
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 1511–1524

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CompAct: Compressed Activations for Memory-Efficient LLM Training

Yara Shamshoum*, Nitzan Hodos*, Yuval Sieradzki, Assaf Schuster,
Department of Computer Science, Technion - Israel Institute of Technology

{yara-sh, hodosnitzan, syuvsier}@campus.technion.ac.il

Abstract
We introduce CompAct, a technique that re-
duces peak memory utilization on GPU by 25-
30% for pretraining and 50% for fine-tuning of
LLMs. Peak device memory is a major limit-
ing factor in training LLMs, with various recent
works aiming to reduce model memory. How-
ever most works don’t target the largest com-
ponent of allocated memory during training:
the model’s compute graph, which is stored
for the backward pass. By storing low-rank,
compressed activations to be used in the back-
ward pass we greatly reduce the required mem-
ory, unlike previous methods which only re-
duce optimizer overheads or the number of
trained parameters. Our compression uses ran-
dom projection matrices, thus avoiding addi-
tional memory overheads. Comparisons with
previous techniques for either pretraining or
fine-tuning show that CompAct substantially
improves existing compute-performance trade-
offs. We expect CompAct’s savings to scale
even higher for larger models.

1 Introduction

Training Large Language Models (LLMs) and fine-
tuning them on downstream tasks has led to im-
pressive results across various natural language
applications (Raffel et al., 2023a; Brown et al.,
2020). However, as LLMs scale from millions
to hundreds of billions of parameters, the computa-
tional resources required for both pre-training and
fine-tuning become prohibitive.

While compute power is the primary bottleneck
for those who train very large LLMs, memory
requirements become the main limitation for re-
searchers without access to vast hardware resources.
This disparity severely limits the ability to advance
the field of LLM training to only a select few.

Recent works tackle memory reductions by ap-
plying a low rank approximation to model param-
eters (Hu et al., 2021; Lialin et al., 2023), or to

*Equal contribution.

Figure 1: Breakdown of memory components for var-
ious LLaMA model sizes, with batch size 256. Blue:
linear operations compressed by CompAct; Red: non-
linear operations which CompAct doesn’t compress;
Green: model parameters and non-linear operation’s op-
timizer states. Most of the memory is used by the com-
putational graph. CompAct’s compression gets more
significant as model size increases, reaching almost 33%
for LLaMA 65B. With r = n/8, this translates to al-
most 30% total memory saved.

gradients after the backward pass (Muhamed et al.,
2024; Hao et al., 2024; Zhao et al., 2024). However,
as seen in Figure 1, the main memory component
is the computation graph itself. Its size also scales
with batch size, in contrast with other memory com-
ponents.

In this work, we introduce CompAct, a
novel optimization technique that saves low-rank-
compressed activations during the forward pass,
instead of the full activation tensors. Consequently,
the resulting gradients are low-rank as well, also
reducing the size of optimizer states. As CompAct
decompresses the gradients back to full size only
for the update step, it compresses a large part of the
compute graph, which in turn translates to major
memory savings. Figure 2 presents an overview
of our method, while Table 1 lists the scaling of
different memory components, compared to other
compression methods. CompAct is a logical next
step from previous work, moving from low-rank pa-

1511

mailto:email@domain

Original LoRA GaLore Flora CompAct

Weights mn mr + nr mn mn mn
Gradients mn mr + nr mn mn mr
Optim States 2mn 2(mr + nr) nr + 2mr 2mr 2mr
Activations bln bln bln bln blr

Table 1: Theoretical Memory Consumption by the different stages of the training pipeline, assuming linear
layers Wt ∈ Rn×m and m > n. b is batch size and l is sequence length. r is the dimensionality of the compressed
activations and states.

𝑥𝑖

𝜕𝐿

𝜕𝑥𝑖+1
𝑊𝑖

×

layer 𝑖

𝑧𝑖 = 𝑥𝑖𝑃

×

Project Back

෨𝐺𝑖

Project

𝜌𝑡(෠𝐺𝑖)

𝑥𝑖+1

Optimizer

෠𝐺𝑖 = 𝑧𝑖
⊤ 𝜕𝐿

𝜕𝑥𝑖+1

𝜕𝐿

𝜕𝑥𝑖

Figure 2: Overview of CompAct. For a given linear
layer xi+1 = xiWi+1, we project its input xi using
a random projection matrix P , and save the result zi
for the backward pass. During the backward pass, we
first compute the compressed gradients Ĝi and update
the optimizer’s parameter update function ρt(Ĝi). For
Adam, ρt represents gradient normalization using the
first and second gradient moments. Finally, we decom-
press the gradient back to the full parameter size G̃i and
perform an update step.

rameters in (Hu et al., 2021), through compressed
low-rank gradients in (Zhao et al., 2024), to com-
pressed activations.

Overall, CompAct achieves savings of about
17.3% of peak device memory with practical batch
sizes, for pretraining LLaMA-350M (Touvron et al.,
2023), and 50% for fine-tuning RoBERTa-Base
(Liu et al., 2019). As seen in Figure 1, the esti-
mated memory reduction achieved by CompAct
increases with model size. For LLaMA-65B, the
estimated reduction is approximately 30%. For
LLaMA-350M, the estimated reduction is around
21%, which is 4% higher than the observed empiri-
cal value. This suggests a realistic memory saving
range of 25%-30% for LLaMA-65B.

Choosing the low-rank projection used for com-

pression is critical, as it can impact performance
and reduce training throughput. By using a random
projection matrix sampled on the fly as in (Hao
et al., 2024), we eliminate the cost of computing
and storing optimal projection matrices, which can
be slow to compute and large enough to reduce our
memory savings.

We show sound theoretical motivation justifying
the use of random projections from recent works in
Random Sketching theory (Meier and Nakatsukasa,
2024). Finally, we present experimental measure-
ments demonstrating that CompAct reduces mem-
ory significantly with minimal impact on model
performance for both pretraining and finetuning.

2 Related Work

Memory-Efficient LLM Training Memory-
efficient methods have become crucial for train-
ing LLMs, especially during pretraining where the
memory requirements for activations, gradients,
and optimizer states are significant as these models
scale.

There are various approaches to making the train-
ing process more efficient, including mixed preci-
sion training (Micikevicius et al., 2017), quantiza-
tion methods (Pan et al., 2022; Liu et al., 2022;
Anonymous, 2024b; Dettmers et al., 2023; Anony-
mous, 2024a), parallelism techniques (Dean et al.,
2012; Li et al., 2014; Shoeybi et al., 2020; Huang
et al., 2019), and low rank approximation methods.
The latter being mostly unexplored for pretraining,
it is the focus of this work.

Low Rank Approximation Prior works on effi-
cient pretraining such as LoRA (Hu et al., 2021)
have largely focused on low-rank parametrization
techniques, where the model’s weights W are de-
composed into a product of two smaller matrices
W = BA. While this method can reduce memory
usage and computational cost, it often leads to per-
formance degradation, as the low-rank constraint

1512

limits the network’s ability to represent complex
patterns.

To address these limitations, approaches such
as ReLoRA (Lialin et al., 2023) and SLTrain (Han
et al., 2024) introduce more flexibility into the de-
composition process, achieving a better balance
between efficiency and performance. These meth-
ods go beyond strict low-rank parametrization by
allowing for dynamic factorization, improving the
network’s expressiveness while retaining computa-
tional benefits.

Low Rank Gradient A recent approach, GaLore
(Zhao et al., 2024) utilizes the low-rank property
of gradients to learn a full-rank model efficiently,
even during pretraining. Instead of approximating
the model’s weights, GaLore projects the gradients
after the backward pass into a lower-dimensional
subspace for the weight update, reducing the mem-
ory overhead without severely limiting the model’s
expressiveness.

As GaLore relies on periodic SVD computa-
tions to maintain adequate low-rank approxima-
tions of the gradients, which is very expensive
in both time and memory, a variety of works fo-
cus on relieving this computational cost, either
by strategically choosing the projection matrices
(Anonymous, 2024c), quantizing them (Anony-
mous, 2024b), or replacing them by random pro-
jections (Muhamed et al., 2024; Hao et al., 2024).
However, these methods remain inapplicable when
pretraining large models, as peak device memory is
primarily determined by the activations stored on
GPU (when the batch size is large) (Anonymous,
2024b; Muhamed et al., 2024).

Essentially, compared to GaLore, our approach
may be viewed as a change in the order of oper-
ations, applying the compression one step before
GaLore does: when storing activations in mem-
ory for the backward pass, rather than to the gra-
dients when updating the optimizer state. As a
result, CompAct satisfies their convergence theo-
rem, which explains how it achieves comparable
performance despite the drastic memory savings.

Activation Compression Various works aim at
reducing the memory cost of activations in deep
learning in general. (Yang et al., 2024) is a comple-
mentary work focusing on saving activation mem-
ory generated by nonlinear functions and normal-
ization layers, whereas our work focuses on the
activations generated by linear layers. The two
methods can be combined to achieve even greater

savings, although some adaptation is required.
VeLoRA (Miles et al., 2024) also aims to com-

press linear layer activations, however, they apply
their paradigm to two specific layers of the model
only, thus making their benefit marginal. We com-
pare with their projection in our experimental sec-
tion, see Section 5. In any case, both (Miles et al.,
2024) and (Yang et al., 2024) remain unexplored
for the setting of pretraining LLMs.

Activation Checkpointing CKPT (Chen et al.,
2016), also known as gradient checkpointing, re-
duces the memory footprint of the entire computa-
tion graph by saving the activations only at specific
layers, or checkpoints. During backpropagation
they recompute the forward pass between the cur-
rent checkpoint and the previous one. The memory
footprint of the entire compute graph can be re-
duced significantly, while incurring a 20%-30%
compute cost overhead in most cases, as we empir-
ically point out in Section 4.3.

3 Method

3.1 Background

Consider an input x ∈ Rb·l×n where b is the batch
size, l is the sequence length, and n is the number
of input features. A linear layer with parameter
Wt ∈ Rn×m at learning step t is applied as follows:

o = xWt ∈ Rb·l×m, (1)

where we eliminated the bias term for simplicity,
as it is unaffected by the method. During the for-
ward pass, for each linear layer in the network, the
input x is stored in memory at every intermediate
layer. This is necessary for backpropagation, as
it is used to compute the gradient of the weights
using the chain rule:

Gt =
∂L
∂Wt

= x⊤
∂L
∂o
∈ Rn×m. (2)

Once the gradient is computed, it is used to up-
date the weights in the subsequent time step

Wt+1 = Wt − ηρt

(
∂L
∂Wt

)
. (3)

Here, η represents the learning rate and ρt is an
element-wise operation defined by the choice of
optimizer, such as Adam.

1513

Following the formulation in Zhao et al.,
2024, GaLore projects the gradients into a lower-
dimensional subspace before applying the opti-
mizer, and projects them back to the original sub-
space for the weight update:

WT = W0 + η
T−1∑

t=0

G̃t, (4)

G̃t = Ptρt(P
⊤
t GtQt)Q

⊤
t . (5)

Here Pt ∈ Rn×r and Qt ∈ Rm×r are projection
matrices, and ρt is the optimizer such as Adam.
In practice, to save memory, the projection is typi-
cally performed using only one of the two matrices,
based on the smaller dimension between m and
n. This approach allows for efficient gradient com-
pression and memory savings. GaLore’s theoretical
foundation, including its convergence properties, is
captured in the following theorem:

Theorem 1. (Convergence of GaLore with fixed
projections). Suppose the gradient follows the para-
metric form:

Gt =
1

N

N∑

i=1

(Ai −BiWtCi) (6)

with constant Ai, PSD matrices Bi and Ci af-
ter t > t0, and Ai, Bi and Ci have LA,
LB and LC continuity with respect to W and
∥Wt∥ ≤ D. Let Rt := P⊤

t GtQt, B̂it :=
P⊤
t Bi(Wt)Pt, Ĉit := Q⊤

t Ci(Wt)Qt and κt :=
1
N

∑
i λmin(B̂itλminĈit). If we choose constant

Pt = P and Qt = Q, then GaLore with ρt = 1
satisfies:

∥Rt∥F ≤
[
1− η(κr−1 − LA − LBLCD

2
]
∥Rt−1∥F

(7)
As a result, if mintκt > LA + LBLCD

2, Rt → 0,
and thus GaLore converges.

As stated in Theorem 1, the fastest convergence
is achieved when projecting into a subspace corre-
sponding to the largest eigenvalues of the matrices
Bt, Ct. To approximate this, GaLore employs a
Singular Value Decomposition (SVD) on the gradi-
ent Gt every T timesteps to update the projection
matrix. T is called the projection update period.

Although this method reduces the memory cost
of storing optimizer states, it introduces computa-
tional overhead due to the SVD calculation, and
still requires saving the projection matrices in mem-
ory. The update period T also creates a tradeoff

between optimal model performance and training
time, since for small T the added SVD overhead be-
comes prohibitive, for large T the projection might
become stale and hurt model performance.

3.2 CompAct
An overview of the method is described in Algo-
rithms 1,2,3.

To reduce memory usage during training, we
propose saving a projected version of the input
z = xP ∈ Rb·l×r during the forward pass, where
P ∈ Rn×r is a projection matrix that maps the
input to a lower-dimensional subspace. We choose
r to be a fraction of each layer’s total dimension-
ality n, to achieve a consistent compression rate.
Other works such as (Zhao et al., 2024) chose the
same r for all compressed layers, which we think
reduces potential compression gains. In Section 4
we experiment with ratios 1/2, 1/4, 1/8.

Using this low-rank projection P , the gradients
with respect to the weights and the input are calcu-
lated as follows:

Ĝt = z⊤
∂L
∂o
∈ Rr×m, (8)

∂L
∂x

=
∂L
∂o

W⊤
t ∈ Rb·l×n. (9)

Our approach maintains the full forward pass, as
well as the gradients with respect to the input. How-
ever, the gradients with respect to the weights are
computed within the reduced subspace. This means
that the optimizer states are also maintained in this
smaller subspace. Similar to (Zhao et al., 2024),

Mt = β1Mt−1 + (1− β1)Ĝt,

Vt = β2Vt−1 + (1− β2)Ĝ
2
t ,

ρt(Ĝt) = Mt/
√

Vt + ϵ

describes the Adam optimizer which we use in
our analysis and experiments. Once the reduced
gradient is obtained, we project it back to the orig-
inal subspace for the full weight update using the
same projection matrix P :

Wt+1 = Wt − ηG̃t, (10)

G̃t = αPρt(Ĝt). (11)

Where α is an optional gradient scaling constant.
By choosing P such that PP⊤ ≈ I , Ĝt is a good
approximation for the full gradient Gt. This weight

1514

update is equivalent to GaLore’s (Equation 4) when
Q = I , so our method follows the convergence
properties outlined in Theorem 1.

Algorithm 1 Forward Pass with CompAct
Input: An input x ∈ Rb·l×n, a weight Wt ∈
Rn×m, a layer seed s ∈ N, a rank r.

1: set_random_seed(s)
2: P ← N (0, 1r) ∈ Rn×r

3: o← xWt ∈ Rb·l×m

4: z ← xP ∈ Rb·l×r

5: save_for_backward(z, Wt)
6: return o

Algorithm 2 Backward Pass with CompAct

Input: An output gradient ∂L
∂o ∈ Rb·l×m, A com-

pressed activation z ∈ Rb·l×r a weight Wt ∈
Rn×m.

1: Ĝt ← z⊤ ∂L
∂o ∈ Rr×m

2: ∂L
∂x ← ∂L

∂oW
⊤
t ∈ Rb·l×n

3: return ∂L
∂x , Ĝt

3.3 Random Projection Matrix

Choosing a data-dependent projection such as the
SVD used by (Zhao et al., 2024), invariably forces
extra compute to generate the projection, as well as
memory allocation to store it for the backward pass.
Instead, following (Hao et al., 2024), we opt for
a random, data-independent projection which can
be efficiently sampled on-the-fly and resampled for
the backward pass by using the same seed as the
forward pass. We use a Gaussian Random Matrix,
sampled independently for each layer with µ = 0
and σ = 1/r: P ∈ Rm×r, Pij ∼ N (0, 1r). Scaling
the variance by 1/r ensures that PP⊤ ≈ I .

Using a random matrix from a Gaussian distri-
bution ensures that the projected subspace main-
tains the norm of the original vectors with high
probability (Dasgupta and Gupta, 2003; Indyk and
Motwani, 1998), which is critical for preserving
information (Hao et al., 2024). Additionally, chang-
ing the projection every T steps only required re-
placing the seed, which will not impact training
throughput.

The following theorem by (Meier and Nakat-
sukasa, 2024) demonstrates that training converges
quickly with high probability, while using a Gaus-
sian Random Matrix P :

Theorem 2. (Sketching roughly preserves top sin-
gular values). Let P ∈ Rm×r have i.i.d entries
sampled from N (0, 1r), and a low rank matrix
A ∈ Rm×n. We have:

σi(P
⊤A)

σi(A)
= O(1). (12)

Where σi(M) is the ith largest singular value of
matrix M .

Theorem 2 shows that the ratio of singular val-
ues σi(P

⊤A)/σi(A) is fairly close to 1. As the
main point in proving the convergence of GaLore
is preserving the top singular values of the approxi-
mated matrix, this provides further motivation for
why random sketching should work well.

Algorithm 3 Adam Update Step with CompAct
Input: A weight Wt ∈ Rn×m, a compressed gra-
dient Ĝt ∈ Rr×m, a random seed s ∈ N, Adam
decay rates β1, β2, scale α, learning rate η, rank r,
projection update gap T .
Initialize Adam Moments M0, V0 ∈ Rr×m ← 0, 0
Initialize step t← 0

1: Mt ← β1 ·Mt−1 + (1− β1) · Ĝt

2: Vt ← β2 · Vt−1 + (1− β2) · Ĝ2
t

3: Mt ←Mt/(1− βt
1)

4: Vt ← Vt/(1− βt
2)

5: Nt ←Mt/(
√
Vt + ϵ)

6: set_random_seed(s)
7: P ← N (0, 1r)

8: G̃t ← α · PNt ▷ Project back to full
dimension

9: Wt+1 ←Wt − η · G̃t

10: t← t+ 1
11: if t mod T = 0 then
12: s← s+ 1 ▷ Update Random Seed
13: end if
14: return Wt

4 Experiments

In this section, we evaluate CompAct on both pre-
training (Section 4.1) and finetuning tasks (Section
4.2). In all experiments, we apply CompAct to
all attention and MLP blocks in all layers of the
model, except for the output projection in the atten-
tion mechanism. For further details, see Appendix
B. Moreover, we provide a comparison of Com-
pAct’s throughput and memory usage with other
methods in Section 4.3, and explore various types
of projection matrices in Section 5.

1515

Model size 60M 130M 350M 1B

Perplexity GPU Perplexity GPU Perplexity GPU Perplexity GPU
Peak Peak Peak Peak

Full-Rank 34.06 11.59 25.08 18.66 18.80 39.97 15.56 -
GaLore 34.88 11.56 25.36 18.48 18.95 39.24 15.64 75.40
CompAct r = n/2 32.78 11.32 25.37 17.97 19.26 37.94 17.40 72.82
CompAct r = n/4 34.41 10.80 26.98 16.78 20.45 34.71 18.02 65.57
CompAct r = n/8 36.42 10.54 28.70 16.19 21.91 33.03 19.23 61.88

Training Tokens 1.1B 2.2B 6.4B 13.1B

Table 2: Pretraining perplexity and peak GPU memory for different model sizes and different training
techniques. Total training tokens are shown in the last row. As can be seen, CompAct reduces peak memory by up
to 17% for LLaMA 350M, with comparable perplexity to baseline. For larger model sizes we estimate the total
memory saving to be roughly 30%. The baseline for LLaMA 1B did not fit within the ∼ 81GB memory available
at the same batch size.

4.1 Pretraining

For pretraining, we apply CompAct to LLaMA-
based models (Touvron et al., 2023) of various sizes
and train on the C4 (Colossal Clean Crawled Cor-
pus) dataset, a commonly used dataset for training
large-scale language models (Raffel et al., 2023b).
The models were trained without any data repeti-
tion.

Our experimental setup follows the methodology
outlined in (Zhao et al., 2024), using a LLaMA-
based architecture that includes RMSNorm and
SwiGLU activations (Shazeer, 2020). For each
model size, we maintain the same set of hyperpa-
rameters, with the exception of the learning rate
and the projection update gap which were tuned.
Further details regarding the training setup and hy-
perparameters can be found in Appendix B.

As shown in Table 2, CompAct achieves perfor-
mance comparable to full-rank training, while dis-
playing a superior performance-to-memory trade-
off at smaller ranks, successfully decreasing the
peak allocated GPU memory by 17% in the largest
model.

Additionally, We provide memory estimates of
the various components for LLaMA 350M. As
shown in Table 3, CompAct’s memory savings are
substantial across all stages of the training process,
with notable reductions in the memory required for
activations, gradients, and optimizer states in the
linear layers. These savings are critical, as they
significantly lower the overall memory footprint
during training, possibly enabling larger models or
batch sizes to be processed within the same hard-
ware constraints.

Original GaLore CompAct

Weights 0.65GB 0.65GB 0.65GB
Gradients 0.65GB 0.65GB 0.26GB
Optim States 1.3GB 0.54GB 0.52GB
Activations 7.0GB 7.0GB 2.87GB
Peak Memory 39.97GB 39.21GB 34.71GB

Table 3: Estimated GPU memory consumption by dif-
ferent components of the training pipeline of LLaMA
350M, along the measured peak allocated GPU Mem-
ory. All methods share an additional constant of acti-
vations that are not linear, explaining the gap between
the sum of parts and the peak memory. Galore utilizes
r = 128, while CompAct was measured with r = n/4.

4.2 Finetuning
We finetune the pretrained RoBERTa-base model
(Liu et al., 2019) on the GLUE benchmark, a
widely used suite for evaluating NLP models across
various tasks, including sentiment analysis and
question answering (Wang et al., 2019). We ap-
ply CompAct and compared its performance to
GaLore. Following the training setup and hyperpa-
rameters from GaLore, we only tuned the learning
rate. More details can be found in Appendix C

As shown in Table 4, CompAct achieves an ex-
treme 50% reduction in the peak allocated GPU
memory while delivering comparable performance.

4.3 Peak Memory and Throughput
Methods that primarily compress the optimizer
states, such as GaLore, often need to be combined
with other memory-saving techniques like activa-
tion checkpointing to achieve meaningful reduc-
tions in memory usage during training. However,

1516

Peak (MB) CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full Fine-Tuning 6298 62.24 90.92 91.30 79.42 94.57 87.18 92.33 92.28 86.28

GaLore (r=4) 5816 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
CompAct (r=4) 3092 60.40 90.61 91.70 76.17 93.84 85.06 91.70 90.79 85.03

GaLore (r=8) 5819 60.06 90.82 92.01 79.78 94.38 87.17 92.20 91.11 85.94
CompAct (r=8) 3102 60.66 90.57 91.70 76.90 94.27 86.40 92.70 91.31 85.56

Table 4: Finetuning performance on several benchmarks for various compression rates with GaLore and
CompAct. We report the empirical mean of three runs of our approach per task. Peak Memory was measured on
RTE task. It is clear that both CompAct’s and GaLore’s performance is comparable with full finetuning, and very
close to each other. However peak memory is vastly reduced with CompAct, with as much as 50% total memory
saved. See Appendix C for the more details.

activation checkpointing introduces additional com-
putational overhead by requiring activations to be
recomputed during the backward pass (Chen et al.,
2016), which can degrade training throughput. This
trade-off means that while such methods may show-
case memory benefits, they can negatively impact
overall training efficiency.

CompAct
 r=n/2

CompAct
 r=n/4

CompAct
 r=n/8

ComAct
 r=n/8
+CKPT

GaLore GaLore
+CKPT

Baseline
0k

10k

20k

30k

40k

50k

60k

Th
ro

ug
hp

ut
 (t

ok
en

s/
se

c) 43.83 45.84 47.30

35.50

44.51

34.50

48.06

(a)

CompAct
 r=n/2

CompAct
 r=n/4

CompAct
 r=n/8

ComAct
 r=n/8
+CKPT

GaLore GaLore
+CKPT

Baseline
0

5

10

15

20

25

30

35

40

Pe
ak

 D
ev

ice
 M

em
or

y
(G

B)

37.95
34.71

33.04

8.90

39.25

9.60

39.97

(b)

Figure 3: (a) Throughput and (b) peak device mem-
ory during pretraining of LLaMa-350M. As can
be seen, using smaller ranks with CompAct achieves
better compression than GaLore while increasing the
throughput. When applying activation checkpointing
(CKPT), CompAct remains competitive, achieving bet-
ter throughput and a smaller memory footprint.

We evaluate the throughput and memory peak
of CompAct across various ranks and compare it
against GaLore with and without activation check-

pointing. All experiments were conducted using
LLaMA-350M with the same hyperparameters. For
Galore, we utilized their official repository and
adopted their optimal rank r = 256 and projection
update period T = 200 for training this model.

Our results in Figure 3 show that CompAct’s
reduction in peak GPU memory scales with r as
expected, reaching 17.3% for r = n/8, while
throughput also improves. This contrasts with the
1% reduction achieved by standard GaLore, high-
lighting our assertion that optimizer state isn’t a
major contributor to total memory.

In both methods, applying activation checkpoint-
ing (CKPT) improves memory savings significantly
while hurting total throughput. CompAct is still
better than GaLore when using CKPT, though only
slightly.

5 Ablation Study

This section presents a series of ablation experi-
ments examining how different design choices and
hyperparameters affect training performance, mem-
ory usage, and convergence.

First, we explore the effects of different projec-
tion matrices on training performance when applied
within the CompAct framework. We evaluate the
following projection matrices:

Gaussian Projection This is our primary
method, where each layer samples a different Gaus-
sian random matrix.

Gaussian Projection with Shared Seed by set-
ting the same random seed for all layers, we sample
identical projection matrices for all layers (where
dimensions permit). This investigates whether shar-
ing the same subspace among different layers influ-
ences learning performance.

1517

Sparse Johnson-Lindenstrauss (JL) Projection
Matrices JL matrices have guarantees for norm
preservation, while being sparse. As shown in
(Muhamed et al., 2024), sparse operations can be
highly efficient, and could point at future improve-
ments for CompAct. We use the sparse JL matrix
proposed in (Dasgupta et al., 2010).

VeLoRa Projection Matrices VeLoRa (Miles
et al., 2024) is, to our knowledge, the only other
work that addresses the compression of activations
of linear layers. However, their approach projects
the activations back to the original space during
the backward pass and computes the gradients in
full rank. They also projected only the Down and
Value layers of LLaMA, where CompAct applies
to all linear layers. We employ their projection
matrix within CompAct to evaluate its impact on
our method.

We opted not to experiment with Singular Value
Decomposition (SVD)-based projections in our
method due to practical considerations. More on
SVD in Compact is discussed in Appendix A

For each type of projection matrix, we train
LLaMA-60M with rank r = n/4. We conducted
experiments using learning rates from [1e−2, 5e−
3, 1e−3]. All other hyperparameters were identical
to those used in Section 4.1.

JL Fixed-seed VeLoRA Gaussian (CompAct)
Projection Sampling Methods

0

10

20

30

40

50

60

70

Pe
rp

le
xi

ty

34.80 36.06

66.86

34.41

Figure 4: Final model perplexity of CompAct with
r = n/4 for different choices of projection matri-
ces. Both Gaussian seed choices and the JL projection
achieve comparable results.

As shown in Figure 4, using Gaussian projec-
tions with different seeds per layer slightly im-
proved performance compared to a shared seed,
suggesting that utilizing different subspaces for
different layers enhances the learning capacity of
the model. Additionally, the sparse JL projections
performed comparably to the dense Gaussian pro-
jections. This is a promising result, suggesting

the viability of efficient sparse operations to fur-
ther improve the benefits of CompAct. Finally,
incorporating the projection matrix from VeLoRa
into CompAct performed poorly. This can be at-
tributed to differences in how VeLoRa handles the
backward pass, by projecting activations back and
computing full-rank gradients. This gap is some-
what expected, as they only used their projection
on two types of layers, whereas we applied the
compression more broadly. For the loss curves, see
Appendix D.

Figure 5: Ablation on LlaMA 130M - Effect of vary-
ing projection update periods T on performance across
different ranks in CompAct.

Next, we examine how different training hyper-
parameters impact model convergence and memory
efficiency.

Projection Update Period T : We first analyze
the influence of the projection update period T on
the convergence of of LLaMA-130M when trained
with CompAct.To do so, we conduct experiments
with varying update intervals. A learning rate of
5e− 3 is used by default, but if training becomes
unstable at a given T , we reduce the learning rate
until stability is achieved.
As shown in Figure 5, an optimal T range emerges:
updating the projection matrix too frequently or too
infrequently both slow down convergence. This
trend remains consistent across the couple of ranks
we show.

Rank and Training Steps: Next, we investigate
the effect of rank and training duration on model
convergence.Here, LLaMA-130M is trained with a
projection update period of T = 200 and an initial
learning rate of 5e− 3, which is reduced to 4e− 3
if instability occurs.
Figure 6 shows the impact of varying the rank of the
projection matrix over different training durations.

1518

As expected, lower ranks lead to more performance
degradation, while increasing the rank improves
model performance. Additionally, for any given
rank, training for more steps yields better results.
Crucially, larger ranks require fewer training steps
to match or surpass the baseline, whereas lower
ranks need extended training to compensate for
their reduced expressivity. This highlights a trade-
off between memory, training time, and final per-
formance. For instance, when constrained by a
small GPU, using a more aggressive compression
(e.g., rank 0.25) allows training to fit within mem-
ory limits. Depending on the number of training
steps available, this trade-off can still yield compet-
itive performance, and with sufficient steps, even
exceed the baseline.

Figure 6: Perplexity vs. Rank - Effect of different
ranks on the performance of CompAct-trained LLaMa-
130M across varying training steps. The baseline (no
compression) is trained for 20K steps.

Training Batch Size: Finally, we examine how
batch size affects peak GPU memory usage, demon-
strating the benefits of CompAct when handling
varying activation sizes. We measure the peak
GPU memory consumption while training LLaMA-
350M without gradient accumulation across dif-
ferent batch sizes. The comparison includes the
baseline model, GaLore (with a rank of 256), and
CompAct (with a rank of 0.25).
As shown in Figure 7, CompAct significantly re-
duces peak memory usage, and its benefit scales
with batch size, whereas GaLore provides a fixed
reduction in peak memory relative to the baseline.
This difference arises because GaLore primarily
compresses optimizer states, which are indepen-
dent of batch size, while CompAct reduces the
memory footprint of activations, which grow with
batch size.
This result is particularly important because larger

batch sizes are known to improve training through-
put(Andoorveedu et al., 2023). By lowering peak
memory requirements, CompAct enables the use
of larger batches, potentially increasing training
efficiency without exceeding hardware constraints.

Figure 7: Peak GPU memory vs. Batch Size. Peak
GPU memory usage of LLaMa-350M for different batch
sizes is shown for CompAct, GaLore, and the baseline.

6 Conclusion

In this work, we presented CompAct, a memory-
efficient method for training LLMs by compressing
activations, gradients, and optimizer states of linear
layers. We demonstrate that CompAct achieves sig-
nificant memory savings for training LLMs, reach-
ing 25%-30% memory reduction for pretraining
LLaMA-65B and 50% for RoBERTa-Base, with
minimal impact on training throughput and perfor-
mance. Our method is easily scalable, applicable
to various model sizes, and is easily composable
with other techniques.

By directly compressing the compute graph dur-
ing training, CompAct targets a major component
of peak device memory which was neglected in re-
cent works. We believe this approach should guide
future work for further memory gains. A good ex-
ample could be incorporating sparse random projec-
tions into CompAct, which would reduce the com-
putational cost associated with sampling and matrix
operations. Another area for improvement is the
approximation of intermediate activations, such as
those generated by FlashAttention, Hadamard prod-
ucts, and non-linearities, which require significant
memory. By addressing these memory-intensive
operations, CompAct’s memory reductions can be
extended even further.

1519

7 Limitations

While CompAct offers significant memory savings
and maintains high throughput, a few limitations
should be noted.

First, although using Gaussian random matrices
allows for on-the-fly sampling and eliminates the
memory overhead of storing projection matrices, it
can introduce some computational overhead due to
frequent sampling and multiplications. A possible
solution is to replace them with sparse random pro-
jections. These could not only reduce the computa-
tional cost but also improve throughput by fusing
the sampling and multiplication steps, potentially
outperforming the current baseline.

Another limitation of CompAct is that it cur-
rently focuses on compressing linear layers, leav-
ing other memory-intensive operations, such as
FlashAttention and Hadamard products, uncom-
pressed. These operations consume substantial
memory, and future work could explore compress-
ing their activations directly within the computation
graph without compromising model performance.

Finally, while we demonstrated that CompAct
provides additional memory savings when com-
bined with activation checkpointing—by avoiding
the need to store full gradients in memory—the
integration could be further optimized. Recom-
puting the activation compression during the back-
ward pass could reduce the overhead introduced by
checkpointing and improve throughput. Integrating
CompAct with methods such as those proposed
in (Yang et al., 2024) could further smooth this
process and enhance training efficiency.

References
Muralidhar Andoorveedu, Zhanda Zhu, Bojian Zheng,

and Gennady Pekhimenko. 2023. Tempo: Accelerat-
ing transformer-based model training through mem-
ory footprint reduction. Preprint, arXiv:2210.10246.

Anonymous. 2024a. COAT: Compressing optimizer
states and activations for memory-efficient FP8 train-
ing. In Submitted to The Thirteenth International
Conference on Learning Representations. Under re-
view.

Anonymous. 2024b. Q-galore: Quantized galore with
INT4 projection and layer-adaptive low-rank gradi-
ents. In Submitted to The Thirteenth International
Conference on Learning Representations. Under re-
view.

Anonymous. 2024c. Subtrack your grad: Gradient sub-
space tracking for memory-efficient LLM training

and fine-tuning. In Submitted to The Thirteenth In-
ternational Conference on Learning Representations.
Under review.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. 2016. Training deep nets with sublinear
memory cost. Preprint, arXiv:1604.06174.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Preprint, arXiv:2205.14135.

Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós.
2010. A sparse johnson–lindenstrauss transform.
CoRR, abs/1004.4240.

Sanjoy Dasgupta and Anupam Gupta. 2003. An elemen-
tary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc' aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and
Andrew Ng. 2012. Large scale distributed deep net-
works. In Advances in Neural Information Process-
ing Systems, volume 25. Curran Associates, Inc.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Preprint, arXiv:2305.14314.

Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong,
Akiko Takeda, Pratik Jawanpuria, and Bamdev
Mishra. 2024. Sltrain: a sparse plus low-rank ap-
proach for parameter and memory efficient pretrain-
ing. Preprint, arXiv:2406.02214.

Yongchang Hao, Yanshuai Cao, and Lili Mou. 2024.
Flora: Low-rank adapters are secretly gradient com-
pressors. Preprint, arXiv:2402.03293.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Ji-
quan Ngiam, Quoc V Le, Yonghui Wu, and zhifeng
Chen. 2019. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

1520

https://arxiv.org/abs/2210.10246
https://arxiv.org/abs/2210.10246
https://arxiv.org/abs/2210.10246
https://openreview.net/forum?id=XfKSDgqIRj
https://openreview.net/forum?id=XfKSDgqIRj
https://openreview.net/forum?id=XfKSDgqIRj
https://openreview.net/forum?id=rBzvEEbrF7
https://openreview.net/forum?id=rBzvEEbrF7
https://openreview.net/forum?id=rBzvEEbrF7
https://openreview.net/forum?id=nR0n4R1Ck2
https://openreview.net/forum?id=nR0n4R1Ck2
https://openreview.net/forum?id=nR0n4R1Ck2
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/1004.4240
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1002/rsa.10073
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2406.02214
https://arxiv.org/abs/2406.02214
https://arxiv.org/abs/2406.02214
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2402.03293
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of di-
mensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC
’98, page 604–613, New York, NY, USA. Associa-
tion for Computing Machinery.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J. Shekita, and Bor-Yiing Su. 2014. Scal-
ing distributed machine learning with the parameter
server. In Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementa-
tion, OSDI’14, page 583–598, USA. USENIX Asso-
ciation.

Vladislav Lialin, Namrata Shivagunde, Sherin Muck-
atira, and Anna Rumshisky. 2023. Relora: High-
rank training through low-rank updates. Preprint,
arXiv:2307.05695.

Xiaoxuan Liu, Lianmin Zheng, Dequan Wang, Yukuo
Cen, Weize Chen, Xu Han, Jianfei Chen, Zhiyuan
Liu, Jie Tang, Joey Gonzalez, Michael Mahoney, and
Alvin Cheung. 2022. Gact: Activation compressed
training for generic network architectures. Preprint,
arXiv:2206.11357.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Maike Meier and Yuji Nakatsukasa. 2024. Fast ran-
domized numerical rank estimation for numerically
low-rank matrices. Preprint, arXiv:2105.07388.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2017. Mixed precision train-
ing. Preprint, arXiv:1710.03740.

Roy Miles, Pradyumna Reddy, Ismail Elezi, and
Jiankang Deng. 2024. Velora: Memory efficient
training using rank-1 sub-token projections. Preprint,
arXiv:2405.17991.

Aashiq Muhamed, Oscar Li, David Woodruff, Mona
Diab, and Virginia Smith. 2024. Grass: Compute
efficient low-memory llm training with structured
sparse gradients. Preprint, arXiv:2406.17660.

Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei
Cai, and Bohan Zhuang. 2022. Mesa: A memory-
saving training framework for transformers. Preprint,
arXiv:2111.11124.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023b. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Noam Shazeer. 2020. Glu variants improve transformer.
Preprint, arXiv:2002.05202.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2020. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
Preprint, arXiv:1909.08053.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

Yuchen Yang, Yingdong Shi, Cheems Wang, Xiantong
Zhen, Yuxuan Shi, and Jun Xu. 2024. Reduc-
ing fine-tuning memory overhead by approximate
and memory-sharing backpropagation. Preprint,
arXiv:2406.16282.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient llm train-
ing by gradient low-rank projection. Preprint,
arXiv:2403.03507.

1521

https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2307.05695
https://arxiv.org/abs/2206.11357
https://arxiv.org/abs/2206.11357
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2105.07388
https://arxiv.org/abs/2105.07388
https://arxiv.org/abs/2105.07388
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/2405.17991
https://arxiv.org/abs/2405.17991
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2406.17660
https://arxiv.org/abs/2111.11124
https://arxiv.org/abs/2111.11124
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2406.16282
https://arxiv.org/abs/2406.16282
https://arxiv.org/abs/2406.16282
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

A CompAct with SVD

In this work, random projections are used to com-
press activations, thereby avoiding the costly SVD
step. Performing an SVD on the activation tensor
x ∈ Rb×l×n, where b is the batch size and l is the
sequence length, can introduce considerable over-
head since b × l is typically large. By contrast,
GaLore applies SVD to the gradient G ∈ Rn×m,
which does not depend on b or l, making it gen-
erally less expensive than compressing activations
via SVD.

Nonetheless, one could adopt GaLore’s SVD-
based projection within the CompAct framework
by running an iteration with uncompressed acti-
vations to compute the gradient, from which the
SVD projection is derived and then stored for sub-
sequent updates. However, each time the projection
matrix is updated, storing the entire activation ten-
sor would significantly increase the GPU memory
peak, since the activations typically dominate mem-
ory usage. A potential mitigation strategy might
involve updating the projection matrix on smaller
batches to reduce peak memory requirements. Fur-
ther exploration of this approach is left for future
work.

B Pretraining

This appendix provides further details about our
pre-training experiments.

B.1 Hyperparameters

We adopt the training setup outlined in (Zhao et al.,
2024), and apply compact to LLaMA-based models
of various sizes. Table 5 outlines the amount of
data and steps used to train the models.

Model Size Steps Training Tokens

60M 10K 1.3 B
130M 20K 2.6 B
350M 60K 7.8 B

1B 100K 13.1 B

Table 5: Training Step for Llama models.

For all the trained models, we use a maximum
sequence length of 256, with a batch size of 512.
We tune the optimal learning rate for each model
size from the range 1e − 3 ≤ lr ≤ 1e − 2, and
choose the best one based on the validation per-
plexity. We also adopt a learning rate warmup for
the first 10% of the training steps and use a cosine

learning rate scheduler that decreases to 0.1 of the
initial learning rate.
We use a constant scaling factor of α = 0.25.
Additionally, we tuned the projection update, us-
ing T = 50 period T for after searching over
[1,10,50,100,200,500,∞] for the LLaMA-130M
model, which was then used to train 60M - 350M.
For the 1B model, we use T = 200.

B.2 CompAct and FlashAttention
We applied CompAct to all linear modules within
each Transformer block of our LLaMA-based
models, except for the output-projection layer in
the attention mechanism. FlashAttention (Dao
et al., 2022), a fast and efficient implementation of
attention, is widely adopted in many architectures,
including the models used in this work for both
pretraining and finetuning.

However, FlashAttention stores its output in
memory as part of the activation memory. This
same tensor is then fed into the output-projection
layer of the attention block, meaning that these
two layers share the same activation memory.
Consequently, compressing the activation tensor
of the attention’s output-projection does not
result in overall memory savings, because the
FlashAttention output tensor remains in memory.
Further, compressing the shared activation between
these two layers would introduce errors in the
gradient with respect to the FlashAttention input,
potentially causing error accumulation across
layers. Addressing this issue lies outside the
current scope of CompAct.
As a result, we left the output-projection layer
uncompressed in our experiments. In future
work, a custom CUDA kernel for FlashAttention
may allow compression of this layer without
introducing errors.

However, not compressing this layer introduced
instability in the pretraining experiments when
training with larger learning rates, due to the
inconsistent learning rate across different linear
layers induced by the scale α. To mitigate this,
one can either adjust the learning rate of the
output-projection layer by a scale αout, or simply
use a smaller learning rate.

In our experiments, when training the smaller
models 60M-350M we used a large learning rate of
0.01 and scaled the learning of the output projec-

1522

tion with αout = 0.5α, while for the larger model
we simply used a smaller learning rate of 0.003.

B.3 Type Conversion in Normalization Layers
We note that our implementation of LLaMA’s RM-
SNorm layers did not apply type conversion during
pretraining, as we observed that it did not affect
model perplexity, but required extra activations.
The baseline was measured without type conver-
sion as well making the comparison fair. Hence,
all layers were computed in the type of bfloat16
floating point format.

For our finetuning experiments, we presented
Roberta-Base, which applies Layer Norm normal-
ization layers rather than RMSNorm, whose default
implementations do include type conversions, from
bfloat16 to float32 floating point format, although
this is very negligible as the effect of these on peak
memory is tiny in finetuning.

C Fine-tuning

To be comparable to the results reported in GaLore
(Zhao et al., 2024) as shown in Table 4 we report
the same metrics as they did, namely, F1 score on
QQP and MRPC, Matthew’s Correlation for CoLA,
Pearson’s Correlation for STS-B, and classification
accuracy for all others. The numbers reported for
GaLore and Baseline are taken from (Zhao et al.,
2024). We report the average performance over
three seeds due to the noisy behavior of the training
process. All models were trained for 30 epochs
with batch size 16, except for CoLA where we
used batch size 32 as in GaLore, and a maximum
sequence length of 512, a scale α = 2 was used
with r = 8 and α = 4 for r = 4, all with T =
500. Again, as in GaLore, we searched for a best
learning rate per task, searching in {1e − 5, 2e −
5, 3e− 5}.

D Choice of Projection Matrix - Loss
Curve

As can be seen below, all different projection
types did converge, strengthening the comparison.
We can see small spikes in loss when applying
VeLoRA’s projection every T = 50 timesteps.

Figure 8: Training Loss with r = n/4 for different
choices of projection matrices. Both Gaussian seed
choices and the JL projection achieve comparable re-
sults. VeLoRA achieves poor results and is more sensi-
tive to the spike at the beginning of training.

E Memory Estimation for Llama Model

In this section, we describe how we calculated the
memory estimates used throughout the paper to
illustrate CompAct’s memory savings.

First, note that given the number of parameters
in a model, the memory needed to store gradients
and optimizer states can be estimated directly,
as it scales with the number of parameters. To
estimate activation memory, we examined the
activations required by a single Transformer block
in a LLaMA-based model as mapped in Table 6.
We then used this to calculate the total activation
memory necessary for training LLaMA models of
various sizes.

Lastly, we used PyTorch’s memory profiler to
confirm that our estimated values are consistent
with the actual memory consumption observed dur-
ing training.

1523

Table 6: Activations saved from each operation in a single transformer block from a LlaMA model. In this
block, the input is of shape (b, l, n), the attention weights Wq,Wk,Wv,Wo of shape (n, n) and the MLP weights
W⊤

down,Wup,Wgate are of shape (n,m), n < m. Note that the activations of RMSNorm don’t include the precision
conversion as we didn’t use it in our training. Smaller activations in CompAct are marked in Red

Operation Tensors Saved Tensors Saved With
for Backward CompAct (0 <= r <= 1)

x2 = RMSNorm(x1) x1 ∈ Rb×l×n x1 ∈ Rb×l×n

(σ(x1)
2 + ε)−

1
2 ∈ Rb×l (σ(x1)

2 + ε)−
1
2 ∈ Rb×l

q = x2W
⊤
q

k = x2W
⊤
k x2 ∈ Rb×l×n (x2Pq), (x2Pv), (x2Pk) ∈ Rb×l×nr

v = x2W
⊤
v

reshape q, k, v None None
to (b h, l, n/h)

x3 = flash_attn(q, k, v) q, k, v ∈ Rb×h×l×n/h q, k, v ∈ Rb×h×l×n/h

two buffers ∈ Rb×l×h two buffers ∈ Rb×l×h

x3 ∈ Rb×h×l×n/h x3 ∈ Rb×h×l×n/h

reshape x3 to (b, l, n) None None

x4 = x3W
⊤
o x3 ∈ Rb×h×l×n/h x3 ∈ Rb×h×l×n/h

Shared with flash-attn Shared with flash-attn

residual: x5 = x4 + x1 None None

x6 = RMSNorm(x5) x5 ∈ Rb×l×n x5 ∈ Rb×l×n

(σ(x5)
2 + ε)−

1
2 ∈ Rb×l (σ(x5)

2 + ε)−
1
2 ∈ Rb×l

xgate = x6W
⊤
gate x6 ∈ Rb×l×n (x6Pgate), (x6Pup) ∈ Rb×l×nr

xup = x6W
⊤
up

xact = SiLU(xgate xgate ∈ Rb×l×m xgate ∈ Rb×l×m

x7 = xact ∗ xup xup ∈ Rb×l×m xup ∈ Rb×l×m

xact ∈ Rb×l×m xact ∈ Rb×l×m

xdown = x7W
⊤
down x7 ∈ Rb×l×m (x7Pdown) ∈ Rb×l×mr

residual: x8 = xdown+ x5 None None

1524

