scoring, both S and Ŝ in ICDPO can
offer reliable estimations of HPA degree.

2 Related Work

2.1 Human Preference Alignment

To mitigate the risk of generating toxic con-
tent, LLM should be aligned with human pref-
erence (Wang et al., 2023d), i.e. Human prefer-
ence alignment (HPA), which is advanced through
RLHF (Ouyang et al., 2022; Zhu et al., 2024; Yu

et al., 2023; Jang et al., 2023; Dai et al., 2023b) and
SFT methods (Yuan et al., 2023; Song et al., 2023;
Wang et al., 2023b; Zhang et al., 2023; Liu et al.,
2023a; Xu et al., 2023; Hong et al., 2023; Huang
et al., 2024; Lyu et al., 2024). DPO (Rafailov et al.,
2023) can be the representative one. It builds the
relation between the RM and the combination of
pre/post-optimized policies by transforming RLHF
objective, which is inserted into reward modeling
to derive an elegant SFT objective.

Nevertheless, fine-tuning LLMs is still costly. It
triggers the need for tuning-free methods, relying
on self-selection (Li et al., 2024b), external ex-
pert selection (Mudgal et al., 2023), or refinement
of prompts (Cheng et al., 2023). The proposed
ICDPO differently does selection with a skillful
self-estimation formulation, which is based on the
reverse derivation of the relation in DPO.

2.2 In-Context Learning

LLM has the potential of instant few-shot learning
through demonstrations in the context (Brown et al.,
2020; Dong et al., 2023b; Zheng et al., 2023; Yang
et al., 2023a,b), named In-Context Learning (ICL).
The underlying mechanism of ICL has also been
carefully studied. From the perspective of informa-
tion flow, Wang et al. (2023a) distinguish the dif-
ferent roles of upper and lower layers in LLMs for
ICL, while Dai et al. (2023a) and Von Oswald et al.
(2023) established dual relations between gradient
descent and self-attention in Transformer (Vaswani
et al., 2017), thus illustrating that ICL as a meta-
optimizer can similarly enhance intrinsic capabili-
ties of the LLM. We extend it to HPA, where the
optimized policy can be easily acquired for genera-
tion and scoring without fine-tuning.
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3 Methodology

In this section, we rethink the transformation from
RLHF to DPO (Rafailov et al., 2023), an elegant
supervised fine-tuning algorithm derived from the
original RLHF objective T . We focus on the rela-
tion between a given RM and the corresponding
optimal policy π∗, and adapt it to LLM inference
in the manner of In-context Learning (ICL), which
we term as ICDPO.

3.1 From Reward Model to Policy LLM
The original target T of RLHF is to optimize the
policy LLM π for the acquisition of a synthetic re-
ward R, the combination of a fundamental reward
from the given RM r∗ and a KL-regularization to
reference policy π0,

T = max
π

E [R]

= max
π

E
[
r∗(x, y)− β log

π(y | x)
π0(y | x)

] (1)

Rafailov et al. (2023) construct the Direct Prefer-
ence Optimization (DPO) algorithm by first trans-
forming the above Equation 1,

T = min
π

E
[
log

π(y | x)
π0(y | x) −

1

β
r∗(x, y)

]

= min
π

E

[
log

π(y | x)Z(x)

π0(y | x) exp
(

1
β r

∗(x, y)
)

− logZ(x)

]
(2)

where

Z(x) =
∑

y

π0(y | x) exp
(
1

β
r∗(x, y)

)
(3)

is the partition function, and the relation between
r∗ and the optimal policy π∗ of Equation 2 is found:

r∗(x, y) = β log
π∗(y | x)
π0(y | x) + β logZ(x) (4)

3.2 Preference Optimization via ICL
In RLHF, r∗ typically represents the outcome of
Reward Modeling preceding the PPO stage, and
π∗ denotes the corresponding optimal policy. DPO
opts to integrate π into the supervised objective of
Reward Modeling and devises an SFT-style fine-
tuning approach based on the formulation of Equa-
tion 4. Conversely, we rethink Equation 1 and 4

Algorithm 1: In-context Direct Preference
Optimization

Input: Language Model π, Dataset D,
input prompt x

Output: Response y with the largest score
// Generation stage
Retrieve m demonstrated samples d from D
Sample n responses {yi} from π(y | [d;x])
// Scoring stage
Let s = −∞; p = 0
for yi ∈ {y1, ..., yn} do

Estimate π(y | [d;x]) in ICL; Estimate
π(y | x)

Estimate S(d, x, y) with Equation 8
if S(d, x, y) > s then

s = S(d, x, y); p = i

Let y = yp
return y

with the aim of avoiding parameter modification in
the policy LLM π.

With an optimized policy LLM π∗ and a refer-
ence policy π0, according to Equation 4, we can
build a customized reward function r̂ as follows:

r̂(x, y) = log
π∗(y | x)
π0(y | x) + logZ(x) (5)

Since π∗ is optimal for aligning with human pref-
erence, the corresponding r̂ should well reflect
the extent of human preference. Additionally, the
synthetic R in Equation 1 incorporates the KL-
regularization component to prevent the policy
from deviating too far from the typical linguistic
space. Therefore, if π∗ is presumed to retain this
capability, without the concern for regularization,
Equation 1 could exclusively concentrate on pref-
erence rewards. Consequently, with a set y of mul-
tiple candidate responses and Equation 5, we have

max
y∈y

R ≡ max
y∈y

r̂(x, y) ≡ max
y∈y

log
π∗(y | x)
π0(y | x) (6)

because Z(x) in Equation 5 involves only x.
Furthermore, π∗ is typically obtained through

fine-tuning, but it becomes inaccessible in
this way if the initial objective of tuning-free
alignment has to be considered. Therefore,
we use ICL to meet this requirement, with
inspiration from Dai et al. (2023a) that in-
ner meta-optimization can be demonstrated in
ICL with contextual demonstrations d and tested x:
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Figure 2: The workflow of our two-stage retriever R.

Attention([d;x], q)

≈ WV [d;x](WK [d;x])T q

=
(
WV x(WKx)T +WV d(WKd)T

)
q

= (WZSL +∆WICL) q

(7)

Here, q = WQt represents the query of the
next token t in the self-attention mechanism, and
WZSLq = WV x(WKx)T q approximates the atten-
tion result in a zero-shot setting (i.e., no demon-
strations involved). Furthermore, ∆WICL =
WV d(WKd)T updates the weights of WZSL using
demonstrations d in the context, thereby facilitating
meta-optimization.

As a result, the optimal policy π∗ can be built
directly through ICL, while the reference LLM π0
serves as the initial checkpoint, i.e., the base model
in this scenario. Moreover, π∗ does not undergo
parameter updates from fine-tuning, thereby pre-
serving the initial language modeling capacity as
π0, without the need for additional regularization.

Therefore, we can employ a two-stage inference
pipeline. In the first stage, multiple responses y
are sampled from π∗ as candidates to guarantee a
potentially acceptable output, termed as Genera-
tion. Subsequently, in the second Scoring stage,
the contrastive score S for each candidate y ∈ y
is computed based on the demonstrated samples d,
the prompt x, and Equation 6:

S(d, x, y) = log
π∗(y | x)
π0(y | x)

= log
π(y | [d;x])
π(y | x)

(8)

wherein the most preferred response y∗ can be cho-
sen based on the largest S, indicating the highest
reward of human preference, as in Figure 1(b). We
summarize the entire workflow as ICDPO. Note
that π∗ is acquired through ICL, implying that only

a single checkpoint is required throughout the en-
tire inference process. We define the score of re-
sponse y towards prompt x from π as its probability
of generating y,

π(y | x) =
∑

i

Pπ(yi|x, y<i) (9)

3.3 Connection to Contrastive Decoding
We observe that Equation 6 relies on a contrastive
estimation involving two LLMs: π∗ and π0. Fur-
thermore, Li et al. (2023a) enhance the quality of
generated texts by replacing the naive maximum
probability decoding with a contrastive objective,
namely Contrastive Decoding (CD), where each
step utilizes both an expert model π+ and an ama-
teur model π−,

y∗i = argmax
yi∈V

log
π+(yi | x, y<i)

π−(yi | x, y<i)
(10)

While Equation 6 optimizes at the sentence-level
instead of estimating token-wise scores as in CD
for the generated y, we note that π∗ and π0 are es-
sentially treated as the expert and amateur models,
respectively, in terms of HPA. This enhances LLM
decoding with a focus on human preference. To
achieve this, we can enhance Equation 6 and Equa-
tion 8 by introducing a purposely worse policy π−

for HPA to replace the original π0. More precisely,
π− can also be acquired through In-context Learn-
ing with human-rejected samples d− as demon-
strations, whereas the original expert model π∗ in
Equation 6 can be relabeled as π+ and its contex-
tual demonstrations comprise solely human-chosen
d+. Hence, the promoted contrastive score is

Ŝ(d+,d−, x, y) = log
π+(y | x)
π−(y | x)

= log
π(y | [d+;x])

π(y | [d−;x])

(11)
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Method LLaMA LLaMA2 Mistral

Harmless Helpful Total Harmless Helpful Total Harmless Helpful Total

Zero-shot 4.47 -77.53 -36.54 6.25 -67.67 -30.72 9.59 -33.22 -11.82
RM-Aug 5.06 -60.35 -27.66 2.92 -52.12 -24.61 13.65 -7.00 3.32
RM-BoN -1.47 -60.60 -31.04 2.90 -48.53 -22.82 7.16 -6.11 0.52
ICDPO 68.75 -17.61 25.56 97.06 27.49 62.27 99.29 38.34 68.81
ICDPO+Ŝ 68.73 -11.75 28.48 98.03 29.36 63.69 97.26 45.08 71.16
ICDPO+ŜR 90.54 12.59 51.56 101.08 38.26 69.66 101.68 45.51 73.59

Table 1: Main results scored by RMtest. Higher values represent better performance towards HPA.

w/o w/ w/o w/ w/o w/ 

(a) (b) (c)

Figure 3: Comparisons among URIAL, RAIN, ICDPO and ICDPO+Ŝ on a subset of test samples from HH-RLHF.

3.4 Retrieval

The demonstrated samples and their sequencing are
acknowledged as crucial factors for ICL. Since the
process of ICL may resemble gradient descent dur-
ing actual model training, we can further amplify
the inner meta-optimization from the fine-tuning
standpoint. Given that the closeness between the
distributions of the test data and the training data is
vital for the efficacy of fine-tuning, it should coher-
ently work in ICL. Consequently, we also employ
a prevalent similarity-based retriever to determine
the sample selection and their corresponding se-
quencing, while incorporating additional consider-
ations: (1) Despite their effectiveness, pre-trained
retrievers (e.g., SBERT-based methods) have signif-
icant computational costs for the large number of
samples, requiring a two-stage design where coarse-
grained selections are first made before more fine-
grained retrievals. (2) Since LLMs operate in
an auto-regressive manner, the last portion of the
tested samples should have the most significant
impact. Hence, retrieving those with structurally
similar end portions is prioritized, and able to addi-
tionally reduce computational overhead.

Therefore, we propose a two-stage retriever as
in Figure 2, which contains a coarse-grained BM25
retriever (Robertson and Zaragoza, 2009) focusing
on the end of each sample, and an SBERT (Reimers

and Gurevych, 2019) with cosine similarity to exe-
cute fine-grained retrieval:

R({xi}) = SBERT({aj})
{aj} = BM25({xi[−L :]}) (12)

where {xi} is the support set, and L is the window
size constraining the ending range of samples for
BM25. We show that ICDPO equipped with R
yields notable improvement overall.

4 Experiment

4.1 Settings

We employ the HH-RLHF (Bai et al., 2022) and
AlpacaEval (Li et al., 2023b) to comprehensively
assess the effectiveness of ICDPO, as well as differ-
ent ways of evaluation (reward model (RM) eval-
uation for HH-RLHF; GPT-4 evaluation for HH-
RLHF and AlpacaEval). The details of data prepa-
ration and implementation (e.g. RMtest for RM
evaluation) are in Appendix A and B, respectively.

We implement three base models for compre-
hensive evaluation: LLaMA-7B (Touvron et al.,
2023a), LLaMA-2-7B (Touvron et al., 2023b), and
Mistral-7B-v0.1 (Jiang et al., 2023), which we label
as LLaMA, LLaMA2, and Mistral, respectively.

We compare ICDPO with other tuning-free base-
lines, including Zero-shot; RM-BoN and RM-Aug
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Figure 4: Results of GPT-4 evaluated each method against golden responses in HH-RLHF. We conduct the evaluation
on (a) LLaMA, (b) LLaMA2 and (c) Mistral, while light red, light green and purple bars represent the proportion
of win, tie and lose, respectively.

Base Model RM-BoN RM-Aug URIAL RAIN ICDPO ICDPO+Ŝ

LLaMA 1.58 2.29 5.38 6.81 10.00 (+3.19) 10.26 (+3.45)
LLaMA2 6.31 6.20 6.95 16.27 18.66 (+2.39) 19.24 (+2.97)
Mistral 17.14 18.51 21.90 26.32 26.53 (+0.21) 28.30 (+1.98)

Table 2: Results on AlpacaEval. The red notes represent the improvement of ICDPO and ICDPO+Ŝ over the best
performance among the baselines.

utilizing external scorers to select the best response
or intermediate block for inference (Mudgal et al.,
2023); URIAL (Lin et al., 2023) and RAIN (Li
et al., 2024b) as ICL baselines. Detailed introduc-
tion of these baselines can be found in Appendix C.

To ensure fairness, we use LLaMA2-7B-chat, de-
noted by LLaMA2-chat, as a convenient controller
for all methods. It serves as an external scorer (Fu
et al., 2023) for RM-Aug and RM-BoN, as well as
the source of demonstrations for ICDPO and RAIN.
Differently, URIAL leverages a human-crafted con-
text and is not affected by LLaMA2-chat.

4.2 Main Results

4.2.1 RM Evaluation
We first present the results of RM evaluation on HH-
RLHF, as shown in Table 1 and Figure 3. Since
RAIN suffers from a slow execution speed with
its initial implementation, we choose to compare
ICDPO with the two ICL baselines on a subset of
the test set (800 samples). As to ICDPO, we test the
original version and its variant with Ŝ. Moreover,
we randomly retrieve the demonstrations by default,
but those selected by R are also tested here.

It can be seen that all methods in Table 1 show
notable improvements over Zero-shot, but ICDPO
have more progress than RM-Aug and RM-BoN.
Using the same demonstrations, ICDPO also out-
performs RAIN and URIAL in Figure 3, indicat-

ing its intrinsic superiority, while Ŝ and R also
prove their effectiveness in further promoting per-
formance consistently.

In detail, all methods receive lower scores in the
domain of Helpful than those in Harmless, includ-
ing the results of RAIN and URIAL which are not
shown in Figure 3. We infer that Helpful needs
more substantial content from base models or ex-
ternal sources, whereas Harmless may only require
simpler stylistic changes.

4.2.2 GPT-4 Evaluation
In this part, we take GPT-4 evaluation as an ad-
ditional validation of the conclusions in § 4.2.1,
following Rafailov et al. (2023); Song et al. (2023);
Liu et al. (2023b).

For HH-RLHF, we randomly select 200 samples
from the test set to evaluate ICDPO, ICDPO+Ŝ,
and all baselines except Zero-shot, as in Fig-
ure 4. Their decoded responses are compared
with the chosen ones in HH-RLHF to compute
the win/tie/lose rates. For each scoring, we place
the tested responses in the prompt from double di-
rections to mitigate positional bias, as discussed in
Wang et al. (2023c).

For AlpacaEval, the demonstrations for ICL
methods come from its 17701 Human annotations,
while RM-BoN and RM-Aug still rely on LLaMA2-
chat as the external scorer. We use its original
GPT-4 evaluation and the Length-Controlled Win
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Method LLaMA LLaMA2 Mistral

Harmless Helpful Total Harmless Helpful Total Harmless Helpful Total

ICDPO+R 90.55 9.96 50.24 100.62 35.89 68.25 101.49 40.34 70.91
ICDPO 68.75 -17.61 25.56 97.06 27.49 62.27 99.29 38.34 68.81
ICL 62.30 -26.09 18.09 97.23 16.72 56.97 94.79 32.68 63.73
ICLuni 63.04 -25.25 18.89 95.64 14.74 55.18 94.54 33.06 63.80
ICDPOGPT-3.5-turbo 63.91 -23.27 20.31 91.56 16.33 53.94 85.10 21.23 53.16
ICDPOraw 25.02 -64.95 -19.97 39.81 -71.89 -16.05 26.60 -51.38 -12.40

Table 3: Results of the ablation study.

(a) (b)

Figure 5: Effect of demonstration quantity. (a) Using
random retrieval. (b) Using R.

Rates (Dubois et al., 2024), which mitigate the
biases from the length of different responses, well-
consistent with Chatbot Arena (Chiang et al., 2024),
a golden leaderboard. We also implement another
evaluation based on Arena-Hard (Li et al., 2024a),
which can be found in Appendix F.

Generally, ICL methods consistently exceed RM-
Aug and RM-BoN, suggesting that ICL success-
fully triggers the HPA capability of LLMs, which is
more effective than just manipulating the decoding
process with external supervision. Among them,
ICDPO still outperforms baselines, while ICDPO
with Ŝ also has a minor benefit (slightly more rates
of win+tie) over ICDPO. It should be noted that the
observations in this section align with those in RM
evaluation, thus validating the reliability of RMtest.

4.3 Ablation Study

In this section, we test the effectiveness of the re-
maining modules, as well as the impact of base
models and demonstrations for ICDPO.

4.3.1 Effect of Contrastive Score S

Without S, ICDPO degenerates into the normal
ICL. We thus experiment with two decoding strate-
gies: randomly selecting one from 3 candidates,
and generating just one candidate1. Obviously, ICL
without selections from S experiences significant
performance declines, regardless of the decoding

1We also try greedy search, which has close performance.

(a) (b)

Figure 6: Results of each model for ICDPO and MMLU.

Method Harmless Helpful Total

Raw 24.23 -47.62 -11.70
LLaMA2-chat 105.97 61.18 83.57
GPT-3.5-turbo 105.99 73.80 89.89

Table 4: Results for capabilities of different controllers
towards Human Preference Alignment.

strategies. This validates the significance of S as
the key element in ICDPO, and the greater effec-
tiveness of Ŝ has been tested in § 4.2. Since S
and Ŝ are potential rankers, we also evaluate their
performance in this aspect, as discussed in § 4.4.

4.3.2 Effect of Base Models

To explore how base models affect the performance
of ICDPO, we try more base models of differ-
ent sizes and architectures, aside from LLaMA,
LLaMA2, and Mistral. Figure 6(a) illustrates the
results of different base models, where we first
capture the effect of model size: with the same
version, such as LLaMA-7B/13B and Gemma-
2B/7B (Team et al., 2024), the larger the base
model utilized is, the better ICDPO performs.

However, model size seems not the essential
factor, but the intrinsic capacity of each model is
more significant. Here we use the performance
on MMLU (Hendrycks et al., 2021) of each base
model to represent its intrinsic capacity, and conse-
quently, the distribution of rewards from base mod-
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ICL ICDPO ICDPO+ !𝑆 LLaMA2-chat RMtest

(a) (b)

Figure 7: Results of consistency between different scorers and GPT-4. We compute MRR to measure the degree of
consistency. (a) Results with randomly selected demonstrations. (b) Results with demonstrations retrieved by R.

els shows similarity with the distribution of their
accuracies on MMLU. For example, TinyLLaMA-
1.1B (Zhang et al., 2024) gets the lowest reward
and accuracy in Figure 6(a) and (b), respectively.
Although it is not the largest one, LLaMA-3-
8B (Dubey et al., 2024) has the best performance
over the rest in ICDPO, as well as in MMLU.

4.3.3 Effect of Demonstrations and R

We test ICDPO with 1-5 demonstrations (demos),
as shown in Figure 5(a). In total, each base model
can benefit from increasing demos, while maintain-
ing the performance ranking in Table 1. However,
adding demos has a marginal effect, as the improve-
ment from 4 demos to 5 demos becomes slight,
suggesting ICL is similar to fine-tuning from an
empirical perspective.

The influence of quality is also noticed. In
Table 4, we test responses from GPT-3.5-turbo,
LLaMA2-chat, and the raw HH-RLHF, where the
first two sources generate significantly better re-
sponses than HH-RLHF. We further use demos
from GPT-3.5-turbo and HH-RLHF on ICDPO,
named ICDPOGPT-3.5-turbo and ICDPOraw, respec-
tively, while ICDPO and ICDPOGPT-3.5-turbo accord-
ingly excels ICDPOraw. This observation confirms
the effect of demo quality. Nevertheless, LLaMA2-
chat is inferior to GPT-3.5-turbo, but ICDPO also
performs better than ICDPOGPT-3.5-turbo. Believing
it is not a coincidence, we provide additional in-
sights in Appendix E.

We also analyze the impact of the two-stage
retriever R. ICDPO equipped with R signifi-
cantly outperforms the initial version, as well as
ICDPO+ŜR with the best performance among all
methods, showing the positive effect of R. Another
interesting point is that the trend of ICDPO+R
with increasing demos, in Figure 5(b), is more gen-

tle than that in Figure 5(a). As a booster of ICL,
R allows ICDPO to utilize high-quality demos ef-
fectively, mitigating the demand for larger demon-
stration quantities, which is another point similar
to the normal experience in fine-tuning.

4.4 Consistency of Scoring

ICDPO computes the contrastive score S to rank
sampled candidates y from ICL for the prompt x,
similar to the methodology of RMtest. Hence, it is
meaningful to solely evaluate ICDPO as a ranker
of multiple responses.

We introduce ICDPO, ICDPO+Ŝ, and a sim-
plified variant (using only π∗ for scoring, denoted
as ICL), alongside RMtest. LLaMA2-chat is also
incorporated as a reward model, like how it is used
in RM-Aug and RM-BoN. We set up two scenarios:
one depicted in Figure 7(a), where demonstrations
for ICDPO are randomly selected, and the other
depicted in Figure 7(b), which involves the pro-
posed retriever R. In each scenario, we select 200
samples, each containing 3 candidate responses
sampled from the base model through ICL and
sorted by GPT-4 as the ground truth. We use the
Mean Reciprocal Rank (MRR) as the metric to
fairly evaluate each method as a ranker.

Figure 7 illustrates that RMtest achieves the
highest performance in most cases, followed by
LLaMA2-chat. ICDPO also performs well, with
ICDPO+Ŝ generally yielding equal or higher
MRR scores, even approaching the performance
of LLaMA2-chat as the source of demos. How-
ever, the performance of π∗ itself is unsatisfactory,
significantly lagging behind others. These findings
exhibit that ICDPO is a potent scorer for estimating
HPA degree via the skillful formulation of expert-
amateur collaboration.
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Method LLaMA LLaMA2 Mistral

SFT 34.73 57.59 63.43
DPO 43.02 68.34 69.26
CPO-SimPO 45.80 58.41 73.07

ICDPO 25.56 62.27 68.81
ICDPO+ŜR 51.56 69.66 73.59

Table 5: Comparisons between ICDPO and fine-tuning,
where the number of demos in ICDPO is just two.

4.5 Comparing ICDPO with Fine-tuning
Unlike fine-tuning methods, ICDPO enhances the
HPA capacity of base models in a low-resource
setting. Although a direct comparison among them
may not be entirely fair, we still conduct this exper-
iment in order to explore the bound of ICDPO.

Using the TRL package (von Werra et al.,
2020), we implement SFT and DPO on the same
base models alongside ICDPO, as well as CPO-
SimPO, which combines CPO (Xu et al., 2024)
and SimPO (Meng et al., 2024) to balance per-
formance and training stability. LoRA (Hu et al.,
2022) is utilized to adapt to our limited compu-
tational resources. As shown in Table 5, ICDPO
demonstrates competitive performance with SFT;
with the inclusion of Ŝ and R, it can beat DPO and
CPO-SimPO in more settings. Note that ICDPO
requires only one GPU and just several demonstra-
tions. All of these highlight the effectiveness and
accessibility of ICDPO as a tuning-free method.

5 Conclusion

We propose an effective method ICDPO, which
equips LLMs with HPA without fine-tuning. It
first optimizes LLMs instantly via just several con-
textual demonstrations, while a novel formulation
from the derivation of DPO is utilized to build
an expert-amateur collaboration for a reliable es-
timation for the selection of candidate responses.
Comprehensive experiments demonstrate the effec-
tiveness of ICDPO across various forms, encom-
passing both content generation and scoring. We
hope this work to be a catalyst for further explo-
ration of tuning-free methods towards HPA.

Ethics Statement

We have observed that the data involved in this
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Limitations

We conduct abundant experiments to evaluate
ICDPO comprehensively, showing it is powerful
and user-friendly because of its effective tuning-
free alignment from just superior demonstrations.
However, we acknowledge that the naive implemen-
tation of ICDPO may result in additional computa-
tions in inference. As a response, we discuss this
issue and propose some solutions in Appendix D.
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A Dataset Preparation

We introduce the following two datasets for ICDPO:

1. HH-RLHF proposed by Bai et al. (2022) focuses on the domain of harmlessness and helpfulness
in multi-turn conversations. While it initially consists of four subsets, we select two representative
ones: harmless-base and helpful-base, denoted as Harmless and Helpful, respectively. We mix the
data of two domains for training, while separately evaluating each method in the main experiment.

2. AlpacaEval is proposed by Li et al. (2023b), which offers a fast but comprehensive automatic
evaluation for instruction following. The test set contains 805 samples from different datasets,
HH-RLHF included, while it is conducted with GPT-4 to ensure both reliable and replicable results.

Each sample in these datasets has two candidates, including a shared prompt and two chosen/rejected
candidate responses. Regarding AlpacaEval, we select the demonstrations from its 17701 human annota-
tions with a length control of 128/200 for prompts/responses, while for HH-RLHF we set the control as
320/128 for both demonstrations and test samples, since it contains multi-turn conversations.

B Implementation Details

We implement ICDPO with all base models on Huggingface.Library (Wolf et al., 2020). By default, the
number of demonstrations and top-p sampling for ICDPO is 2 and 3, respectively, where p is set to 0.8.
To facilitate demonstration retrieval in ICL, we deploy the two-stage retriever R with BM25 and SBERT2

for coarse/fine-grained rankings. The BM25 model first retrieves 20 samples, which are then re-ranked by
the SBERT retriever to obtain highly semantically similar ones. The templates for ICL have been placed
in Appendix H for a detailed overview.

Furthermore, the third-party reward model for automatic scoring is denoted as RMtest
3, and the acquired

score r of each method is computed according to the following equation:

r =
1

n

n∑

i=1

RMtest(xi, yi) (13)

where xi and yi is the prompt and scored response, respectively. The LLaMA2-chat is the default controller
for all experiments (both HH-RLHF and AlpacaEval) to maintain fairness for all methods, while we also
utilize demonstrations from GPT-3.5-turbo4 for further exploration, as shown in Appendix E and G.
More details can be found in the released code.

We compare ICDPO with two representative baselines in § 4.2, RAIN (Li et al., 2024b) and URIAL (Lin
et al., 2023), with a particular setting as follows:

1. We implement RAIN using its released code, which executes at a low speed (approximately 50s per
inference). Therefore, we have to randomly select 800 test samples for evaluation, ensuring statistical
significance while controlling evaluation costs.

2. URIAL focuses on the correlation between the style of output text and human preference. With ICL,
it improves HPA performance by generating content consistent with the style of their human-crafted
prompt. Hence, its inference in our experiments is independent of any external demonstrations.

Specifically, we test the performance of ICDPO, URIAL, and RAIN on the same set of 800 test samples to
ensure fairness. The results have been shown in Figure 3 and 10, where ICDPO consistently outperforms
RAIN and URIAL to prove its effectiveness. The performance can be still improved with the use of Ŝ.

2https://huggingface.co/sentence-transformers/all-mpnet-base-v2
3https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
4The demonstrations come from Song et al. (2023).
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C Baselines

• RM-BoN implements the prevalent Best-of-N policy with multiple sampling in LLM inference,
where an external scoring model selects the best response.

• RM-Aug utilizes the external scorer to make block-wise Best-of-N selection during inference,
according to Mudgal et al. (2023).

• URIAL (Lin et al., 2023) augments LLM inference with a well-designed prompt, shifting the
distribution of tokens during decoding to generate responses with better HPA.

• RAIN (Li et al., 2024b) is another ICL method but additionally incorporates self-searching process
during decoding to enhance the quality of generated responses, which contains self-evaluation and
rewind based on LLM itself.

D Computational Efficiency

In this section, we focus on the computational cost of ICDPO and compare it with the standard Best-of-N
(BoN) policy. We also propose potential acceleration strategies for ICDPO that maintain comparable
performance to HPA.

Implemented in ICL, ICDPO consists of two stages: Generation and Scoring, while BoN follows a
similar process: first sampling multiple candidates from the LLM and then selecting the best one scored
by an external RM. This similarity allows us to compare ICDPO with BoN in each stage:

1. In the Generation stage, ICDPO utilizes multiple demonstrations to guide the final inference, whereas
BoN completes it directly. Here, we consider KV-caching, a common acceleration technique that
reduces the time complexity of inference to O(Nd2), where N is the number of tokens in the
entire sentence and d is the dimension of the hidden states (4096 for 7B models). Therefore, with
KV-caching, the additional computational cost of ICDPO mainly comes from the longer context (we
also conducted real-time calculations to verify this conclusion). Moreover, we can simultaneously
obtain log π∗(y | x) in this stage.

2. In the Scoring stage, ICDPO employs the base model to compute π0(y | x) through a forward
process of O(Nd2). BoN, on the other hand, typically uses an RM of comparable or larger size to
score the candidates, also with O(Nd2).

Therefore, the primary additional computational overhead of ICDPO compared to BoN arises from the
longer context in the Generation stage, a common issue faced by all ICL methods. To address this, we
propose two acceleration strategies:

1. Prefix Caching, as implemented by vLLM (Kwon et al., 2023), can accelerate ICDPO. It requires
each inference call to share the identical prefix. Since ICDPO deploys a random retriever for contex-
tual demonstrations by default, we can replace random demonstrations with static demonstrations.

2. State Space Models (SSMs), which use only the last state for next-token prediction, can also be
beneficial. Similarly, we employ it to encode static demonstrations and cache the last state, which
only needs to be done once globally. For each new call, the cached state is used to continue inference,
reducing the computational cost to normal inference with base models.

Both strategies can theoretically enhance ICDPO to a close efficiency to BoN. Furthermore, we tested
the impact of the two strategies on HPA performance by randomly selecting 4 different groups of static
demonstrations for ICDPO, and comparing its average score with base models, RM-BoN, and default
ICDPO. Note that we additionally incorporate Mamba-2.8B (Gu and Dao, 2023) and Falcon-Mamba-
7B (Zuo et al., 2024) as representative SSMs to prove the adaptability of ICDPO, as shown in Figure 8.

The results in Figure 8 showcase that using static demonstrations does not significantly affect perfor-
mance and still outperforms the baselines. Nevertheless, for optimal performance, specific retrievers like
our proposed R are still necessary, meeting the "no-free lunch" principle.
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LLaMA LLaMA2 Mistral

Mamba-2.8B Falcon-Mamba-7B

Figure 8: Comparisons between ICDPO with static demonstrations (ICDPOs) and base models/RM-BoN/ICDPO
with random demonstrations (ICDPOr), the last two of which have theoretically comparable computational efficiency.
ICDPOs still showcases better performance than RM-BoN, close to ICDPOr.

E Distribution of Demonstrations

Although GPT-3.5-turbo surpasses LLaMA2-chat in Table 4, utilizing demonstrations from LLaMA2-chat
leads to better performance of ICDPO. Since ICL can be regarded as an instant LLM fine-tuning, we
speculate that responses from LLaMA2-chat can be closer to the distribution of open-source LLMs,
like LLaMA, than those from GPT-3.5-turbo, which mitigates the difficulty of ICL on these samples.
Therefore, this should be illustrated by computing the NLL loss on demonstrations of both sources, where
a smaller value suggests a closer distribution.

We hereby compute the loss with mean rather than sum reduction, in order to eliminate the impact of
sequence length on the magnitude of values, as depicted in Figure 9. All 3 base models exhibit significantly
smaller losses on demonstrations from LLaMA2-chat than GPT-3.5-turbo, thus verifying the hypothesis
above.

F Arena-Hard Results

Arena-Hard proposed by Li et al. (2024a) has become a well-recognized benchmark to measure the
capability of instruction following or the effectiveness of different alignment methods. It contains 500
prompts for evaluation, all sampled from Chatbot Arena (Chiang et al., 2024), and automatically scores
the quality of each response with GPT-4 by comparing it with a reference.

The initial reference model in Arena-Hard is GPT-4-0314, which can be too challenging for tuning-free
methods. Therefore, we replace its responses with those from LLaMA-3-8B-instruct (Dubey et al.,
2024), which Arena-Hard officially releases. We maintain the same settings as in AlpacaEval evaluations
except for demonstrations for ICL methods, which is selected by R from the binarized version5 of
Ultrafeedback (Cui et al., 2023). The results are contained in Table 6.

5https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
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Harmless

Helpful

Figure 9: Loss of different base models on demonstrations from LLaMA2-chat and GPT-3.5-turbo.

Base Model RM-BoN RM-Aug URIAL RAIN ICDPO ICDPO+Ŝ

LLaMA 1.0 1.3 0.9 1.5 1.6 (+0.1) 1.7 (+0.2)
LLaMA2 2.5 3.0 3.3 3.6 3.7 (+0.1) 3.9 (+0.3)
Mistral 5.3 4.3 6.0 5.9 7.8 (+2.8) 7.9 (+2.9)

Table 6: Results on Arena-Hard. The red notes represent the improvement of ICDPO and ICDPO+Ŝ over the best
performance among the baselines.

G Additional Results

In this section, we try to replace the controller for experiments, i.e., LLaMA2-chat, with the black-box
GPT-3.5-turbo, as shown in Figure 10 and Table 7, where we can draw conclusions similar to those in
§ 4.2 and 4.3. Additionally, RAIN, ICDPO and its all variants commonly experience decreases in scores,
which is also the evidence of what we have discussed in Appendix E.

Nevertheless, the implemented baseline methods here exclude Zero-shot, RM-BoN, and RM-Aug,
because Zero-shot would produce identical results as in Table 1, while GPT-3.5-turbo cannot serve as
the RM for RM-BoN and RM-Aug. We illustrate this challenge in Figure 11. To be specific, the access to
GPT-3.5-turbo via API calling only returns the predicted content and its corresponding logits. Therefore,
we are indeed able to easily obtain its generated responses (and their logits) for the test set via the APIs,
as shown in Figure 11(b).

However, when we intend to use GPT-3.5-turbo as a logits-based scorer, similar to LLaMA2-chat, it
becomes unfeasible. For a given candidate response y, inputting it with the context x to GPT-3.5-turbo
will yield only the continuation of y rather than the logits for (x, y), as shown in Figure 11(d). Differently,
with the locally deployed LLaMA2-chat as the experimental controller, the predicted content and the
logits of any input are available, as illustrated in Figures 11(a) and (c). This is why we only implement
RM-Aug and RM-BoN with LLaMA2-chat.

Furthermore, for HH-RLHF w/ GPT-3.5-turbo, if we were to use LLaMA2-chat to guide RM-Aug and
RM-BoN, they would yield results identical to those of HH-RLHF w/ LLaMA2-chat, which is redundant.

H Prompt Templates for ICL

Templates for π(y | [d+;x]) and π(y | [d−;x]) are illustrated as Figure 12 and 13, respectively.

176



w/o w/ w/o w/ w/o w/ 

(a) (b) (c)

Figure 10: Comparisons among URIAL, RAIN, ICDPO and ICDPO+Ŝ on a subset of test samples from HH-RLHF,
where the controller of demonstrations is set to GPT-3.5-turbo.

Method LLaMA LLaMA2 Mistral

Harmless Helpful Total Harmless Helpful Total Harmless Helpful Total

ICDPO+ŜR 82.21 3.63 42.91 98.77 28.08 63.42 92.21 39.55 65.88
ICDPO+R 80.64 -1.13 39.75 98.08 24.45 61.26 89.91 31.10 60.50
ICDPO+Ŝ 64.03 -14.86 24.58 92.14 21.40 56.76 85.83 36.14 60.98
ICDPO 63.91 -23.27 20.31 91.56 16.33 53.94 85.10 21.23 53.16
ICL 52.73 -32.05 10.33 88.00 4.74 46.36 75.46 16.38 45.91
ICLuni 50.85 -33.44 8.70 88.62 2.16 45.38 75.72 15.32 45.51

Table 7: Results of ablation study on ICDPO, where the controller of demonstrations is set to GPT-3.5-turbo.

LLaMA-2-chat

...

GPT-3.5-turbo

LLaMA-2-chat

...

GPT-3.5-turbo

...

...

(a) (b)

(c) (d)

Figure 11: Illustration of why GPT-3.5-turbo cannot be a logits-based reward model, where x and y denote the
context part and response part, respectively. LLaMA-2-chat can offer the logits of input context both in (a) inference
and (c) forward. However, when receiving the input context, GPT-3.5-turbo does inference and returns the logits
of predicted tokens rather than the context, like (b). Hence, given both the context and a candidate response,
GPT-3.5-turbo will not provide the logits of the candidate response, like (d).
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#You are asked to generate a response for each given dialogue context. The last response is
generated by you, which should be as **polite/harmless/helpful/honest** as possible:

##
[The Context of No.1 demonstration]
###Generate a **polite/harmless/helpful/honest** response: [The positive response of No.1
demonstration]

##
[The Context of No.2 demonstration]
###Generate a **polite/harmless/helpful/honest** response: [The positive response of No.2
demonstration]

##
[The Context of tested sample]
###Generate a **polite/harmless/helpful/honest** response:

Figure 12: The prompt template used to trigger LLMs generating preferred content.

#You are asked to generate a response for each given dialogue context. The last response is
generated by you, which should be as **offensive/harmful/helpless/misleading** as possible:

##
[The Context of No.1 demonstration]
###Generate an **offensive/harmful/helpless/misleading** response: [The negative response of
No.1 demonstration]

##
[The Context of No.2 demonstration]
###Generate an **offensive/harmful/helpless/misleading** response: [The negative response of
No.2 demonstration]

##
[The Context of tested sample]
###Generate an **offensive/harmful/helpless/misleading** response:

Figure 13: The prompt template used to trigger LLMs generating non-preferred content.
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