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Abstract
Large Language Models (LLMs) excel in
stand-alone code tasks like HumanEval and
MBPP, but struggle with handling entire code
repositories. This challenge has prompted
research on enhancing LLM-codebase inter-
action at a repository scale. Current solu-
tions rely on similarity-based retrieval or man-
ual tools and APIs, each with notable draw-
backs. Similarity-based retrieval often has low
recall in complex tasks, while manual tools
and APIs are typically task-specific and re-
quire expert knowledge, reducing their gener-
alizability across diverse code tasks and real-
world applications. To mitigate these limi-
tations, we introduce CODEXGRAPH, a sys-
tem that integrates LLM agents with graph
database interfaces extracted from code repos-
itories. By leveraging the structural prop-
erties of graph databases and the flexibil-
ity of the graph query language, CODEX-
GRAPH enables the LLM agent to construct
and execute queries, allowing for precise, code
structure-aware context retrieval and code nav-
igation. We assess CODEXGRAPH using
three benchmarks: CrossCodeEval, SWE-
bench, and EvoCodeBench. Additionally,
we develop five real-world coding applica-
tions. With a unified graph database schema,
CODEXGRAPH demonstrates competitive per-
formance and potential in both academic and
real-world environments, showcasing its ver-
satility and efficacy in software engineering.
Our code and demo will be released soon.

1 Introduction
Large Language Models (LLMs) excel in code tasks,
impacting automated software engineering (Chen
et al., 2021; Gauthier, 2024; Yang et al., 2024b; Open-
Devin Team, 2024). Repository-level tasks (Zhang
et al., 2023; Jimenez et al., 2023; Ding et al., 2024)
mimic software engineers’ work with large codebases
(Kovrigin et al., 2024). These tasks require models to
handle intricate dependencies and comprehend project
structure (Jiang et al., 2024; Sun et al., 2024).

*Equal contribution. Work was done during Xiangyan’s
internship at Alibaba.

Current LLMs struggle with long-context inputs,
limiting their effectiveness with large codebases
(Jimenez et al., 2023) and lengthy sequences reason-
ing (Liu et al., 2024a). Researchers have proposed
methods to enhance LLMs by retrieving task-relevant
code snippets and structures, improving performance
in complex software development (Deng et al., 2024;
Arora et al., 2024; Ma et al., 2024). However, these
approaches mainly rely on either similarity-based
retrieval (Jimenez et al., 2023; Cheng et al., 2024;
Liu et al., 2024b) or manual tools and APIs (Zhang
et al., 2024b; Örwall, 2024). Similarity-based re-
trieval methods, common in Retrieval-Augmented
Generation (RAG) systems (Lewis et al., 2020), often
struggle with complex reasoning for query formulation
(Jimenez et al., 2023) and handling intricate code
structures (Phan et al., 2024), leading to low recall
rates. Meanwhile, existing tool/API-based interfaces
that connect codebases and LLMs are typically
task-specific and require extensive expert knowledge
(Örwall, 2024; Chen et al., 2024). Furthermore, our
experimental results in Section 5 indicate that the two
selected methods lack flexibility and generalizability
for diverse repository-level code tasks.

Recent studies have demonstrated the effectiveness
of graph structures in code repositories (Phan et al.,
2024; Cheng et al., 2024). Meanwhile, inspired by
recent advances in graph-based RAG (Edge et al.,
2024; Liu et al., 2024b; He et al., 2024) and the ap-
plication of executable code (such as SQL, Cypher,
and Python) to consolidate LLM agent actions (Wang
et al., 2024; Li et al., 2024c; Xue et al., 2023), we
present CODEXGRAPH, as shown in Figure 1 (a).
CODEXGRAPH alleviates the limitations of existing
approaches by bridging code repositories with LLMs
through graph databases. CODEXGRAPH utilizes static
analysis to extract code graphs from repositories using
a task-agnostic schema that defines the nodes and edges
within the code graphs. In these graphs, nodes repre-
sent source code symbols such as MODULE, CLASS,
and FUNCTION, and each node is enriched with rele-
vant meta-information. The edges between nodes rep-
resent the relationships among these symbols, such
as CONTAINS, INHERITS, and USES (see Figure 2
for an illustrative example). By leveraging the struc-
tural properties of graph databases, CODEXGRAPH
enhances the LLM agent’s comprehension of code
structures. CODEXGRAPH leverages repository code
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Figure 1: (a) Using a unified schema, CODEXGRAPH employs code graph databases as interfaces that allow LLM agents
to interact seamlessly with code repositories. (b) CODEXGRAPH supports the management of a wide range of tasks, from
academic-level code benchmarks to real-world software engineering applications.

information and graph structures for global analysis
and multi-hop reasoning, enhancing code task perfor-
mance. When users provide code-related inputs, the
LLM agent analyzes the required information from the
code graphs, constructs flexible queries using graph
query language, and locates relevant nodes or edges.
This enables precise and efficient retrieval, allowing for
effective scaling to larger repository tasks.

To evaluate the effectiveness of the CODEXGRAPH,
we assess its performance across three challenging
and representative repository-level benchmarks: Cross-
CodeEval (Ding et al., 2024), SWE-bench (Yang et al.,
2024b) and EvoCodeBench (Li et al., 2024b). Our
experimental results demonstrate that, by leveraging
a unified graph database schema (Section 3.1) and a
simple workflow design (Section 3.2), the CODEX-
GRAPH achieves competitive performance across all
academic benchmarks, especially when equipped with
more advanced LLMs. Furthermore, as illustrated in
Figure 1 (b), to address real-world software develop-
ment needs, we extend CODEXGRAPH to the feature-
rich ModelScope-Agent (Li et al., 2023) framework.
Section 6 highlights five real-world application sce-
narios, including code debugging and writing code
comments, showcasing the versatility and efficacy of
CODEXGRAPH in practical software engineering tasks.

Our contributions are from three perspectives:

• Pioneering code retrieval system: We present
CODEXGRAPH, which leverages graph databases as
an interface to integrate codebases with LLMs, en-
hancing code navigation and understanding.

• Benchmark performance: We demonstrate
CODEXGRAPH’s competitive performance on three
challenging and representative repository-level
code benchmarks.

• Practical applications: We showcase CODEX-
GRAPH’s versatility in five real-world software en-
gineering scenarios, proving its value beyond aca-
demic settings.

2 Related Work
2.1 Repository-Level Code Tasks
Repository-level code tasks have garnered significant
attention due to their alignment with real-world
production environments (Bairi et al., 2023; Luo
et al., 2024; Cognition Labs, 2024; Kovrigin et al.,
2024). Unlike traditional standalone code-related
tasks such as HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021), which often fail to capture
the complexities of real-world software engineering,
repository-level tasks necessitate models to understand
cross-file code structures and perform intricate reason-
ing (Liu et al., 2024b; Ma et al., 2024; Sun et al., 2024).
These sophisticated tasks can be broadly classified into
two lines of work based on their inputs and outputs.
The first line of work involves natural language to
code repository tasks, exemplified by benchmarks like
DevBench (Li et al., 2024a) and SketchEval (Zan et al.,
2024), where models generate an entire code repository
from scratch based on a natural language description
of input requirements. State-of-the-art solutions in
this area often employ multi-agent frameworks such as
ChatDev (Qian et al., 2023) and MetaGPT (Hong et al.,
2023) to handle the complex process of generating a
complete codebase. The second line of work, which
our research focuses on, includes tasks that integrate
both a natural language description and a reference
code repository, requiring models to perform tasks
like repository-level code completion (Zhang et al.,
2023; Shrivastava et al., 2023; Liu et al., 2023; Ding
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et al., 2024; Su et al., 2024), automatic GitHub issue
resolution (Jimenez et al., 2023), and repository-level
code generation (Li et al., 2024b). To assess the
versatility and effectiveness of our proposed system
CODEXGRAPH, we evaluate it on three diverse and
representative benchmarks including CrossCodeEval
(Ding et al., 2024) for code completion, SWE-bench
(Jimenez et al., 2023) for Github issue resolution, and
EvoCodeBench (Li et al., 2024b) for code generation.

2.2 Retrieval-Augmented Code Generation

Retrieval-Augmented Generation (RAG) systems pri-
marily aim to retrieve relevant content from external
knowledge bases to address a given question, thereby
maintaining context efficiency while reducing halluci-
nations in private domains (Lewis et al., 2020; Shus-
ter et al., 2021). For repository-level code tasks,
which involve retrieving and manipulating code from
repositories with complex dependencies, RAG sys-
tems—referred to here as Retrieval-Augmented Code
Generation (RACG) (Jiang et al., 2024)—are utilized
to fetch the necessary code snippets or code structures
from the specialized knowledge base of code reposi-
tories. Current RACG methodologies can be divided
into three main paradigms: the first paradigm involves
similarity-based retrieval, which encompasses term-
based sparse retrievers (Robertson and Zaragoza, 2009;
Jimenez et al., 2023) and embedding-based dense re-
trievers (Guo et al., 2022; Zhang et al., 2023), with ad-
vanced approaches integrating structured information
into the retrieval process (Phan et al., 2024; Cheng
et al., 2024; Liu et al., 2024b). The second paradigm
consists of manually designed code-specific tools or
APIs that rely on expert knowledge to create inter-
faces for LLMs to interact with code repositories for
specific tasks (Zhang et al., 2024b; Deshpande et al.,
2024; Arora et al., 2024). The third paradigm combines
both similarity-based retrieval and code-specific tools
or APIs (Örwall, 2024), leveraging the reasoning capa-
bilities of LLMs to enhance context retrieval from code
repositories. Apart from the three paradigms, Agent-
less (Xia et al., 2024) preprocesses the code reposi-
tory’s structure and file skeleton, allowing the LLMs
to interact with the source code. Our proposed frame-
work, CODEXGRAPH, aligns most closely with the
second paradigm but distinguishes itself by discarding
the need for expert knowledge and task-specific de-
signs. By using code graph databases as flexible and
universal interfaces, which also structurally store infor-
mation to facilitate the code structure understanding of
LLMs, CODEXGRAPH can navigate the code reposito-
ries and manage multiple repository-level code tasks,
providing a versatile and powerful solution for RACG.

3 CODEXGRAPH: Enable LLMs to
Navigate the Code Repository

CODEXGRAPH is a system that bridges code repos-
itories and large language models (LLMs) through

code graph database interfaces. It indexes input code
repositories using static analysis, storing code symbols
and relationships as nodes and edges in a graph
database according to a predefined schema. When
presented with a coding question, CODEXGRAPH
leverages the LLM agent to generate graph queries,
which are executed to retrieve relevant code fragments
or code structures from the database. The detailed
processes of constructing the code graph database and
the LLM agent’s interactions with it are explained in
sections 3.1 and 3.2, respectively. A further explation

3.1 Build Graph Databases from Code
Repositories

Schema. We abstract code repositories into code
graphs where nodes represent symbols in the source
code, and edges represent relationships between
these symbols. The schema defines the types of
nodes and edges, directly determining how code
graphs are stored in the graph database. Different
programming languages typically require different
schemas based on their characteristics. In our project,
we focus on Python and have empirically designed
a schema tailored to its features, with node types
including MODULE, CLASS, METHOD, FUNCTION,
FIELD, and GLOBAL VARIABLE, and edge types
including CONTAINS, INHERITS, HAS METHOD,
HAS FIELD, and USES.

Each node type has corresponding attributes to rep-
resent its meta-information. For instance, METHOD
nodes have attributes such as name, file path,
class, code, and signature. For storage effi-
ciency, nodes with a code attribute do not store the
code snippet directly in the graph database but rather
an index pointing to the corresponding code fragment.
Figure 2 illustrates a sample code graph derived from
our schema, and Appendix A.1 shows the details of the
schema.

Phase 1: Shallow Indexing. The code graph
database construction process consists of two phases,
beginning with the input of the code repository and
schema. The first phase employs a shallow indexing
method, inspired by Sourcetrail’s static analysis pro-
cess 1, to perform a single-pass scan of the entire repos-
itory. During this scan, symbols and relationships are
extracted from each Python file, processed only once,
and stored as nodes and edges in the graph database.
Concurrently, meta-information for these elements is
recorded. This approach ensures speed and efficiency,
capturing all nodes and their meta-information in one
pass. However, the shallow indexing phase has lim-
itations due to its single-pass nature. Some important
edges, particularly certain INHERITS and CONTAINS
relationships, may be overlooked as they might require
context from multiple files.

1https://github.com/CoatiSoftware/
Sourcetrail
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# math/geometric_shapes.py

PI = 3.14159

class Shape:
    def __init__(self, name):
        self.name = name

    def describe(self):
        return f"This is a {self.name}."

class Circle(Shape):
    def __init__(self, radius):
        super().__init__("Circle")
        self.radius = radius

    def calculate_area(self):
        return PI * self.radius ** 2

def 
calculate_circle_circumference(circle):
    return 2 * PI * circle.radius

# math/math_utils.py

from geometric_shapes import Circle, PI

EULER_NUMBER = 2.71828

class GeometryCalculator:
    def __init__(self):
        self.last_result = 0

    def calculate_shape_area(self, shape):
        if isinstance(shape, Circle):
            self.last_result = 
shape.calculate_area()
        else:
            self.last_result = 0
        return self.last_result

def square_root(number):
    return number ** 0.5

# example nodes
MODULE: “math.geometric_shapes” 
CLASS: “Shape”, “Circle”
METHOD: “__init__”, “calculate_area”
FUNCTION: “square_root”
FIELD: “last_result”, “radius”
GLOBAL_VARIABLE: “PI”

# example edges
CONTAINS:
(“math.geometric_shapes”) -> (“Circle”)
INHERITS:
(“Circle”) -> (“Shape”)
HAS_METHOD:
(“Circle”) -> (“calculate_area”)
HAS_FIELD:
(“Circle”) -> (“radius”)
USES:
(“calculate_area”) -> (“PI”)

# meta-info of an CLASS node (“Circle”):
name: “Circle”
file_path: “math/geometric_shapes.py”
signature: “class Circle(Shape)”
code: “class Circle(Shape):

    def __init__....”

(1) source code (2) nodes & edges (3) visualization in graph database 

Figure 2: Illustration of the process for indexing source code to generate a code graph based on the given graph database
schema. Subfigure (3) provides a visualization example of the resultant code graph in Neo4j.

Phase 2: Edge Completion. The second phase ad-
dresses the limitations of shallow indexing by focus-
ing on cross-file relationships. We employ Depth-First
Search (DFS) to traverse each code file, using abstract
syntax tree parsing to identify modules and classes.
This approach is particularly effective in resolving
Python’s re-export issues. We convert relative imports
to absolute imports, enabling accurate establishment
of cross-file CONTAINS relationships through graph
queries. Simultaneously, we record INHERITS rela-
tionships for each class. For complex cases like multi-
ple inheritance, DFS is used to establish edges for in-
herited FIELD and METHOD nodes within the graph
database. This comprehensive approach ensures ac-
curate capture of both intra-file and cross-file relation-
ships, providing a complete representation of the code-
base structure.

Summary. Our code graph database design offers
four key advantages for subsequent use. First, it
ensures efficient storage by storing code snippets
as indexed references rather than directly in the
graph database. Second, it enables multi-granularity
searches, from module-level to variable-level, accom-
modating diverse analytical needs. Third, it facilitates
topological analysis of the codebase, revealing crucial
insights into hierarchical and dependency structures.
Last, this schema design supports multiple tasks with-
out requiring modifications, demonstrating its versa-
tility and general applicability. These features collec-
tively enhance the system’s capability to handle com-
plex code analysis tasks effectively across various sce-
narios. Regarding the discussion of indexing efficiency,

please refer to Appendix A.6.

3.2 Large Language Models Interaction with
Code Graph Database

Code structure-aware search. CODEXGRAPH
leverages the flexibility of graph query language to
construct complex and composite search conditions.
By combining this flexibility with the structural proper-
ties of graph databases, the LLM agent can effectively
navigate through various nodes and edges in the code
graph. This capability allows for intricate queries such
as: “Find classes under a certain module that contain
a specific method”, or “Retrieve the module where
a certain class is defined, along with the functions it
contains”. This approach enables code structure-aware
searches, providing a level of code retrieval that is
difficult to achieve with similarity-based retrieval
methods (Robertson and Zaragoza, 2009; Guo et al.,
2022) or conventional code-specific tools and APIs
(Zhang et al., 2024b; Deshpande et al., 2024).

Write then translate. LLMs power LLM agents,
which operate based on user-provided prompts to de-
compose tasks, use tools, and perform reasoning. This
design is effective for handling specific, focused tasks
(Gupta and Kembhavi, 2022; Yuan et al., 2024), but
when tasks are complex and multifaceted, LLM agents
may underperform. This limitation has led to the de-
velopment of multi-agent systems (Hong et al., 2023;
Qian et al., 2023; Guo et al., 2024), where multiple
LLM agents independently handle parts of the task. In-
spired by this approach, CODEXGRAPH implements a
streamlined “write then translate” strategy to optimize
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   Code Question
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Agent

• complete the unfinished code
• resolve the github issue
• finish the function given the sigan-

ature and comment
• ....

•   Analysis & Natural Langugae Queries

translation LM Agent

  Analysis & Natural Langugae Queries

   Graph Query Translation

# Analysis #
<analysis_context>
# Natural Language Queries #

Retrieve the module where class 
`LinearClassifier` is defined, along 
with the functions it contains
...

MATCH (c:Class {name: 'LinearClassifier'})<-[:CONTAINS]-(m:Module)

MATCH (c)-[:CONTAINS]->(f:Function)

RETURN m.name AS module_name, collect(f.name) AS functions

Schema

Figure 3: The primary LLM agent analyzes the given code question, writting natural language queries. These queries are then
processed by the translation LLM agent, which translates them into executable graph queries.

LLM-database interactions.
As illustrated in Figure 3, the primary LLM agent

focuses on understanding context and generating nat-
ural language queries based on the user’s question.
These queries are then passed to a specialized transla-
tion LLM agent, which converts them into formal graph
queries. A more detailed explanation of this strategy
is provided in Appendix A.5. This division of labor
allows the primary LLM agent to concentrate on high-
level reasoning while ensuring syntactically correct and
optimized graph queries. By separating these tasks,
CODEXGRAPH enhances query success rates and im-
proves the system’s ability to accurately retrieve rele-
vant code information.

Iterative pipeline. Instead of completing the code
task in a single step, CODEXGRAPH employs an itera-
tive pipeline for interactions between LLM agents and
code graph databases, drawing insights from existing
agent systems (Yao et al., 2023; Yang et al., 2024b).
In each round, LLM agents formulate multiple queries
based on the user’s question and previously gathered
information. Similar to (Madaan et al., 2023), the
agent then analyzes the aggregated results to determine
whether sufficient context has been acquired or if ad-
ditional rounds are necessary. This iterative approach
fully leverages the reasoning capabilities of the LLM
agent, thereby enhancing problem-solving accuracy.

4 Experimental Setting
Benchmarks. We employ three diverse repository-
level code benchmarks to evaluate CODEXGRAPH:
CrossCodeEval (Ding et al., 2024), SWE-bench (Yang
et al., 2024b), and EvoCodeBench (Li et al., 2024b).
CrossCodeEval is a multilingual scope cross-file com-
pletion dataset for Python, Java, TypeScript, and C#.
SWE-bench evaluates a model’s ability to solve GitHub

issues with 2, 294 Issue-Pull Request pairs from 12
Python repositories. EvoCodeBench is an evolutionary
code generation benchmark with comprehensive anno-
tations and evaluation metrics.

We report our primary results on the CrossCodeEval
Lite (Python) and SWE-bench Lite test sets for Cross-
CodeEval and SWE-bench, respectively, and on the
full test set for EvoCodeBench. CrossCodeEval Lite
(Python) and SWE-bench Lite represent subsets of
their respective datasets. CrossCodeEval Lite (Python)
consists of 1000 randomly sampled Python instances,
while SWE-bench Lite includes 300 instances ran-
domly sampled after filtering out those with poor issue
descriptions.

Remark: During indexing of 43 Sympy samples from
the SWE-bench dataset, we face out-of-memory issues
due to numerous files and complex dependencies, lead-
ing to their exclusion. Similarly, some EvoCodeBench
samples are omitted due to test environment configura-
tion issues. Thus, SWE-bench Lite and EvoCodeBench
results are based on 257 and 212 samples, respectively.

Baselines. We evaluate whether CODEXGRAPH is a
powerful solution for Retrieval-Augmented Code Gen-
eration (RACG) (Jiang et al., 2024). We specifically as-
sess how effectively code graph database interfaces aid
LLMs in understanding code repositories, particularly
when handling diverse code questions across different
benchmarks to test CODEXGRAPH ’s general applica-
bility. To achieve this, we select resilient RACG base-
lines that can be adapted to various tasks. Based on the
categories in Section 2.2, we choose BM25 (Robertson
and Zaragoza, 2009) and AUTOCODEROVER (Zhang
et al., 2024b), which are widely recognized in code
tasks (Jimenez et al., 2023; Ding et al., 2024; Kovrigin
et al., 2024; Chen et al., 2024), along with a NO-RAG
method. Besides, since our work focuses on RACG
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methods and their generalizability, we exclude meth-
ods that interact with external websites (OpenDevin
Team, 2024; Zhang et al., 2024a) and runtime envi-
ronments (Yang et al., 2024b), as well as task-specific
methods that are not easily adaptable across multiple
benchmarks (Cheng et al., 2024; Örwall, 2024). These
methods fall outside the scope of our project.

Especially, although (Zhang et al., 2024b) evalu-
ate AUTOCODEROVER exclusively on SWE-bench,
we extend its implementation to CrossCodeEval and
EvoCodeBench, while retaining its core set of 7 code-
specific tools for code retrieval.

Large Language Models (LLMs). We evaluate
CODEXGRAPH on three advanced LLMs with long text
processing, tool use, and code generation capabilities:
GPT-4o, DeepSeek-Coder-V2 (Zhu et al., 2024), and
Qwen2-72b-Instruct (Yang et al., 2024a).
• GPT-4o: Developed by OpenAI 3, this model excels

in commonsense reasoning, mathematics, and code,
and is among the top-performing models as of July
2024 4.

• DeepSeek-Coder-V2 (DS-Coder): A specialized
code-specific LLM by DeepSeek 5 with 236B pa-
rameters, it retains general capabilities while being
highly proficient in code-related tasks.

• Qwen2-72b-Instruct (Qwen2): Developed by Al-
ibaba 6, this open-source model has about 72 billion
parameters and a 128k long context, making it suit-
able for evaluating existing methods.
For the hyperparameters of the selected large lan-

guage models, we empirically set the temperature coef-
ficient to 0.0 for both GPT-4o and Qwen2-72b-Instruct,
and to 1.0 for DeepSeek-Coder-V2. All other parame-
ters are kept at their default settings.

Metrics. In metrics selection, we follow the original
papers’ settings (Jimenez et al., 2023; Ding et al., 2024;
Li et al., 2024b). Specifically, for CrossCodeEval, we
measure performance with code match and identifier
match metrics, assessing accuracy with exact match
(EM), edit similarity (ES), and F1 scores. SWE-bench
utilizes % Resolved (Pass@1) to gauge the effective-
ness of model-generated patches based on provided
unit tests. EvoCodeBench employs Pass@k, where k
represents the number of generated programs, for func-
tional correctness and Recall@k to assess the recall of
reference dependencies in generated programs. We set
k to 1 in our main experiments.

Implementation details. Before indexing, we filter
the Python repositories for each benchmark to retain

2https://github.com/princeton-nlp/
SWE-bench/issues/2

3We use the gpt-4o-2024-05-13 version, https:
//openai.com/api

4https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

5https://chat.deepseek.com/coder
6https://dashscope.console.aliyun.com/

model

only Python files. For the SWE-bench dataset, we also
exclude test files to avoid slowing down the creation of
the code graph database. Following the process out-
lined in Section 3.1, we construct code graph databases
for the indexed repositories, storing the correspond-
ing nodes and edges. We select Neo4j as the graph
database and Cypher as the query language.

5 Results
5.1 Analysis of Repository-Level Code Tasks
RACG is crucial for repository-level code tasks.
In Table 1, RACG-based methods—BM25, AU-
TOCODEROVER, and CODEXGRAPH—basically out-
perform the NO-RAG method across all benchmarks
and evaluation metrics. For instance, on the Cross-
CodeEval Lite (Python) dataset, using GPT-4o as the
backbone LLM, RACG methods improve performance
by 10.4% to 17.1% on the EM metric compared to NO-
RAG. This demonstrates that the NO-RAG approach,
which relies solely on in-file context and lacks interac-
tion with the code repository, significantly limits per-
formance.

Existing RACG methods struggle to adapt to var-
ious repo-level code tasks. Experimental results in Ta-
ble 1 reveal the shortcomings of existing RACG-based
methods like BM25 and AUTOCODEROVER. While
these methods perform well in specific tasks, they often
underperform when applied to other repository-level
code tasks. This discrepancy typically arises from their
inherent characteristics or task-specific optimizations.

Specifically, AUTOCODEROVER is designed with
code tools tailored for SWE-bench tasks, leveraging
expert knowledge and the unique features of SWE-
bench to optimize tool selection and design. This
optimization refines the LLM agent’s action spaces,
enabling it to gather valuable information more effi-
ciently and boosting its performance on SWE-bench
tasks (22.96%). However, these task-specific optimiza-
tions limit its flexibility and effectiveness in other cod-
ing tasks, as evidenced by its subpar results on Cross-
CodeEval Lite (Python) and EvoCodeBench compared
to other methods.

Similarly, BM25 faces the same issues. In Cross-
CodeEval Lite (Python), its similarity-based retrieval
aligns well with code completion tasks, enabling it to
retrieve relevant usage references or direct answers eas-
ily. This results in strong performance, particularly in
the ES metric. However, BM25 lacks the reasoning
capabilities of LLMs during query construction, mak-
ing its retrieval process less intelligent. Consequently,
when confronted with reasoning-heavy tasks like those
in SWE-bench, BM25 often fails to retrieve appropri-
ate code snippets, leading to poor performance.

CODEXGRAPH shows versatility and efficacy
across diverse benchmarks. Table 1 shows that
CODEXGRAPH achieves competitive results across
various repository-level code tasks with general code
graph database interfaces. Specifically, with GPT-4o as
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Table 1: Performance comparison of CODEXGRAPH and RACG baselines across three benchmarks using various LLMs. The
absence of values in SWE-bench Lite for the NO RAG method is due to issues with mismatches between the dataset and the
code when running inference scripts 2. Similarly, the missing values in EvoCodeBench are attributable to task inputs being
unsuitable for constructing the required BM25 queries, and the original paper also does not provide the corresponding imple-
mentation. Notably, the two agent-based methods, AUTOCODEROVER and CODEXGRAPH, perform poorly when equipped
with Qwen2-72b-instruct. Appendix A.4 provides a detailed explanation for this. The best results for each metric are bolded.

Model Method CrossCodeEval Lite (Python) SWE-bench Lite EvoCodeBench

EM ES ID-EM ID-F1 Pass@1 Pass@1 Recall@1

Qwen2

NO RAG 8.20 46.16 13.0 36.92 - 19.34 11.34
BM25 15.50 51.74 22.60 45.44 0.00 - -
AUTOCODEROVER 5.21 47.63 10.16 36.54 9.34 16.91 7.86
CODEXGRAPH 5.00 47.99 9.10 36.44 1.95 14.62 8.60

DS-Coder

NO RAG 11.70 60.73 16.90 47.85 - 25.47 11.04
BM25 21.90 67.52 30.60 59.04 1.17 - -
AUTOCODEROVER 14.90 59.78 22.30 51.34 15.56 20.28 7.56
CODEXGRAPH 20.20 63.14 28.10 54.88 12.06 27.62 12.01

GPT-4o

NO RAG 10.80 59.36 16.70 48.22 - 27.83 11.79
BM25 21.20 66.18 30.20 58.71 3.11 - -
AUTOCODEROVER 21.20 61.92 28.10 54.81 22.96 28.78 11.17
CODEXGRAPH 27.90 67.98 35.60 61.08 22.96 36.02 11.87

Table 2: Average token cost comparison across three bench-
marks (GPT-4o as the backbone LLM). CCEval∗ refers to
CrossCodeEval Lite (Python) and SWE-bench† refers to
SWE-bench Lite in this table.

Method CCEval∗ SWE-bench† EvoCodeBench

BM25 1.47k 14.76k -
AUTOCODEROVER 10.74k 76.01k 21.41k

CODEXGRAPH 22.16k 102.25k 24.49k

the LLM backbone, CODEXGRAPH outperforms other
RACG baselines on CrossCodeEval Lite (Python) and
EvoCodeBench, while also achieving results compara-
ble to AUTOCODEROVER on SWE-bench Lite. This
demonstrates the generality and effectiveness of the
code graph database interface design. For further de-
tails on the rationale behind CODEXGRAPH and its ad-
vantages compared to baselines, see Appendix A.8.

CODEXGRAPH increases token consumption.
CODEXGRAPH utilizes code graph databases as inter-
faces to retrieve information from the code repository
through graph queries. While this approach expands
action spaces, it also leads to increased token costs due
to the uncontrollable length of query outcomes. Addi-
tionally, CODEXGRAPH may encounter loops that pre-
vent the generation of executable graph queries. As
demonstrated in Table 2, this leads to a higher token
usage compared to existing RACG methods.

Although optimizing token efficiency is not the pri-
mary focus of this work, future efforts may explore
post-processing techniques—such as filtering out ir-
relevant or redundant information from retrieved code
snippets—to reduce token consumption and enhance
overall efficiency.
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Figure 4: Performance comparison of two querying strate-
gies on CrossCodeEval Lite (Python) and SWE-bench Lite.

5.2 Deeper Analysis of CODEXGRAPH

Optimal querying strategies vary across different
benchmarks. There are two strategies for formulat-
ing queries in each round within CODEXGRAPH: ei-
ther generating a single query or producing multiple
queries for code retrieval. Opting for a single query per
round can enhance precision in retrieving relevant con-
tent but may compromise the recall rate. Conversely,
generating multiple queries per round can improve re-
call but may reduce precision. Experimental results,
as illustrated in Figure 4, reveal that for CrossCodeE-
val Lite (Python), which involves lower reasoning dif-
ficulty (26.43 vs. 27.90 in the EM metric), the “mul-
tiple queries” strategy is more effective. In contrast,
for SWE-bench Lite, which presents higher reasoning
difficulty, the “single query” strategy yields better out-
comes (22.96 vs. 17.90 in the Pass@1 metric). These
findings provide valuable guidance for researchers in
selecting the most appropriate querying strategy. For
a detailed discussion on the optimal querying strategy
for AUTOCODEROVER, please refer to Appendix A.7.

“Write then translate” eases reasoning load. Re-
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Table 3: Ablation study about the translation LLM agent and the edges of code graphs on CrossCodeEval Lite (Python).

Model Method CrossCodeEval Lite (Python)

EM ES ID-EM ID-F1

Qwen2
CODEXGRAPH 5.00 47.99 9.10 36.44
w/o translation LLM Agent 0.50 (-4.50) 10.45 (-37.54) 0.60 (-8.50) 2.62 (-33.82)
w/o edges 4.80 (-0.20) 48.74 (+0.75) 9.10 (-0.00) 36.90 (+0.46)

DS-Coder
CODEXGRAPH 20.20 63.14 28.10 54.88
w/o translation LLM Agent 5.50 (-14.70) 53.56 (-9.58) 11.20 (-16.90) 39.75 (-15.13)
w/o edges 14.50 (-13.40) 56.64 (-11.34) 21.00 (-14.60) 47.18 (-13.90)

GPT-4o
CODEXGRAPH 27.90 67.98 35.60 61.08
w/o translation LLM Agent 8.30 (-19.60) 56.36 (-11.62) 14.40 (-21.20) 44.08 (-17.00)
w/o edges 16.40 (-11.50) 57.14 (-10.84) 22.70 (-12.90) 48.27 (-12.81)

Figure 5: WebUI for Code Chat, used for answering any questions related to code repositories.

moving the translation LLM agent requires the primary
LLM agent to independently analyze coding questions
and directly formulate graph queries for code retrieval,
increasing its reasoning load and reducing the syntactic
accuracy of the queries. Experimental results in Table 3
highlight the significant negative impact of the removal
of the translation LLM agent on CODEXGRAPH’s per-
formance across all selected LLMs in the CrossCodeE-
val Lite (Python) benchmark. Even when GPT-4o is
used as the backbone model, performance metrics ex-
hibit a significant drop (e.g., the EM metric drops from
27.90% to 8.30%), underscoring the critical role of the
translation LLM agent in alleviating the primary LLM
agent’s reasoning burden.

Edges in code graphs matter. We assess the impact
of edge information on the performance of CODEX-
GRAPH by omitting edge descriptions from the code
graph schema and instructing the LLM to avoid gen-
erating queries that rely on edges, resulting in queries
based solely on node attributes. As shown in Table 3,
this removal significantly degrades performance across
various backbone LLMs on the CrossCodeEval Lite
(Python) benchmark, with the Exact Match (EM) met-

ric for GPT-4o dropping from 27.90% to 14.50%. This
decline underscores the critical role of edges in forming
complete code graphs, as their absence increases the
failure rate of graph queries and hinders deep searches
that depend on complex condition combinations.

CODEXGRAPH is enhanced when equipped with
advanced LLMs. Code graph databases provide
CODEXGRAPH with a flexible interface, expanding
its capabilities beyond existing methods. However,
this approach demands strong reasoning and coding
abilities from the underlying LLM to formulate effec-
tive queries. As shown in Table 1, CODEXGRAPH’s
performance improves with more advanced LLMs,
progressing from Qwen2-72b-Instruct to DeepSeek-
Coder-v2 to GPT-4o. This trend indicates that as
LLMs advance in coding, reasoning, and text compre-
hension, they become better equipped to leverage code
graph databases within CODEXGRAPH, overcoming
potential retrieval failures and enhancing overall
performance across various benchmarks and metrics.
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6 Real-World Application Scenario
To showcase CODEXGRAPH’s practical value, we de-
veloped five code agents using the ModelScope-Agent
framework (Li et al., 2023). These agents address
common coding challenges that involve understanding
and navigating complex inter-file dependencies: Code
Chat (repository inquiry), Code Debugger (bug diag-
nosis and resolution), Code Unittestor (test genera-
tion), Code Generator (new feature implementation),
and Code Commentor (documentation enhancement).
Each agent integrates key CODEXGRAPH concepts to
solve specific production environment issues. Exam-
ples and details are provided in Appendix A.3, with
Figure 5 illustrating Code Chat’s WebUI.

7 Conclusion
CODEXGRAPH addresses the limitations of existing
RACG methods, which often struggle with flexibility
and generalization across different code tasks. By
integrating LLMs with code graph database interfaces,
CODEXGRAPH facilitates effective, code structure-
aware retrieval for diverse repository-level code tasks.
Our evaluations highlight its competitive performance
and broad applicability on academic benchmarks.
Additionally, we provide several code applications in
ModelScope-Agent, demonstrating CODEXGRAPH ’s
capability to enhance the accuracy and usability of
automated software development. The qualitative anal-
ysis and the schema explanation have been postponed
to Appendix A.1 and A.2, respectively.

8 Limitations
CODEXGRAPH has only been evaluated on Python. In
the future, we plan to extend CODEXGRAPH to more
programming languages, such as Java and C++. Sec-
ondly, there is room for improvement in the construc-
tion efficiency and schema completeness of the code
graph database. Faster database indexing and a more
comprehensive schema (e.g., adding edges related to
function calls) will enhance the broader applicability
of CODEXGRAPH. Finally, the design of CODEX-
GRAPH’s workflow can further integrate with existing
advanced agent techniques, such as finer-grained multi-
agent collaboration.

9 Potential Risks
Given that CODEXGRAPH requires scanning the en-
tire code repository, any sensitive information not ade-
quately sanitized by users could lead to data breaches
and privacy risks. Furthermore, the implementation
of CODEXGRAPH may partially supplant human labor,
potentially leading to job displacement, though it also
has the potential to create new opportunities in the field.

10 Ethical Considerations
The introduction of CODEXGRAPH aims to aid code
professionals in addressing repository-level coding
tasks and to assist practitioners in comprehending and
familiarizing themselves with complex code reposito-
ries. However, the quality and accuracy of CODEX-
GRAPH’s outputs remain questionable. Overreliance
on CODEXGRAPH by novice coders, who may lack the
ability to discern the veracity of its results, could lead
to misuse of the tool. Additionally, CODEXGRAPH’s
operation incurs a computational overhead, and the en-
vironmental impact of these computational resources
warrants consideration.
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A Appendix

A.1 Details of the Graph Database Schema
This schema is designed to abstract code repositories
into code graphs for Python, where nodes represent
symbols in the source code, and edges represent rela-
tionships between these symbols.

A.1.1 Node Types
In the code graph, each node represents a distinct el-
ement of Python code, with each node type character-
ized by a specific set of attributes that capture its meta-
data. These node types and their associated attributes
are comprehensively outlined in the Nodes Schema.

A.1.2 Edge Types
Edges in the code graph define the relationships be-
tween nodes, illustrating how various elements within
Python code are interconnected. Each edge type rep-
resents a specific kind of relationship, which helps to
clarify the overall structure and flow of the code. The
defined edge types, along with the relationships they
represent, are detailed in the Edges Schema below:

A.2 Qualitative Analysis
CODEXGRAPH demonstrates robustness and adapt-
ability across various benchmarks. In this section, we
illustrate how CODEXGRAPH effectively addresses a
GitHub issue through a bug fix task example. The pro-
cess involves collecting code context and generating
a patch based on the issue description and the corre-
sponding codebase. The workflow is depicted in Fig-
ure 6. The specific issue, labeled as “django-11848”
and included in the SWE-bench lite dataset, involves a
flaw in the Django project related to date parsing logic.

The issue centers on the ‘parse http date’ function,
which parses dates according to the HTTP RFC7231
section 7.1.1.1. The function supports three date for-
mats: RFC1123, RFC850, and ASCTIME. However,
the problem arises due to the hardcoded logic for in-
terpreting two-digit years, which does not dynami-
cally adjust based on the current year, leading to non-
compliance with the RFC 7231 standard.

Given this issue description, CODEXGRAPH begins
by analyzing the potential cause, identifying that the
core of the issue lies in the ‘parse http date function’.
To address this, it is essential to retrieve the code of the
‘parse http date’ function for further analysis. Here,
CODEXGRAPH employs a combination of the “gener-
ating a single query” and “Write then translate” strate-
gies. Specifically, the primary LLM agent first gener-
ates a natural language query, which is then translated
into a Cypher query by the translation LM agent.

By executing this Cypher query, CODEXGRAPH re-
trieves the relevant data from the graph database and
returns it to the primary LLM agent for further anal-
ysis. Upon analyzing the results, the primary LLM
agent concludes that to accurately locate the problem-
atic function, it is necessary to identify the file path of
the module containing the ‘parse http date function’.
After another iteration, the primary LLM agent suc-
cessfully identifies the bug’s location and generates the
required patch to fix it.

The CODEXGRAPH demonstrates the ability to it-
erate and refine its analysis, effectively handling com-
plex code issues. By identifying the exact location of
the bug and proposing a patch, the CODEXGRAPH re-
solves the problem, showcasing its utility in automated
code analysis and bug fixing.

A.3 Real-World Application
In this section, we present the WebUI interface for
CODEXGRAPH, showcasing its five practical applica-
tions: Code Chat, Code Debugger, Code Unittestor,
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Graph Database Schema: Nodes

## Nodes
MODULE:

Attributes:
- name (String): Name of the module (dotted name)
- file_path (String): File path of the module

CLASS:
Attributes:

- name (String): Name of the class
- file_path (String): File path of the class
- signature (String): The signature of the class
- code (String): Full code of the class

FUNCTION:
Attributes:

- name (String): Name of the function
- file_path (String): File path of the function
- code (String): Full code of the function
- signature (String): The signature of the function

FIELD:
Attributes:

- name (String): Name of the field
- file_path (String): File path of the field
- class (String): Name of the class the field belongs to

METHOD:
Attributes:

- name (String): Name of the method
- file_path (String): File path of the method
- class (String): Name of the class the method belongs to
- code (String): Full code of the method
- signature (String): The signature of the method

GLOBAL_VARIABLE:
Attributes:

- name (String): Name of the global variable
- file_path (String): File path of the global variable
- code (String): The code segment in which the global variable is defined

Graph Database Schema: Edges

## Edges
CONTAINS:
Source: MODULE
Target: CLASS or FUNCTION or GLOBAL_VARIABLE

HAS_METHOD:
Source: CLASS
Target: METHOD

HAS_FIELD:
Source: CLASS
Target: FIELD

INHERITS:
Source: CLASS
Target: CLASS (base class)

USES:
Source: FUNCTION or METHOD
Target: GLOBAL_VARIABLE or FIELD
Attributes:

- source_association_type (String): FUNCTION, METHOD
- target_association_type (String): GLOBAL_VARIABLE, FIELD
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GitHub Issue

Description: `django.utils.http.parse_http_date`  two digit year check is incorrect

Recipients of a timestamp value in rfc850-date format, which uses a two-digit year, 
MUST interpret a timestamp that appears to be more than 50 years in the future as 
representing the most recent year in the past that had the same last two digits. 
Current logic is hard coded to consider 0-69 to be in 2000-2069, and 70-99 to be 
1970-1999, instead of comparing versus the current year.

Analysis & Natural Language Queries

# Analysis #
The problem is that the current logic for interpreting two-digit years is hardcoded to 
consider years 0-69 as 2000-2069 and years 70-99 as 1970-1999. This approach does 
not comply with the RFC 7231 standard, which states that a timestamp in the rfc850-
date format with a two-digit year should be interpreted as the most recent past year 
if it appears to be more than 50 years in the future.

To address this issue, we need to locate the `parse_http_date` function within the 
`django.utils.http` module and examine its implementation. This will help us 
understand the current logic and identify the necessary changes to comply with the 
RFC 7231 standard.

# Text Query #  
Retrieve the code of the function named `parse_http_date` from the module 
`django.utils.http`.

Graph Query Translation

MATCH (m:MODULE {name:'django.utils.http'})-[:CONTAINS]->
(f:FUNCTION {name: 'parse_http_date'})
RETURN f.code

Graph Query Execution Result

def parse_http_date(date):
   for regex in RFC1123_DATE, RFC850_DATE, ASCTIME_DATE:
      m = regex.match(date)
      if m is not None:
          break
      else:
          raise ValueError("%r is not in a valid HTTP date 
format" % date)
      try:
          year = int(m.group('year'))
          if year < 100:
              if year < 70:
                  year += 2000
              else:
                  year += 1900
          month = MONTHS.index(m.group('mon').lower()) + 1
      ...
   return calendar.timegm(result.utctimetuple())

Analysis && Bug Location

# Analysis #
We have identified the problematic function `parse_http_date` in the 
`django.utils.http` module. The file path for this module is `django/utils/http.py`. 
The issue lies in the hardcoded logic for interpreting two-digit years, which does not 
comply with RFC 7231. The function needs to be updated to dynamically determine 
the century based on the current year.With the file path and the function code in 
hand, we have sufficient context to proceed with writing a patch to fix the issue.

# Bug Location #
The bug is located in the `parse_http_date` function in the module 
`django.utils.http`, located at `django/utils/http.py`

Modification Patch

def parse_http_date(date):
   ...
       year = int(m.group('year'))
       if year < 100:
-         if year < 70:
-            year += 2000
-         else:
-            year += 1900
+         current_year = datetime.datetime.utcnow().year
+         current_century = current_year - (current_year % 100)
+         if year > (current_year % 100) + 50:
+            year += current_century - 100
+         else:
+            year += current_century
          month = MONTHS.index(m.group('mon').lower()) + 1
   ...
   return calendar.timegm(result.utctimetuple())

<file>django/utils/http.py</file>

Issue id: django__django-11848

Analysis && Bug Location

# Analysis #
The `parse_http_date` function is designed to parse dates according to the HTTP 
RFC7231 section 7.1.1.1. The function supports three date formats: RFC1123, 
RFC850, and ASCTIME. The current implementation uses regular expressions to 
match the date format and then extracts the year, month, day, hour, minute, 
and second components.

# Text Query #  
Retrieve the file path of the module `django.utils.http`.

Graph Query Translation

MATCH (m:MODULE {name: 'django.utils.http'})
RETURN m.file_path

Graph Query Execution Result

'django/utils/http.py'

Figure 6: Workflow for Resolving Issue #11848 in Django’s ‘parse http date’ Function

Code Generator, and Code Commentor. The inter-
face is designed to facilitate user interaction, provid-
ing a streamlined and intuitive environment for various
code-related tasks. We built the WebUI interface us-
ing Streamlit7, a powerful and user-friendly framework
that allows for the rapid development of interactive web
applications.

A.3.1 Example of Code Chat

Code Chat allows users to inquire about a code reposi-
tory, providing insights into code structure and function
usage. This functionality is particularly useful for un-
derstanding complex codebases, identifying dependen-
cies, and exploring the usage of specific classes, meth-
ods, and functions. Figure 8 and 9 show an example
of Code Chat. The user’s question is “Summarize the
‘CodexGraphAgentChat’ class, what has method, and
what for”.

7Streamlit: https://streamlit.io/

Figure 8: Using Cypher queries to retrieve informa-
tion about the ‘CodexGraphAgentChat’ class, from the
code repository.
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(a) Code Debugger (b) Code Unittestor

(c) Code Generator (d) Code Commentor
Figure 7: WebUI for Code Debugger, Code Unittestor, Code Generator, and Code Commentor.

Figure 9: Once the necessary information is gathered,
Code Chat constructs a comprehensive response to the
user’s question. This response includes a summary of
the ‘CodexGraphAgentChat’ class, a list of its meth-
ods, and a description of what each method does.

A.3.2 Example of Code Debugger

The Code Debugger diagnoses and resolves bugs by
applying iterative reasoning and information retrieval
to suggest targeted fixes. It utilizes Cypher queries to
analyze the code repository, identify the cause of the
issue, and recommend precise modifications.

Figure 10 to 19 show an example of Code Debugger.

The user’s input is a real issue8 where the outcome does
not match the expected behavior. The Code Debugger
first analyzes the problem, then uses Cypher queries to
retrieve relevant information and infer the cause of the
bug. Finally, it provides an explanation of the bug and
suggests the location for the modification.

Figure 10: The issue describes a problem where the
outcome does not match the expected behavior.

8https://github.com/modelscope/
modelscope-agent/pull/549
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Figure 11: Analyzing the problem and retrieving infor-
mation using Cypher queries.

Figure 12: Executing Cypher queries to search the code
for relevant information.

Figure 13: Analyzing the retrieved information to iden-
tify potential causes of the bug.

Figure 14: Performing additional Cypher code searches
to gather more information.

Figure 15: Inferring the cause of the bug based on the
analysis of the retrieved information.

Figure 16: Identifying the precise location of the bug
in the codebase.

Figure 17: Providing a detailed explanation of the issue
and the underlying cause of the bug.
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Figure 18: Suggesting the first modification to resolve
the bug.

Figure 19: Suggesting the second modification to en-
sure the bug is resolved.

A.3.3 Example of Code Unittestor
Figure 20 is an example of Code Unittestor. The user’s
input is: “Generate test cases for TaskManager.” The
CodexGraph agent will first retrieve all methods and
inheritance relationships in ‘TaskManager’, and then
generate detailed test case code.������������		�
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Figure 20: Generated detailed unit test code for the
‘TaskManager’ class, covering its methods and inher-
itance relationships.

A.3.4 Example of Code Generator

Figure 21 and 22 show an example of Code Genera-
tor. The user has requested a function to retrieve the
number of input and output tokens of ‘CypherAgent’.
However, the challenge is identifying the correspond-
ing fields within ‘CypherAgent’ as this information is
not provided in the user’s input.

Figure 21: The thought process in determining how to
identify the relevant fields.

Figure 22: By using Cypher queries, it was discovered
that the corresponding fields are ‘input token num’ and
‘output token num’, which enables the generation of
the correct code.

A.3.5 Example of Code Commentor

Figure 23 and 24 show an example of Code Commen-
tor. The Code Commentor analyzes code to provide de-
tailed comments, enhancing code readability and main-
tainability. It leverages the code graph database to un-
derstand the code’s structure and behavior, ensuring ac-
curate and informative comments.

Figure 23: The thought process: Understand the ‘Task’
class and ‘add item’ method.
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Figure 24: By using Cypher queries, the specific im-
plementation of the return function was obtained, and
the return type was clarified.

A.4 Challenges with Agent-Based Methods
Table 1 shows that both AUTOCODEROVER and
CODEXGRAPH, which are agent-based RACG meth-
ods, unexpectedly perform poorly across all bench-
marks when using Qwen2-72b-instruct, even falling
behind BM25. We believe this is due to the complexity
and fragility of the agent workflow. In particular, when
handling repository-level code tasks, the agent system
must simultaneously manage long-context understand-
ing, code reasoning, tool or API invocation, and for-
matted output. This multi-faceted process can easily
lead to error accumulation from the very beginning, as
every step in the workflow is critical. We argue that this
issue is a general weakness of agent systems equipped
with relatively “small” LLMs, rather than a problem
specific to our method.

A.5 Rationale Behind “Write then Translate”
The “write then translate” strategy is designed to
streamline the task of translating high-level reasoning
into executable graph queries, minimizing the likeli-
hood of error propagation. The workflow of the trans-
lation LM agent is straightforward: we provide the
schema of the code graph database along with task-
specific translation instructions as the system prompt
for the LLM. Based on this schema and the natural
language queries generated by the primary LM agent,
the translation agent produces the corresponding for-
mal graph queries.

Figure 3 outlines the general pipeline, showing how
this separation of tasks simplifies the workflow. It is
also important to highlight that graph query languages
(e.g., Cypher) are part of the internal knowledge of
many modern LLMs, as they are often pre-trained on
programming languages and code. Consequently, pow-
erful models such as GPT-4o can generate accurate and
efficient graph queries in a zero-shot setting without ex-
tensive fine-tuning or additional instructions.

A.6 Indexing Efficiency Across Benchmarks
In our experiments across three academic benchmarks,
we observe variations in indexing times depending on

the complexity of the code repositories. For smaller
repositories in CrossCodeEval and EvoCodeBench, the
indexing process typically completes within seconds to
minutes. Specifically, we sample 100 tasks from Cross-
CodeBench, each containing an average of 25.6 Python
files. The average time to construct the graph database
for these tasks is 72.2 seconds.

For larger, production-level repositories in SWE-
bench (such as Django, SymPy, and Scikit-Learn), the
process takes considerably more time. These reposito-
ries contain an average of 312 Python files, and build-
ing the corresponding graph databases requires an aver-
age of 5 hours and 12 minutes. These times depend on
the available computational resources, so the provided
values serve as general reference points.

To improve efficiency, we optimize the indexing pro-
cess by calculating differences between repository ver-
sions and re-indexing only the modified sections. This
approach significantly reduces the time required for
subsequent indexing.

While indexing speed is relevant for practical ap-
plications, it is not the primary focus of our research.
However, we acknowledge that fast and accurate static
analysis of large codebases remains a challenge in soft-
ware engineering. Even state-of-the-art tools like pyan
and tree-sitter encounter scalability issues. As more ef-
ficient static analysis tools emerge, we plan to replace
our current tool, Sourcetrail, with superior alternatives
to further enhance performance.

A.7 Ablation Study on Query Strategies
We conduct an ablation study to evaluate the impact of
query strategies on performance, specifically compar-
ing single-query versus multiple-query approaches for
AutoCodeRover. In the original AutoCodeRover setup,
a “multiple queries in one round” strategy is employed
by default, due to the simplicity of their code search
APIs, which allows efficient retrieval without imposing
a significant computational burden.

To ensure fairness, we evaluate both single-query
and multiple-query strategies on the CrossCodeEval
and SWE-bench datasets. The results are shown in
Table 4. The results indicate that the multiple-query
strategy consistently improves performance across both
benchmarks.

A.8 CODEXGRAPH Dissection
Rationale. CODEXGRAPH employs a graph-based
approach to represent and interact with code reposi-
tories, offering significant advantages over traditional
methods. By using static analysis to convert code-
bases into graph structures, where nodes represent code
entities (e.g., classes, functions, modules) and edges
represent relationships (e.g., inheritance, containment,
usage), CODEXGRAPH enables more precise code re-
trieval. This graph-based structure allows Large Lan-
guage Models (LLMs) to execute graph queries based
on structural relationships, rather than relying solely on
lexical or similarity-based retrieval. This capability is
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Table 4: Performance comparison between different strategies of AUTOCODEROVER on benchmarks.

Model Strategy CrossCodeEval (EM) CrossCodeEval (ID-F1) SWE-bench (Pass@1)

DS-Coder single query 12.30 47.40 14.01
multiple queries (default) 14.90 51.34 15.56

GPT-4o single query 14.40 46.44 22.18
multiple queries (default) 21.20 54.81 22.96

particularly beneficial when dealing with multi-file or
complex codebases, as it supports multi-hop reasoning,
allowing the system to trace dependencies across files
and navigate code hierarchies effectively.

Advantages. The graph-based approach of CODEX-
GRAPH demonstrates superior performance compared
to traditional solutions like AUTOCODEROVER and
BM25, especially in handling complex code structures
and overcoming lexical limitations.

• AUTOCODEROVER excels in specific tasks due to
its task-specific code search APIs, it struggles with
more general tasks and complex repository struc-
tures, often failing when functions or variables are
re-exported in initialization files.

• BM25, relying on lexical similarity, is limited to
surface-level matching and cannot comprehend the
underlying structure of the code.

In contrast, CODEXGRAPH’s graph representation en-
ables it to trace connections and retrieve correct code
elements even in complex cases like re-exports or in-
direct references. This structural understanding, com-
bined with the ability to perform multi-hop reasoning,
allows CODEXGRAPH to deliver more flexible, accu-
rate, and contextually aware results, making it partic-
ularly effective for a broad range of coding tasks in
large-scale repositories.
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