
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12705–12723

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

CSR-Bench: Benchmarking LLM Agents in Deployment of

Computer Science Research Repositories
Yijia Xiao†* Runhui Wang‡* Luyang Kong‡* Davor Golac‡ Wei Wang†

†University of California, Los Angeles
‡ Amazon Web Services

* Equal Contribution

{yijia.xiao,weiwang}@cs.ucla.edu

{runhuiw,luyankon,dgolac}@amazon.com

Abstract

The increasing complexity of computer sci-
ence research projects demands more effective
tools for deploying code repositories. Large
Language Models (LLMs), such as Anthropic
Claude and Meta Llama, have demonstrated
significant advancements across various fields
of computer science research, including the au-
tomation of diverse software engineering tasks.
To evaluate the effectiveness of LLMs in han-
dling complex code development tasks of re-
search projects, particularly for NLP/CV/AI/M-
L/DM topics, we introduce CSR-Bench, a
benchmark for Computer Science Research
projects. This benchmark assesses LLMs from
various aspects including accuracy, efficiency,
and deployment script quality, aiming to ex-
plore their potential in conducting computer
science research autonomously. We also intro-
duce a novel framework, CSR-Agents, that uti-
lizes multiple LLM agents to automate the de-
ployment of GitHub code repositories of com-
puter science research projects. Specifically, by
checking instructions from markdown files and
interpreting repository structures, the model
generates and iteratively improves bash com-
mands that set up the experimental environ-
ments and deploy the code to conduct research
tasks. Preliminary results from CSR-Bench
indicate that LLM agents can significantly en-
hance the workflow of repository deployment,
thereby boosting developer productivity and
improving the management of developmental
workflows.

1 Introduction

With the rapid evolution of Large Language Mod-
els (LLMs), it has been demonstrated that LLMs
have increased reasoning ability over the last few
years, making intelligent agents based on LLM pos-
sible. Current agent-related applications in com-
puter science include code writing (Codex (Chen
et al., 2021), Deepseek Code (Guo et al., 2024),
CodeLLaMA (Rozière et al., 2023), etc.), code

base generation (MetaGPT (Hong et al., 2023),
Agentless (Xia et al., 2024a) and CodeStar(Li et al.,
2023)), code correction (SWEBench (Jimenez
et al., 2024)), and more.

In computer science research projects, the as-
sociated codebases grow very rapidly, and a self-
consistent codebase typically has several parts, in-
cluding the instruction file (e.g., the README file),
associated code packages, and related data. The
instruction file usually contains an overview of the
project, including environment setup, data prepa-
ration (e.g., data download and pre-processing,
model weights download and preparation), model
training process, performance evaluation, and the
setup of a demo project (e.g., a chatbot project that
interacts with users). In computer science, presti-
gious conferences, including NAACL, ACL, ICLR,
NeurIPS, CVPR, KDD, etc., encourage researchers
to release source code for reproducibility of their
accepted papers, and GitHub is the top choice for
maintaining codebases for most researchers. A
major step of computer science research is repro-
ducing existing work, which is essential to gain
insights and propose novel methodologies. How-
ever, even for well-documented and self-consistent
projects, the setup process requires manual efforts
and cannot be fully automated; many steps of set-
ting up a code repository are rather mechanical,
such as installing/updating dependency packages
to configure the environment, downloading data,
updating the relevant script/data directories, etc.,
which is tedious and often time-consuming.

To tackle such challenges, we propose to use
LLM agents for automating the deployment of code
repositories of research projects, and build a bench-
mark, Computer Science Research Benchmark
(CSR-Bench) for evaluating LLM Agents on code
repository deployment tasks. We also propose a
multi-agent collaborative framework, CSR-Agents,
to automate the deployment of code repositories by
coordinating multiple LLM agents with different

12705

expertise and iterative improvement with provided
tools. From more than ten major NLP/CV/AI/M-
L/DM conferences, we collected the 100 highly
rated repositories1, which are carefully selected
from an initial candidate set that has more than
1500 top-star repositories. Our selection criteria
include topic diversity and self-containment2 so
that CSR-Bench can provide a comprehensive eval-
uation of LLM agents on code deployment tasks
including instruction generation, command execu-
tion, and self-improvement with tools.

To the best of our knowledge, CSR-Bench is
the first benchmark for the deployment of com-
puter science research projects, providing a refer-
ence for evaluating LLM agents. We note that the
success of code deployment depends not only on
code generation, but also on many non-coding fac-
tors including tasks like experimental environment
setup, data/model preparation, correcting bash com-
mands, searching for solutions, and etc. Our pro-
posed multi-agent framework, CSR-Agents, aims
to achieve automation of code deployment, which
can accelerate the progress for computer science
research projects.

Our contributions are as follows:

• We introduce CSR-Bench to assess LLM’s
ability to understand instruction manuals and
complex project structures, generate exe-
cutable commands for code deployment, and
solve errors during deployment.

• We propose the CSR-Agents framework,
which leverages multi-agent cooperation with
specialized capabilities including instruction
comprehension, command execution, error
log analysis, and error correction with search-
ing and retrieval tools.

• We design a standardized testing system for re-
producibility in CSR-Bench, which can make
CSR-Agents a CI/CD3 standard system of
computer science code repository deployment,
ensuring ease of use, reusability, and im-
proving communication and collaboration effi-
ciency in computer science research projects.

• We evaluated a wide range of foundation
models for CSR-Agents on CSR-Bench. Re-
sults indicate that LLM agents can potentially

1With appropriately permissive licenses.
2The information within the repository is mostly sufficient

for a successful deployment.
3Continuous Integration and Continuous Delivery.

accelerate the process of repository deploy-
ment, thereby boosting researcher productiv-
ity. However, it is still challenging to achieve
full automation.

2 Related Work

Coding LLMs. Large Language Models (LLMs)
have become the go-to solution for a wide array of
coding tasks due to their exceptional performance
in both code generation and comprehension (Chen
et al., 2021). These models have been success-
fully applied to various software engineering ac-
tivities, including program synthesis (Patton et al.,
2024; Chen et al., 2021; Li et al., 2022a; Iyer et al.,
2018), code translation (Pan et al., 2024; Roziere
et al., 2020, 2021), program repair (Xia et al.,
2023; Xia and Zhang, 2023; Monperrus, 2018;
Bouzenia et al., 2024), and test generation (Deng
et al., 2023; Xia et al., 2024b; Deng et al., 2024;
Lemieux et al., 2023; Kang et al., 2023). Beyond
general-purpose LLMs, specialized models have
been developed by further training on extensive
datasets of open-source code snippets. Notable
examples of these code-specific LLMs include
CODEX (Chen et al., 2021), CodeLlama (Rozière
et al., 2023), StarCoder (Li et al., 2023; Lozhkov
et al., 2024), and DeepSeek-Coder (Guo et al.,
2024). Additionally, instruction-following code
models have emerged, refined through instruction-
tuning techniques. These include models such as
CodeLlama-Inst (Rozière et al., 2023), DeepSeek-
Coder-Inst (Guo et al., 2024), WizardCoder (Luo
et al., 2023), Magicoder (Wei et al., 2023), and
OpenCodeInterpreter (Zheng et al., 2024).

Benchmarking LLM-based coding tasks. To
assess the capabilities of LLMs in coding, a vari-
ety of benchmarks have been proposed. Among
the most widely utilized are HUMANEVAL (Chen
et al., 2021) and MBPP (Austin et al., 2021), which
are handcrafted benchmarks for code generation
that include test cases to validate the correctness of
LLM outputs. Other benchmarks have been devel-
oped to offer more rigorous tests (Liu et al., 2023a),
cover additional programming languages (Zheng
et al., 2023; Cassano et al., 2023), and address
different programming domains (Jain et al., 2024;
Hendrycks et al., 2021; Li et al., 2022b; Lai et al.,
2023; Yin et al., 2022).

More recently, research has shifted towards eval-
uating LLMs on real-world software engineering
challenges by operating on entire code reposito-

12706

ries rather than isolated coding problems (Jimenez
et al., 2024; Zhang et al., 2023; Liu et al.,
2023b). A notable benchmark in this area is SWE-
bench (Jimenez et al., 2024), which includes tasks
requiring repository modifications to resolve actual
GitHub issues. The authors of SWE-bench have
also released a more focused subset, SWE-bench
Lite (swe, 2024), which contains 300 problems cen-
tered on bug fixing that only involves single-file
modifications in the ground truth patches. ML-
Bench (Liu et al., 2023c) is a benchmark for eval-
uating large language models and agents for Ma-
chine Learning tasks on reporitory-level code. It
involves 18 repositories and focuses on code gener-
ation and interactions with Jupyter Notebooks.

Repository-level coding. The rise of agent-
based frameworks (Xi et al., 2023) has spurred
the development of agent-based approaches to soft-
ware engineering tasks. Devin (dev, 2024) (and its
open-source counterpart OpenDevin (ope, 2024b))
is among the first comprehensive LLM agent-based
frameworks. Devin employs agents to first perform
task planning based on user requirements, then al-
lows them to use tools like file editors, terminals,
and web search engines to iteratively execute the
tasks. SWE-agent (Yang et al., 2024) introduces a
custom agent-computer interface (ACI), enabling
the LLM agent to interact with the repository envi-
ronment through actions like reading and editing
files or running bash commands. Another agent-
based approach, AutoCodeRover (Zhang et al.,
2024), equips the LLM agent with specific APIs
(e.g., searching for methods within certain classes)
to effectively identify the necessary modifications
for issue resolution. Beside these examples, a vari-
ety of other agent-based approaches have been de-
veloped in both open-source (Gauthier, 2024) and
commercial products (Bouzenia et al., 2024; Chen
et al., 2024; Ma et al., 2024; lin, 2024; fac, 2024;
ibm, 2024; ope, 2024a; mar, 2024; ama, 2024).

Unlike existing benchmarks and agent-based
frameworks, which focus on the code generation/-
completion tasks, our proposed CSR-Bench and
CSR-Agents focus on the code deployment task,
which is under-studied in the field.

3 CSR-Bench

In this section, we provide the problem statement
for code deployment in CSR-Bench, introduce the
code repository collection process of computer sci-
ence research projects, and show their statistics.

3.1 Problem Statement

The CSR-Bench consists of a collection of com-
puter science research repositories from GitHub
and these repositories are used for evaluating the
capabilities of LLMs in code deployment tasks.
For each repository, the deployment tasks typically
include: (1) setting up the environment; (2) prepar-
ing necessary data and model files; (3) conducting
model training; (4) demonstration of inference; (5)
performance evaluation. To complete these tasks,
we prompt LLMs to generate executable bash com-
mands by using the README file as the primary
source of information and other repository contents
(source code, bash scripts, directory structure, and
etc.) as supplementary information.

Metric. During the evaluation in CSR-Bench,
the large language model will be prompted to gen-
erate executable commands for the corresponding
sections for each repository. we use the completion
rate as a key metric, defined as the ratio between
number of successfully executed commands and
the total number of commands executed.

3.2 Repository Collection

In CSR-Bench, we aim to collect a diverse and
comprehensive collection of code repositories of
computer science-related research projects. GitHub
is a good data source for this purpose and it pro-
vides tags for identifying most relevant reposi-
tories. Some example tags are “nlp”, “naacl”,
and “emnlp2024”. Since CSR-Bench focuses on
computer science-related repositories, we filter the
repositories by tags of various conference names
and categories to ensure they include diverse topics.

For repository selection, we use GitHub tags
to obtain an initial set of over 1500 repositories
that are relevant to computer science research top-
ics and categorizing them into five areas: Natu-
ral Language Processing, Computer Vision, Large
Language Models, Machine Learning, and Interdis-
ciplinary topics. Notably, we collect repositories
related to large language models because nowadays
LLM-related research projects are increasingly pop-
ular due to its foundational impact in various areas
of computer science.

We obtain 100 high-quality code repositories
for CSR-Bench in the following steps. First, we
categorize this initial set and sort them by the num-
ber of GitHub stars. Next, we manually check the
content of each repository starting from the top of
the sorted list. In this step, we only keep reposi-

12707

CVPR
18.1%

ECCV
13.9%

NeurIPS
12.5%

ICLR
12.5%

ICCV
11.1%

Others
11.1%

AAAI
6.94%

NAACL
5.56%

ICML
4.17%

IJCA
I

4.17%

Figure 1: Conf Distribution of CSR-Bench

ML
25%

CV
19%

LLM
19%

NLP
19% In

te
rd
is
ci
pl
in
ar
y

19
%

Gen. & Diff. Models

6%

GNNs &
 Tr

an
sf.

6%

Se
lf-

Su
p.

 &
 C

on
tr
. L

ea
rn

.

6%M
od

el
 I

nt
er

p.
 &

 O
pt

.
6%

3D
 V

ision &
 R

ec.

6%

Im
g Segm

. & Enh.

6%

Pose Estim. & Obj Det.

6%

LLM Dev. & Opt.6%

Infer. & Eff. in LLMs

6%

LLM
 App

l. &
 Ev

al.

6%

Tx
t C

la
ss

if.
 &

 E
xt

r.

6%

M
ul

ti
.
&

 K
no

w
l.

S
ys

.
6%

Transf. Learn. &
 D

om
. A

dap.

6%

Health. & Bioinf.

6%

Robotics & Auto. Sys.

6%

Comp. Creativ. & Arts6%

Figure 2: Topic Distribution of CSR-Bench

tories that contain sufficient information in their
README files. We also skip the repositories that
do not contain deployable code. Finally, we check
the licenses of the repositories and make sure they
are permissive.

3.3 Statistics of CSR-Bench

This section provides an in-depth analysis of the
traits of repositories in CSR-Bench. We examine
the diversity and breadth of topics covered, as well
as detailed statistics about the documentation and
structure of these repositories.

In CSR-Bench, the README files and directory
structures provide critical insights into the usability
and organization of repositories. We use the follow-
ing figures to analyze the lengths of README file
and number of files, and offer a quantitative view of
content complexity and organizational depth. The
length of README file is an important metric be-
cause the most LLMs have limits on the input token
length. The number of files indicate the complexity
of the code repository.

500 1000 1500 2000 2500 3000
Token Count in README.md

0

2

4

6

8

10

12

Nu
m

be
r o

f R
ep

os
ito

rie
s

Distribution of README.md Token Counts
KDE
Mean: 1081.34
Median: 885.50

Figure 3: Number of Tokens per README

Figure 3 shows the distribution of token counts

in README files, highlighting the extent of docu-
mentation, which is essential for user understand-
ing and repository usability. Since the mean to-
ken counts is just over 1000 and the maximum
counts is around 3000, most LLMs can take the
full README files as input.

0 100 200 300 400 500 600 700
File Count

0

5

10

15

20

25

30

Nu
m

be
r o

f R
ep

os
ito

rie
s

Distribution of Repository File Counts
KDE
Mean: 125.21
Median: 61.00

Figure 4: Number of Files per Repository

Figure 4 depicts the distribution of file counts in
repositories, reflecting their complexity and scale
based on the number of files. Because the number
of files in most repositories are in the lower hun-
dreds, it is feasible to leverage directory structure
for code deployment with LLMs.

0 500 1000 1500 2000 2500 3000
Star Count

0

2

4

6

8

10

12

14

Nu
m

be
r o

f R
ep

os
ito

rie
s

Distribution of Repository Stars
KDE
Mean: 592.92
Median: 433.00

Figure 5: Stargazer Distribution

12708

Figure 5 shows the distribution of star counts in
selected repositories. The average count is over
590, which means that these repositories receives
significant attention and indicates they are gener-
ally well maintained.

0 50 100 150 200 250 300
Issue Count

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f R
ep

os
ito

rie
s

Distribution of Repository Issue Counts
KDE
Mean: 48.05
Median: 28.50

Figure 6: Size of Issue Database

Figure 6 shows the distribution of issues counts
in selected repositories. On average, each reposi-
tory contains over 48 issues, indicating these repos-
itories have a good amount of engagements with
the open-source community and sufficient support
from the authors. Therefore, the information in the
issues are valuable for the deployment tasks.

4 CSR-Agents

In this section, we propose CSR-Agents, a multi-
agent framework that leverages LLMs for different
tasks and achieves effective cooperation among
agents for code deployment tasks. We introduce
our standardized environment for code deployment,
functionalities of different agents, and their cooper-
ation workflow.

4.1 Code Deployment with LLM

For each repository, we use the README file un-
der the root folder as the major source of informa-
tion and prompt LLMs to generate executable bash
commands for different steps of deployment includ-
ing environment setup, data preparation, training,
inference and evaluation.

To achieve reproducbility and safety, we use
the Docker container to isolate the code deploy-
ment environment. We build a standard Docker im-
age that is equipped with essential tools like bash,
Conda, GCC, Make, Python, etc. for evaluations
across all repositories and various LLMs. In the
container, we use a counter to count the total num-
ber of scripts that needed to be executed and the
number of scripts that were executed successfully.
In this way, we safeguard the entire computing
system, especially from bash command executions

that involve system-level permissions and could
potentially break the whole system.

We note that the use of Docker is not part of the
original repositories. The introduction of Docker
into our evaluation system can ensure that each
time we conduct the evaluation, we start from the
same environment for fair comparisons across dif-
ferent LLMs, and the evaluation of one repository
does not affect any other repositories. Another
benefit of using Docker is that we can speed up
the evaluation by running different evaluations in
separate docker instances at the same time.

The LLM generated bash commands may not
work well for successful deployment due to various
reasons. First, in some README files, some basic
directives (such as conda and pip) were missing,
so the LLMs could not generate these commands at
the first attempt. Secondly, the installation of pack-
ages may not be completed in a single attempt and
usually needs several iterations of trial-and-error.
Thirdly, some steps of the deplopyment require
checking additional information like GitHub issues
of the corresponding repositories and from the in-
ternet. To handle these issues, we design a group
of LLM agents that cooperate effectively.

4.2 CSR-Agent: LLM Agent Design

In CSR-Agents, we adopt an iterative trial-and-
error process for successful code deployment.
Specifically, LLM takes README, directory struc-
ture, and error logs from failed command execution
as input and generates bash commands to complete
the deployment tasks. The system comprises five
agents: Command Drafter, Script Executor, Log
Analyzer, Issue Retriver, and Web Searcher. These
agents collectively facilitate the deployment of a
code repository. The complete workflow is shown
in Figure 7.

Command Drafter: This agent reads the
README files and directory structure and gen-
erates a draft script containing bash commands for
deployment. Then, it divides the entire script into
five sections, each corresponding to a step in the
code repository deployment. This sectional divi-
sion also serves as an evaluation standard later on.

Script Executor: This agent receives the draft
commands from the Command Drafter and execute
the commands in our standardized Docker environ-
ment. After execution, it collects logs from bash,
including standard output and errors. Note that dur-
ing bash script execution, no explicit return code

12709

Web Searcher:

Searches the web for fixes
when internal solutions are
insufficient, integrating
results.

Large Language
Model

Large Language
Model

Large
Language
Model

Large
Language
Model

User
Execution
Results

Execution Logs

Repository X’s
File Structure

Repository X’s
README Structure

Script Drafter
Agent

STEP 2STEP 4

STEP 3

STEP 1

Development EnvironmentLOG

Log Analyzer Agent

“Repository X’s
README Instructions”

Web Searcher Agent

Issue Retriever

Agent

Database

Bash Scripts

Bash Scripts

Deployment
Script Drafts

Obtain
Scripts Logs

Log Analysis

LOG

Execution Logs

LOG
Execution
Logs

Refined

Scripts

Refined Scripts

Issue Retriever:

Searches database
for relevant
issue solutions
to refine and
correct commands.

Script Drafter: Extracts and organizes deployment scripts
from README, ensuring correct paths and formatting.

Log Analyzer:

Reviews logs, identifies
issues, and refines scripts
for successful execution.

Figure 7: Workflow of CSR-Bench

is provided by bash. We experimented with set-
ting predefined special prompt to bash and parse
the return code from the returned output and error
message. However, we find that a good quantity
of commands do not have return code, making the
feedback from bash not informative to other agents.
To address this challenge, we leverage the LLM
in the executor, instructing it to provide feedback
based on the standard output and error messages.
We then parse this feedback to generate a return
code: if the return code is zero, then the command
is executed successfully; otherwise, the command,
output, and error messages are logged and sent to
the Log Analyzer.

Log Analyzer: This agent reads the logs and
the associated bash command, and checks for up-
dates, missing prerequisites, or script paths that
need updating. It also identifies any other missing
components and returns a curated command for a
successful execution. We note that this agent only
reply on the internal knowledge of the LLM and
may not be able to correctly solve the errors.

Issue Retriever: This agent takes in the com-
mand, standard output and error message and
search them against the issue database we col-
lected from the repository. It leverages RAG and its
pipeline requires a search algorithm to query the in-

put against the database. In our design, the queries
are the combination of the commands executed,
standard output and error messages. The database
contains GitHub issues and their communication
records for the repository. We experimented with
BM25 and Contriever as the retrieval algorithm and
decided to use BM25 for (1) BM25’s higher search
speed and (2) the fact that error logs and issues
generally share keywords, so sentimental search do
not possess much advantage over lexical search.

Web Searcher: This agent utilizes the Perplex-
ity API to obtain solutions for failed execution. If
the pipeline reaches this stage, it indicates that the
Log Analyzer and Issue Retriever failed to solve
a failed command. The standard output, standard
error, and the failed command are fed to Perplexity
to search the web for solutions. The Web Searcher
then analyzes the solutions from Perplexity and
generates new bash commands to resolve the issue.

4.3 LLM Coorporation Framwfork

The workflow operates as follows: Deployment
commands are drafted from repository documenta-
tion, executed in a bash environment, and adjusted
based on log analysis if errors arise. Additional
information is retrieved from an issue database and
web search if needed. The process concludes with

12710

a summary that outlines successes and identifies
steps needing further attention.

Drafting the Initial Commands The instructions
from each repository’s README are fed into the
Command Drafter LLM Agent to draft the neces-
sary commands for deploying the repository. These
commands are organized into five stages: prerequi-
site installation, data and model checkpoints down-
loading, training, inference, and evaluation. It is
important to note that not every repository contains
all these sections, and some sections may be empty.

Execution of Commands After the draft stage,
the script drafted will be sent to the Script Ex-
ecutor. To provide LLM Agents with the Python
interface, we implement a BashExecutor that en-
capsulates the bash binary executable file in it. If
the commands execute successfully, the process
is deemed successful and the deployment pipeline
will return True. Though looks simple, the bash
simulation was not straightforward during our ex-
periments, since we need to consider the environ-
ment variables, stdout, stderr, etc. Initially, we used
a subprocess to handle it, but the success rate was
extremely low. Upon analyzing the logs, we dis-
covered that no commands related to environment
variable changes were reflected in subsequent in-
structions. For instance, if the Command changes
the environment to a Python virtual environment
or another conda environment, this change only
applies to that specific command. Afterward, the
Python interpreter and package manager revert to
their default settings. Besides, not all command
executions have a valid return code, therefore, we
utilize an LLM to parse the standard output and
standard error (if any) to obtain the return state of
the execution.

Analyze the Execution Log If the execution is
not successful and error occurs, the standard out-
put, standard error, command, and return code are
logged and analyzed. The Log Analyzer examines
the error messages and attempts to refine the execu-
tion commands or adjust prerequisites to ensure the
environment is prepared. We have a max_attempt
argument that limits the number of retries for the
log analyzer. If the issue persists after certain at-
tempts, the workflow utilizes the web search tool
to request external information.

Retrieve Augmented Generation from Issue
Database After analyzing the execution log and
making initial adjustments, the next step is to re-
trieve more insights using a Retrieve Augmented

Generation (RAG) approach. The Issue Retriever
agent uses the logged command, output, and er-
ror messages to query the issue database for sim-
ilar past problems or discussions. Leveraging the
BM25 retrieval algorithm, it matches keywords
from the logs to relevant entries. If a match is
found, the agent extracts solutions or troubleshoot-
ing steps, feeding them back into the workflow to
refine commands. If no relevant match is found, the
process escalates to the Web Searcher for external
information.

Search the Internet for External Information
Using tools such as Perplexity, the WebSearcher
agent integrates the command error logs and stan-
dard output with external information. This pro-
cess refines the command and retries execution in
the bash with a limited number of attempts. The
agent records the information and transfers it to
the deployment summarizer if the issue remains
unresolved.

5 Evaluations

In this section, we evaluate CSR-Agents in CSR-
Bench with a wide range of popular foundation
LLM families, including Claude 4, GPT-4 (Achiam
et al., 2023), Llama-3 (Dubey et al., 2024), and Mis-
tral 5. For each LLM family, we experimented with
different model sizes for thorough comparisons.

We show the completion rate in Table 1, Table 2,
Table 3, and Table 4. In these tables, we use S
to stand for the Setup stage, D to stand for the
ownload stage, T to stand for the Training stage,
E to stand for the Evaluation stage, and I for the
inference stage.

5.1 Initial Drafter

As shown in Table 1, all models perform well on
Setup and Download tasks (success rates around
0.23 to 0.28) but struggle with Training, Evalua-
tion, and Inference, where success rates are close to
zero. This indicates that the drafter agent handles
basic installation effectively but has difficulty with
complex tasks requiring updates to file paths and
environment variables.

We note that this is also similar to the deploy-
ment process of a real researcher, where their first
execution is more likely to fail and they need to
analyze the errors and leverage tools like GitHub
issues or search engines to solve the problem.

4https://www.anthropic.com/news/claude-3-family
5https://mistral.ai/technology/#models

12711

Table 1: Drafter Success Metrics of Different Models.

Model Type Name S D T E I

Claude
Instant 0.232 0.189 0.007 0.000 0.000
3-Haiku 0.253 0.239 0.046 0.005 0.052
3-Sonnet 0.284 0.283 0.045 0.024 0.031

GPT
4o-Mini 0.242 0.229 0.008 0.016 0.029
4o 0.261 0.238 0.039 0.022 0.031
4-Turbo 0.271 0.252 0.028 0.039 0.032

Llama

3-70B 0.239 0.306 0.019 0.040 0.032
3.1-8B 0.243 0.200 0.051 0.037 0.007
3.1-70B 0.260 0.280 0.032 0.022 0.019

Mistral Large 0.243 0.266 0.047 0.031 0.026
Large-2 0.251 0.279 0.039 0.025 0.024

5.2 Log Analyzer
Table 2 shows noticeable improvements in all tasks
compared to the drafter stage. Success rates for
Setup and Download increase to around 0.34 to
0.40, while complex tasks see gains up to 0.18.

Table 2: Analyzer Success Metrics of Different Models.

Model Type Name S D T E I

Claude
Instant 0.342 0.353 0.104 0.109 0.151
3-Haiku 0.350 0.301 0.132 0.037 0.130
3-Sonnet 0.388 0.400 0.168 0.116 0.129

GPT
4o-Mini 0.347 0.317 0.118 0.078 0.131
4o 0.362 0.353 0.148 0.115 0.145
4-Turbo 0.353 0.322 0.161 0.094 0.148

Llama

3-70B 0.361 0.382 0.111 0.185 0.176
3.1-8B 0.304 0.386 0.183 0.114 0.123
3.1-70B 0.313 0.335 0.141 0.182 0.151

Mistral Large 0.324 0.349 0.121 0.143 0.144
Large-2 0.340 0.357 0.152 0.199 0.163

Analyzers leverage dynamic feedback from the
execution of commands to refine scripts and try to
correct errors from executed commands.

5.3 Issue Retriever
In the Issue Retriever stage (Table 3), success rates
continue to improve, especially for complex tasks
like Training, Evaluation, and Inference, reach-
ing up to 0.25.

The results show that access to a knowledge
base with informative discussions on issues of the
code repository allows LLMs to retrieve solutions
to execution errors from earlier stages, enhancing
performance in complex operations.

5.4 Web Searcher
The Searcher Success Metrics in Table 4 exhibits
the highest performance. Success rates for Setup
and Download reach up to 0.46, and complex tasks
improve to between 0.15 and 0.29.

Table 3: Issue Retriever Success Metrics of Different
Models.

Model Type Name S D T E I

Claude
Instant 0.365 0.369 0.129 0.130 0.169
3-Haiku 0.374 0.329 0.139 0.061 0.143
3-Sonnet 0.442 0.436 0.254 0.183 0.163

GPT
4o-Mini 0.375 0.367 0.171 0.122 0.159
4o 0.379 0.375 0.169 0.128 0.160
4-Turbo 0.377 0.381 0.178 0.126 0.164

Llama

3-70B 0.364 0.399 0.113 0.159 0.154
3.1-8B 0.305 0.389 0.182 0.115 0.122
3.1-70B 0.312 0.334 0.143 0.179 0.153

Mistral Large 0.357 0.358 0.174 0.155 0.153
Large-2 0.359 0.380 0.181 0.155 0.152

Table 4: Searcher Success Metrics of Different Models.

Model Type Name S D T E I

Claude
Instant 0.388 0.406 0.151 0.131 0.190
3-Haiku 0.385 0.338 0.155 0.070 0.163
3-Sonnet 0.467 0.467 0.291 0.194 0.189

GPT
4o-Mini 0.412 0.405 0.201 0.131 0.179
4o 0.415 0.407 0.198 0.130 0.183
4-Turbo 0.416 0.406 0.200 0.133 0.182

Llama

3-70B 0.380 0.442 0.200 0.173 0.170
3.1-8B 0.318 0.447 0.201 0.157 0.165
3.1-70B 0.344 0.463 0.183 0.196 0.184

Mistral Mistral-Large 0.375 0.450 0.199 0.174 0.168
Mistral-Large-2 0.373 0.452 0.201 0.172 0.169

Web search enables models to find up-to-date so-
lutions, resolving issues that previous agents could
not, leading to substantial improvements.

5.5 Aggregated Results

We show the aggregated results of a single LLM on
different tasks with different level of engagements
of multi-agents in Figure 8, Figure 9, Figure 10,
and Figure 11. In short, with more agents contribut-
ing to solving the tasks, the success rate increases
across all tasks for all LLMs, which demonstrates
the effectiveness of our proposed CSR-Agents.

5.6 Results Interpretation

The evaluation of the CSR-Bench involved assess-
ing the performance of various large language mod-
els (LLMs) across key tasks: Setup, Download,
Training, Inference, and Evaluation. These tasks
are essential for deploying repositories within the
CSR-Bench.

5.6.1 Task-Specific Outcomes

Setup and Download: Most models consistently
performed well, reflecting their capability to initi-
ate and manage basic deployment processes.

12712

Setup Download Training Inference Evaluation

Deployment Stage

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Cu

m
ul

at
iv

e
Su

cc
es

s
Ra

te
Execution Type

Initial Execution
With Analyzer Only
With Analyzer and Ragger
With Analyzer, Ragger, and Searcher

Figure 8: Performance of Claude 3 Sonnet

Setup Download Training Inference Evaluation

Deployment Stage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e

Su
cc

es
s

Ra
te

Execution Type
Initial Execution
With Analyzer Only
With Analyzer and Ragger
With Analyzer, Ragger, and Searcher

Figure 9: Performance of GPT 4o

Setup Download Training Inference Evaluation

Deployment Stage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e

Su
cc

es
s

Ra
te

Execution Type
Initial Execution
With Analyzer Only
With Analyzer and Ragger
With Analyzer, Ragger, and Searcher

Figure 10: Performance of Llama 3.1 70B Instruct

Setup Download Training Inference Evaluation

Deployment Stage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Cu
m

ul
at

iv
e

Su
cc

es
s

Ra
te

Execution Type
Initial Execution
With Analyzer Only
With Analyzer and Ragger
With Analyzer, Ragger, and Searcher

Figure 11: Performance of Mistral Large 2

Inference and Evaluation: Performance was
less consistent, with some models demonstrating
moderate success, but generally struggling with the
complexity of these tasks.

Training: Training tasks are particularly chal-
lenging, with lower success rates across the board,
indicating that current LLMs require further refine-
ment to handle training processes effectively.

5.6.2 Overall Performance
The success metrics across different tasks and mod-
els indicate a wide variability in performance. Gen-
erally, models showed higher success rates in Setup
and Download tasks, with performance tapering off
in more complex tasks such as Inference, Evalu-
ation, and Training. This pattern highlights the
challenges LLMs face in handling the full deploy-
ment process autonomously.

The results demonstrate that while LLMs have
made significant strides in automating repository
deployment, their ability to manage complex tasks
remains limited. Improvements are needed, par-
ticularly in the areas of Inference and Training, to
achieve fully autonomous and reliable deployment
of science repositories.

However, there is still a large gap between LLMs
and real scientists even if the advnanced tools are
provided to the LLMs. To explain, it is not trivial to

handle the nuances in the experiement environment
setup for the science repositories. For example,
the hardware and software compatibility issues are
very common in code deployment and often causes
confusions even for domain experts.

6 Conclusion

The work introduces CSR-Bench, a benchmark de-
signed to evaluate the capabilities of LLM agents in
automating the deployment of GitHub repositories
for scientific research. Our study highlights that
while LLMs show potential in handling tasks like
environment setup and data preparation, they face
challenges in complex tasks such as training and
inference, where success rates are notably lower.

Our multi-agent framework, CSR-Agents, exem-
plifies how LLMs can collaborate to tackle deploy-
ment challenges, offering a promising approach
to improving automation in software engineering.
However, the results indicate that further advance-
ments are needed to fully realize autonomous and
reliable deployment processes.

Overall, CSR-Bench serves as a crucial tool for
assessing and improving LLM-driven deployment
workflows in scientific research, paving the way
for more efficient and automated computer science
projects exploration.

12713

Limitations

Although our benchmark framework supports sev-
eral tools to facilitate large language model agents
in the code deployment task, it does not actually
improve the original reasoning capabilities of the
large language models that are used in the agents.
To improve LLMs’ reasoning capabilities for this
specific task, the community may resort to tech-
niques like RLHF, which is orthogonal to this work.
Our benchmark only focuses on code repositories
that related to computer science research topics,
and does not involve other types of repositories.
Although this framework can be reused for other
types of the repositories, we do not explore that
direction in this work, and leave it to future works.

References
2024. Agent-101: A software engineering agent

for code assistance developed by ibm research.
https://github.com/swe-bench/experiments/
blob/main/evaluation/lite/20240612_IBM_
Research_Agent101/README.md/.

2024. Amazon q developer the most capable genera-
tive ai–powered assistant for software development.
https://aws.amazon.com/q/developer/.

2024. Devin, ai software engineer. https://www.
cognition.ai/introducing-devin.

2024. Factory bringing autonomy to software engineer-
ing. https://www.factory.ai/.

2024. Lingma agent. https://github.
com/swe-bench/experiments/tree/main/
evaluation/lite/20240622_Lingma_Agent.

2024. Marscode code and innovate faster with ai.
https://www.marscode.com/.

2024a. Opencsg starship. https://opencsg.com/
product?class=StarShip/.

2024b. Opendevin: Code less, make more. https:
//github.com/OpenDevin/OpenDevin/.

2024. Swe-bench lite. https://www.swebench.com/
lite.html.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Islem Bouzenia, Premkumar Devanbu, and Michael
Pradel. 2024. Repairagent: An autonomous, llm-
based agent for program repair. arXiv preprint
arXiv:2403.17134.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. Multipl-e: A scal-
able and polyglot approach to benchmarking neural
code generation. IEEE Transactions on Software
Engineering.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan,
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu,
Guoliang Dong, Artem Aliev, et al. 2024. Coder: Is-
sue resolving with multi-agent and task graphs. arXiv
preprint arXiv:2406.01304.

12714

https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://github.com/swe-bench/experiments/blob/main/evaluation/lite/20240612_IBM_Research_Agent101/README.md/
https://aws.amazon.com/q/developer/
https://www.cognition.ai/introducing-devin
https://www.cognition.ai/introducing-devin
https://www.factory.ai/
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240622_Lingma_Agent
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240622_Lingma_Agent
https://github.com/swe-bench/experiments/tree/main/evaluation/lite/20240622_Lingma_Agent
https://www.marscode.com/
https://opencsg.com/product?class=StarShip/
https://opencsg.com/product?class=StarShip/
https://github.com/OpenDevin/OpenDevin/
https://github.com/OpenDevin/OpenDevin/
https://www.swebench.com/lite.html
https://www.swebench.com/lite.html
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng,
Chenyuan Yang, and Lingming Zhang. 2023. Large
language models are zero-shot fuzzers: Fuzzing deep-
learning libraries via large language models. In 32nd
International Symposium on Software Testing and
Analysis (ISSTA).

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang,
Shizhuo Dylan Zhang, Shujing Yang, and Lingming
Zhang. 2024. Large language models are edge-case
fuzzers: Testing deep learning libraries via fuzzgpt.
In 46th International Conference on Software Engi-
neering (ICSE).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Paul Gauthier. 2024. Aider is ai pair programming in
your terminal. https://aider.chat/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming–the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with apps. NeurIPS.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. 2023.
Metagpt: Meta programming for multi-agent collabo-
rative framework. arXiv preprint arXiv:2308.00352.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023.
Large language models are few-shot testers: Explor-
ing llm-based general bug reproduction. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 2312–2323. IEEE.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A
natural and reliable benchmark for data science code
generation. In International Conference on Machine
Learning, pages 18319–18345. PMLR.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K
Lahiri, and Siddhartha Sen. 2023. Codamosa: Es-
caping coverage plateaus in test generation with pre-
trained large language models. In 45th International
Conference on Software Engineering (ICSE).

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you!

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022a. Competition-level code generation with
alphacode. Science, 378(6624):1092–1097.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022b. Competition-level code generation with al-
phacode. Science.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023a. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Tianyang Liu, Canwen Xu, and Julian McAuley.
2023b. Repobench: Benchmarking repository-
level code auto-completion systems. arXiv preprint
arXiv:2306.03091.

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu,
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan
Hu, Zengxian Yang, Kaikai An, et al. 2023c. Ml-
bench: Large language models leverage open-source
libraries for machine learning tasks. arXiv e-prints,
pages arXiv–2311.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,

12715

https://aider.chat/
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. Preprint, arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Yingwei Ma, Qingping Yang, Rongyu Cao, Binhua Li,
Fei Huang, and Yongbin Li. 2024. How to under-
stand whole software repository? arXiv preprint
arXiv:2406.01422.

Martin Monperrus. 2018. The living review on auto-
mated program repair. Ph.D. thesis, HAL Archives
Ouvertes.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in transla-
tion: A study of bugs introduced by large language
models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, pages 1–13.

Noah Patton, Kia Rahmani, Meghana Missula, Joy-
deep Biswas, and Işıl Dillig. 2024. Programming-
by-demonstration for long-horizon robot tasks. Pro-
ceedings of the ACM on Programming Languages,
8(POPL):512–545.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. Advances
in neural information processing systems, 33:20601–
20611.

Baptiste Roziere, Jie M Zhang, Francois Charton,
Mark Harman, Gabriel Synnaeve, and Guillaume
Lample. 2021. Leveraging automated unit tests
for unsupervised code translation. arXiv preprint
arXiv:2110.06773.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024a. Agentless: Demystify-
ing llm-based software engineering agents. arXiv
preprint arXiv:2407.01489.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,
Michael Pradel, and Lingming Zhang. 2024b. Uni-
versal fuzzing via large language models. In 46th
International Conference on Software Engineering
(ICSE).

Chunqiu Steven Xia, Yuxiang Wei, and Lingming
Zhang. 2023. Automated program repair in the era of
large pre-trained language models. In Proceedings
of the ACM/IEEE 45th International Conference on
Software Engineering, ICSE ’23.

Chunqiu Steven Xia and Lingming Zhang. 2023. Keep
the conversation going: Fixing 162 out of 337
bugs for $0.42 each using chatgpt. arXiv preprint
arXiv:2304.00385.

John Yang, Carlos E Jimenez, Alexander Wettig, Kil-
ian Lieret, Shunyu Yao, Karthik Narasimhan, and
Ofir Press. 2024. Swe-agent: Agent-computer inter-
faces enable automated software engineering. arXiv
preprint arXiv:2405.15793.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek
Rao, Yeming Wen, Kensen Shi, Joshua Howland,
Paige Bailey, Michele Catasta, Henryk Michalewski,
Alex Polozov, and Charles Sutton. 2022. Natural lan-
guage to code generation in interactive data science
notebooks.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. arXiv preprint arXiv:2303.12570.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik
Roychoudhury. 2024. Autocoderover: Autonomous
program improvement. Preprint, arXiv:2404.05427.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. arXiv
preprint arXiv:2402.14658.

12716

https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/arXiv:2212.09248
https://arxiv.org/abs/arXiv:2212.09248
https://arxiv.org/abs/arXiv:2212.09248
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2404.05427

A Appendix

A.1 Categories and Subcategories
Computer Vision and Graphics

• 3D Vision and Reconstruction

– Structured3D: Structured 3D modeling
dataset for computer vision and graphics
(ECCV 2020)

– RayDF: Light ray-based 3D rendering
and learning (NeurIPS 2023)

– SSDNeRF: Diffusion-based NeRF for
3D reconstruction (ICCV 2023)

– NeuralPull: Learning distance functions
for point clouds (ICML 2021)

– DAD-3DHeads: Dataset for 3D head
alignment and reconstruction (CVPR
2022)

– LeGO-LOAM: Lidar-based odometry
and mapping for robotics

• Image Segmentation, Processing, and En-
hancement

– Unsupervised-Semantic-Segmentation:
Unsupervised methods for semantic
segmentation (ICCV 2021)

– Seg-Uncertainty: Scene adaptation for
self-driving cars (IJCAI 2020, IJCV
2021)

– RGBD_Semantic_Segmentation_PyTorch:
RGBD scene recognition and segmenta-
tion (ECCV 2020)

– BCNet: Occlusion-aware segmentation
(CVPR 2021)

– Deep_Metric: Metric learning for image
retrieval

– Multiview2Novelview: Novel view syn-
thesis from multiple views (ECCV 2018)

– NeRCo: Low-light image enhance-
ment using neural representations (ICCV
2023)

– Transfiner: High-quality instance
segmentation with mask transformers
(CVPR 2022)

• Pose Estimation and Object Detection

– HybrIK: Hybrid kinematics for 3D hu-
man pose (CVPR 2021)

– SmoothNet: Human pose refinement in
videos (ECCV 2022)

– FSA-Net: Head pose estimation from
images (CVPR 2019)

– VisualDet3D: Monocular 3D detection
for autonomous driving

– DEVIANT: Monocular 3D object de-
tection for autonomous driving (ECCV
2022)

– OWOD: Open World Object Detection
with incremental learning (CVPR 2021)

Machine Learning Models and Techniques
• Generative and Diffusion Models

– DDM2: Diffusion models for MRI de-
noising (ICLR 2023)

– DDNM: Diffusion models for zero-shot
image restoration (ICLR 2023)

– diffusion-point-cloud: Generating 3D
point clouds with diffusion models
(CVPR 2021)

– GeoDiff: Diffusion models for molecular
structures (ICLR 2022)

– probabilistic_unet: Conditional segmen-
tation with probabilistic UNet (NeurIPS
2018)

– LTSF-Linear: Linear models for time se-
ries forecasting (AAAI 2023)

– unconditional-time-series-diffusion: Dif-
fusion models for time series prediction
(NeurIPS 2023)

– dyffusion: Spatiotemporal forecasting
using diffusion models (NeurIPS 2023)

• Graph Neural Networks and Transformers

– GraphSAINT: Scalable graph neural
networks with sampling (ICLR 2020,
IPDPS 2019)

– Graph-Transformer: Applying trans-
formers to graph data (WWW 2022)

– graphtransformer: Generalized trans-
formers for graphs (DLG-AAAI 2021)

– GPT-GNN: Pre-training techniques for
graph neural networks (KDD 2020)

– GraphMAE: Masked autoencoders for
graph learning (KDD 2022)

• Self-Supervised and Contrastive Learning

– skip-connections-matter: Impact of skip
connections on adversarial example
transferability (ICLR 2020)

12717

– SparK: BERT-style pretraining on convo-
lutional networks (ICLR 2023)

– imbalanced-semi-self: Semi-supervised
learning for class-imbalanced datasets
(NeurIPS 2020)

– CURL: Image enhancement via neural
curve layers (ICPR 2020)

• Model Interpretability and Optimization

– rrl: Rule-based learning for interpretable
classification (NeurIPS 2021)

– gradient-descent-the-ultimate-
optimizer: Advanced optimization
techniques (NeurIPS 2022)

Large Language Models (LLMs)
• LLM Development and Optimization

– llama-recipes: Fine-tuning scripts for
LLaMA models

– llama3: Official GitHub repository for
LLaMA 3

– alpaca-lora: Instruct-tuning LLaMA on
consumer hardware

– MetaGPT: Multi-agent AI development
framework using LLMs

– Stanford_Alpaca: Training and dataset
generation for Alpaca models

• Inference and Efficiency in LLMs

– mistral-inference: Efficient inference for
Mistral models

– PowerInfer: Fast LLM serving on
consumer-grade GPUs

– direct-preference-optimization: Imple-
mentation of direct preference optimiza-
tion (DPO)

– GPTCache: Efficient caching for
LLMs integrated with LangChain and
llama_index

• LLM Applications and Evaluation

– alpaca_eval: Automatic evaluation for
instruction-following LLMs

– DART: Enhancing few-shot learning
with differentiable prompts (ICLR 2022)

– LRV-Instruction: Reducing hallucination
in multi-modal models (ICLR 2024)

– alpaca_farm: Simulated framework for
reinforcement learning from human feed-
back (RLHF)

– FastChat: Open-source platform for
training and evaluating large language
models

Natural Language Processing (NLP)
• Text Classification and Information Extrac-

tion

– HVPNeT: Multimodal entity and relation
extraction (NAACL 2022)

– PURE: Simple approach to relation ex-
traction (NAACL 2021)

– SimCSE: Contrastive sentence embed-
dings (EMNLP 2021)

– Text-GCN: Text classification using
graph convolutional networks (AAAI
2019)

• Multimodal and Knowledge-Based Systems

– OntoProtein: Protein function prediction
using knowledge graphs (ICLR 2022)

– tree-of-thought-llm: Structured problem-
solving with LLMs (NeurIPS 2023)

– storm: Automated report generation us-
ing large language models

– SWE-agent: AI-based code bug fixing
using LLMs

• Transfer Learning and Domain Adaptation

– SubpopBench: Benchmark for subpop-
ulation shifts in domain generalization
(ICML 2023)

– naacl_transfer_learning_tutorial: Trans-
fer learning techniques in NLP (NAACL
2019)

– private-transformers: Training transform-
ers with differential privacy

– imbalanced-regression: Handling data
imbalance in regression tasks (ICML
2021)

Domain-Specific Applications
• Healthcare and Bioinformatics

– imbalanced-regression: Addressing im-
balances in healthcare data (ICML 2021)

– hyena-dna: Long-range genomic model-
ing with Hyena

– OntoProtein: Protein function prediction
with pretraining (ICLR 2022)

– GeoDiff: Molecular structure generation
using diffusion models (ICLR 2022)

12718

Figure 12: Distribution of Topics in GSRBench100

Table 5: Categories, Subcategories, and Abbreviations

Category Subcategory Subcategory Abbreviation

CV
3D Vision & Reconstruction 3D Vision & Rec.
Image Segmentation & Enhancement Img Segm. & Enh.
Pose Estimation & Object Detection Pose Estim. & Obj Det.

ML

Generative & Diffusion Models Gen. & Diff. Models
Graph Neural Networks & Transformers GNNs & Transf.
Self-Supervised & Contrastive Learning Self-Sup. & Contr. Learn.
Model Interpretability & Optimization Model Interp. & Opt.

NLP
Text Classification & Extraction Txt Classif. & Extr.
Multimodal & Knowledge Systems Multi. & Knowl. Sys.
Transfer Learning & Domain Adaptation Transf. Learn. & Dom. Adap.

LLM
LLM Development & Optimization LLM Dev. & Opt.
Inference & Efficiency in LLMs Infer. & Eff. in LLMs
LLM Applications & Evaluation LLM Appl. & Eval.

Interdisciplinary
Healthcare & Bioinformatics Health. & Bioinf.
Robotics & Autonomous Systems Robotics & Auto. Sys.
Computational Creativity & Arts Comp. Creativ. & Arts

– tape: Benchmark tasks for protein se-
quence modeling

• Robotics and Autonomous Systems

– LeGO-LOAM: Lidar-based odometry
and mapping for robotics

– SuperGlobal: Image retrieval using
global features (ICCV 2023)

– Deep_Metric: Embedding learning for
metric-based image retrieval

– FEARTracker: Robust visual tracking
(ECCV 2022)

• Computational Creativity and Visual Arts

– CCPL: Artistic style transfer for images
and videos (ECCV 2022)

– GANgealing: GAN-based visual align-
ment (CVPR 2022)

– NeRCo: Low-light image enhance-
ment using neural representations (ICCV

2023)

A.2 Word Cloud of Topics
Figure 12 presents a word cloud that visualizes
the frequency of topics across the repositories,
highlighting the primary focus areas within GSR-
Bench100. It provides a quick overview of the
thematic concentration of the dataset.

B Repository list and Commit ID

We specify the commit ID we used in our bench-
mark dataset for reproducibility. Please see table 6
and table 7 for details.

C Categories, Subcategories, and
Abbreviations

C.0.1 Example Text from README
Below are case studies of how models (GPT-4o,
Claude 3, LLaMA 3.1, and Mistral) extract the
commands from a Repository.

12719

Table 6: GitHub Repository Details - Part 1

Repository URL Commit ID Branch
https://github.com/cleardusk/3DDFA_V2 1b6c67601abffc1e9f248b291708aef0e43b55ae master
https://github.com/lkeab/BCNet d6580e8a2a0b5e71c0ae6913ed0340c101d35723 main
https://github.com/JarrentWu1031/CCPL d0b6b326d7d624b5e8d1543a3a84a745a08fd883 main
https://github.com/sjmoran/CURL 4be9753a8063f9833423e4aa5947ae7a64b114f8 master
https://github.com/tiangexiang/CurveNet c2e7cf642b7e08d9aec5b70263f6989a85c9e191 main
https://github.com/PinataFarms/DAD-3DHeads 3acc5c2a1177d354a1247c49e44a83ad682ea6a1 main
https://github.com/zjunlp/DART d418ded8bd548ef25f2d030990e707a497e93483 main
https://github.com/StanfordMIMI/DDM2 d07be20ad36446f8e35621d4b0d92e7cf54c169e main
https://github.com/wyhuai/DDNM 00b58eac7843a4c99114fd8fa42da7aa2b6808af main
https://github.com/abhi1kumar/DEVIANT 009955f3bbb21c38a687eaae59bdfcb82eca93e7 main
https://github.com/shenweichen/DSIN e8ba406eeda0916214897d44866bffc419c3edb0 master
https://github.com/bnu-wangxun/Deep_Metric 04ca51093db13135a04e3c94401bc898c6af0c40 master
https://github.com/tjiiv-cprg/EPro-PnP 42412220b641aef9e8943ceba516b3175631d370 main
https://github.com/PinataFarms/FEARTracker 0a3bd039918909c79c1b7e55a4bfb7807520abde main
https://github.com/shamangary/FSA-Net 4361d0e48103bb215d15734220c9d17e6812bb48 master
https://github.com/lm-sys/FastChat 92a6d1fcd69a88ea169c0b01065ce44f1e690a2c main
https://github.com/acbull/GPT-GNN f26e13c69ddc8a3f2580cb16d0b9a1c73d89f4bc master
https://github.com/zilliztech/GPTCache 75ab7ec7b871c8399a95d5bf528441f2856250dd main
https://github.com/MinkaiXu/GeoDiff ea0ca48045a2f7abfccd7f0df449e45eb6eae638 main
https://github.com/daiquocnguyen/Graph-Transformer 99c88a116148fdaa8d3071fcc548e5c471ae607f master
https://github.com/THUDM/GraphMAE b14f080c919257b495e3cb6474286d5252d6a635 main
https://github.com/GraphSAINT/GraphSAINT c9b1e340d7b951465ac4a9251eef93832e68b003 master
https://github.com/zjunlp/HVPNeT 52c77f7835a295d9c8534997b1316c42b2662972 main
https://github.com/IDEA-Research/HumanSD c5db29dd66a3e40afa8b4bed630f0aa7ea001880 main
https://github.com/Jeff-sjtu/HybrIK 9b8681dcf3c902dd5dacc01520ba04982990e1e2 main
https://github.com/princeton-nlp/LM-BFF c282f521001f9c299d29eec7b459266f2b14fbaf main
https://github.com/FuxiaoLiu/LRV-Instruction 0a5ab538ed96c3e0c9835b5fe02cc8f7fa0bf8fa main
https://github.com/cure-lab/LTSF-Linear 0c113668a3b88c4c4ee586b8c5ec3e539c4de5a6 main
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM 896a7a95a8bc510b76819d4cc48707e344bad621 master
https://github.com/tfzhou/MATNet c8b95e527c486c304f711cc7dffb060f31abe19f master
https://github.com/MIVRC/MSRN-PyTorch a0e038de7eb42e21d2e88c38e6490b61a02c566e master
https://github.com/princeton-nlp/MeZO 552cb1b710767f9a6e1dc8f9645d7640376f9941 main
https://github.com/geekan/MetaGPT 5446c7e490e7203c61b2ff31181551b2c0f4a86b main
https://github.com/shaohua0116/Multiview2Novelview a5e236f3c564bf287c8a09d855fd2134ba86b299 master
https://github.com/Ysz2022/NeRCo 6b0e1112231d0902976ad76357044de582a307f3 main
https://github.com/mabaorui/NeuralPull c093a52308a9b74446d24cc6c1b0fee5ee5bb7bb master
https://github.com/JosephKJ/OWOD 23890f188cd1a6801c6ac0e3dacd78b8572b8c29 master
https://github.com/zjunlp/OntoProtein 6360f458e11670ecfaf853ee68f2087b31439dc0 main
https://github.com/princeton-nlp/PURE b1e9cad39bec10eb3c355dc5a8e4e75dd0afebf5 main
https://github.com/SJTU-IPADS/PowerInfer 61cac9bf25e60336bbad27ada9dbb809204473ac main
https://github.com/charlesCXK/RGBD_Semantic_Segmentation_PyTorch 32b3f86822d278103a13ea6f93f9668d3b631398 master
https://github.com/vLAR-group/RayDF ca6c663523b777732788a5d8100d36251a482b31 master
https://github.com/Paranioar/SGRAF 50d0c6f9caf759099b28371046f780342357c405 main
https://github.com/Lakonik/SSDNeRF b9d195db76bb715c475b24287362d9627d77d3bb main
https://github.com/shamangary/SSR-Net f98b6cbe1c9c8c78649e5a331f94113564521525 master
https://github.com/princeton-nlp/SWE-agent 36e430d27ffd11269738df92d6c521cab2207dcb main
https://github.com/daveredrum/ScanRefer 9d7483053e8d29acfd4db4eb1bc28f1564f5dddb master
https://github.com/layumi/Seg-Uncertainty 6fce9eae141c2c0592b3e7c1b3e5f8ee7b1ce9a6 master
https://github.com/princeton-nlp/SimCSE 7edb07e05cec0d5293fc1696b578d8056dba76ef main
https://github.com/cure-lab/SmoothNet c03e93e8a14f55b9aa087dced2751a7a5e2d50b0 main

12720

https://github.com/cleardusk/3DDFA_V2
https://github.com/lkeab/BCNet
https://github.com/JarrentWu1031/CCPL
https://github.com/sjmoran/CURL
https://github.com/tiangexiang/CurveNet
https://github.com/PinataFarms/DAD-3DHeads
https://github.com/zjunlp/DART
https://github.com/StanfordMIMI/DDM2
https://github.com/wyhuai/DDNM
https://github.com/abhi1kumar/DEVIANT
https://github.com/shenweichen/DSIN
https://github.com/bnu-wangxun/Deep_Metric
https://github.com/tjiiv-cprg/EPro-PnP
https://github.com/PinataFarms/FEARTracker
https://github.com/shamangary/FSA-Net
https://github.com/lm-sys/FastChat
https://github.com/acbull/GPT-GNN
https://github.com/zilliztech/GPTCache
https://github.com/MinkaiXu/GeoDiff
https://github.com/daiquocnguyen/Graph-Transformer
https://github.com/THUDM/GraphMAE
https://github.com/GraphSAINT/GraphSAINT
https://github.com/zjunlp/HVPNeT
https://github.com/IDEA-Research/HumanSD
https://github.com/Jeff-sjtu/HybrIK
https://github.com/princeton-nlp/LM-BFF
https://github.com/FuxiaoLiu/LRV-Instruction
https://github.com/cure-lab/LTSF-Linear
https://github.com/RobustFieldAutonomyLab/LeGO-LOAM
https://github.com/tfzhou/MATNet
https://github.com/MIVRC/MSRN-PyTorch
https://github.com/princeton-nlp/MeZO
https://github.com/geekan/MetaGPT
https://github.com/shaohua0116/Multiview2Novelview
https://github.com/Ysz2022/NeRCo
https://github.com/mabaorui/NeuralPull
https://github.com/JosephKJ/OWOD
https://github.com/zjunlp/OntoProtein
https://github.com/princeton-nlp/PURE
https://github.com/SJTU-IPADS/PowerInfer
https://github.com/charlesCXK/RGBD_Semantic_Segmentation_PyTorch
https://github.com/vLAR-group/RayDF
https://github.com/Paranioar/SGRAF
https://github.com/Lakonik/SSDNeRF
https://github.com/shamangary/SSR-Net
https://github.com/princeton-nlp/SWE-agent
https://github.com/daveredrum/ScanRefer
https://github.com/layumi/Seg-Uncertainty
https://github.com/princeton-nlp/SimCSE
https://github.com/cure-lab/SmoothNet

Table 7: GitHub Repository Details - Part 2

Repository URL Commit ID Branch
https://github.com/keyu-tian/SparK a63e386f8e5186bc07ad7fce86e06b08f48a61ea main
https://github.com/bertjiazheng/Structured3D d06d1b241b290ae7ed6b311d710ffafffcb567de master
https://github.com/YyzHarry/SubpopBench 4d3dbbe21029666ef19d040e110ec22908640c5b main
https://github.com/ShihaoShao-GH/SuperGlobal 86946964b907e6f28a7264add2c15640fae30009 main
https://github.com/codeKgu/Text-GCN 70b970a52efcb80235cf0ae3e578eaf80278d5f3 master
https://github.com/wvangansbeke/Unsupervised-Semantic-Segmentation dfd5fa0a1542f2b26824b4059bd2bb1240c5c94b main
https://github.com/tloen/alpaca-lora 8bb8579e403dc78e37fe81ffbb253c413007323f main
https://github.com/tatsu-lab/alpaca_eval 32c8c0d068205c38b02003b67e0beec82a8f1ac2 main
https://github.com/tatsu-lab/alpaca_farm 30717ddae735365de756ee2085191b491a71788d main
https://github.com/adobe/antialiased-cnns b27a34a26f3ab039113d44d83c54d0428598ac9c master
https://github.com/richardaecn/class-balanced-loss 1d7857208a2abc03d84e35a9d5383af8225d4b4d master
https://github.com/luost26/diffusion-point-cloud 1e30d48d018820fbc7c67c8b3190215bd41878e4 main
https://github.com/eric-mitchell/direct-preference-optimization f8b8c0f49dc92a430bae41585f9d467d3618fe2f main
https://github.com/Rose-STL-Lab/dyffusion 832574f6f788a0cd4a4d75e8f59b3c07c7e8446b main
https://github.com/wpeebles/gangealing ffa6387c7ffd3f7de76bdc693dc2272e274e9bfd main
https://github.com/openai/gpt-3 d7a9bb505df6f630f9bab3b30c889e52f22eb9ea master
https://github.com/kach/gradient-descent-the-ultimate-optimizer b3b047e02ca6d32e0e61e34a0ca6e0bc57e55bdf main
https://github.com/microsoft/graphrag 61b5eea34783c58074b3c53f1689ad8a5ba6b6ee main
https://github.com/graphdeeplearning/graphtransformer c9cd49368eed4507f9ae92a137d90a7a9d7efc3a main
https://github.com/HazyResearch/hyena-dna d553021b483b82980aa4b868b37ec2d4332e198a main
https://github.com/YyzHarry/imbalanced-regression a6fdc45d45c04e6f5c40f43925bc66e580911084 main
https://github.com/YyzHarry/imbalanced-semi-self b91ad29fd8805ddf0a146f735905b0c869e68ae4 master
https://github.com/meta-llama/llama 8fac8befd776bc03242fe7bc2236cdb41b6c609c main
https://github.com/meta-llama/llama-recipes 8c1418e93b817cb6734a9cfe095b270f5a0f48f5 main
https://github.com/meta-llama/llama3 18f515a3c3c5f02cf45c6ac56cc5d039488e867a main
https://github.com/state-spaces/mamba a71bb5a83bfa289b5807aefc1767232dee77b35e main
https://github.com/kwotsin/mimicry a7fda06c4aff1e6af8dc4c4a35ed6636e434c766 master
https://github.com/mistralai/mistral-finetune 5b8adb54a1263664d52dab6f94581bf24d7b59e3 main
https://github.com/mistralai/mistral-inference 1f583071dc7aad2ca35cb9896140316ffece5b65 main
https://github.com/YyzHarry/multi-domain-imbalance 2efbfefd34542e365293f798d79f70cee5e54303 main
https://github.com/JiangWenPL/multiperson e8ae029cc691f3f9c3958a23f762f3d72cf65c54 master
https://github.com/zju3dv/mvpose 38b958f423f2de2bf7562f5a386c27440eab8c53 master
https://github.com/huggingface/naacl_transfer_learning_tutorial dc976775bb11edee24a77e2ce161450089c5e169 master
https://github.com/baudm/parseq 1902db043c029a7e03a3818c616c06600af574be main
https://github.com/lxuechen/private-transformers 18ccc4eab7355e4ac96051a82434796f6aa4624b main
https://github.com/SimonKohl/probabilistic_unet 7a2e79d549184d0f3a47d0deaa054a70b0f54a3f master
https://github.com/Jeff-sjtu/res-loglikelihood-regression 203dc3195ee5a11ed6f47c066ffdb83247511359 master
https://github.com/12wang3/rrl f8d0886b23c4e15f63c62c248b97d4eb73386ad1 main
https://github.com/csdongxian/skip-connections-matter 9b2e5cca9b673efcac253e16b2f55f6cda1a8692 master
https://github.com/xuchen-ethz/snarf ae0c893cc049f0f8270eaa401e138dff5d4637b9 main
https://github.com/tatsu-lab/stanford_alpaca 761dc5bfbdeeffa89b8bff5d038781a4055f796a main
https://github.com/stanford-oval/storm 263d894e34e2a399a18f80fbf3c9028dc06e1a1d main
https://github.com/songlab-cal/tape 6d345c2b2bbf52cd32cf179325c222afd92aec7e master
https://github.com/SysCV/transfiner 5b61fb53d8df5484f44c8b7d8415f398fd283ddc main
https://github.com/yzhq97/transmomo.pytorch 0e4d2f0e7e8af159e018c8a85f9d789de963a83a master
https://github.com/princeton-nlp/tree-of-thought-llm ab400345c5ea39d28ea6d7d3be0e417b11113c87 master
https://github.com/amazon-science/unconditional-time-series-diffusion 3eafeffdffefd4d2f5344ac63e5627a746c331a3 main
https://github.com/elliottwu/unsup3d dc961410d61684561f19525c2f7e9ee6f4dacb91 master
https://github.com/dddzg/up-detr 44c0c6eb4bddf409a41cbaae31b7360062495199 master
https://github.com/Owen-Liuyuxuan/visualDet3D ad229f2e491cba2c48f9bb2c211fe672294e2398 master

12721

https://github.com/keyu-tian/SparK
https://github.com/bertjiazheng/Structured3D
https://github.com/YyzHarry/SubpopBench
https://github.com/ShihaoShao-GH/SuperGlobal
https://github.com/codeKgu/Text-GCN
https://github.com/wvangansbeke/Unsupervised-Semantic-Segmentation
https://github.com/tloen/alpaca-lora
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_farm
https://github.com/adobe/antialiased-cnns
https://github.com/richardaecn/class-balanced-loss
https://github.com/luost26/diffusion-point-cloud
https://github.com/eric-mitchell/direct-preference-optimization
https://github.com/Rose-STL-Lab/dyffusion
https://github.com/wpeebles/gangealing
https://github.com/openai/gpt-3
https://github.com/kach/gradient-descent-the-ultimate-optimizer
https://github.com/microsoft/graphrag
https://github.com/graphdeeplearning/graphtransformer
https://github.com/HazyResearch/hyena-dna
https://github.com/YyzHarry/imbalanced-regression
https://github.com/YyzHarry/imbalanced-semi-self
https://github.com/meta-llama/llama
https://github.com/meta-llama/llama-recipes
https://github.com/meta-llama/llama3
https://github.com/state-spaces/mamba
https://github.com/kwotsin/mimicry
https://github.com/mistralai/mistral-finetune
https://github.com/mistralai/mistral-inference
https://github.com/YyzHarry/multi-domain-imbalance
https://github.com/JiangWenPL/multiperson
https://github.com/zju3dv/mvpose
https://github.com/huggingface/naacl_transfer_learning_tutorial
https://github.com/baudm/parseq
https://github.com/lxuechen/private-transformers
https://github.com/SimonKohl/probabilistic_unet
https://github.com/Jeff-sjtu/res-loglikelihood-regression
https://github.com/12wang3/rrl
https://github.com/csdongxian/skip-connections-matter
https://github.com/xuchen-ethz/snarf
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/stanford-oval/storm
https://github.com/songlab-cal/tape
https://github.com/SysCV/transfiner
https://github.com/yzhq97/transmomo.pytorch
https://github.com/princeton-nlp/tree-of-thought-llm
https://github.com/amazon-science/unconditional-time-series-diffusion
https://github.com/elliottwu/unsup3d
https://github.com/dddzg/up-detr
https://github.com/Owen-Liuyuxuan/visualDet3D

REPOSITORY ID: 3DDFA_V2

README

R e q u i r e m e n t s
See r e q u i r e m e n t s . t x t , t e s t e d on macOS and Linux p l a t f o r m s . The Windows u s e r s
may r e f e r t o FQA f o r b u i l d i n g i s s u e s . Note t h a t t h i s r epo u s e s Python3 . The
major d e p e n d e n c i e s a r e PyTorch , numpy , opencv −python , and onnxrun t ime , e t c .
I f you run t h e demos wi th −−onnx f l a g t o do a c c e l e r a t i o n , you may need t o
i n s t a l l l ibomp f i r s t , i . e . , brew i n s t a l l l ibomp on macOS .

Usage

1 . Clone t h i s repo
g i t c l o n e h t t p s : / / g i t h u b . com / c l e a r d u s k / 3DDFA_V2 . g i t
cd 3DDFA_V2

2 . B u i l d t h e c y t h o n v e r s i o n
sh . / b u i l d . sh

3 . Run demos
Running on a s t i l l image
python3 demo . py − f examples / i n p u t s / emma . j p g −−onnx

Running on v i d e o s
python3 demo_video . py − f examples / i n p u t s / v i d e o s / 2 1 4 . a v i −−onnx

Running on webcam
python3 demo_webcam_smooth . py −−onnx

The i m p l e m e n t a t i o n o f t r a c k i n g i s s i mp l y by a l i g n m e n t . I f t h e head pose > 90
d e g r e e s o r t h e mot ion i s t o o f a s t , t h e a l i g n m e n t may f a i l . A t h r e s h o l d i s
used t o t r i c k l y check t h e t r a c k i n g s t a t e , b u t i t i s u n s t a b l e .

GPT-4o:
Extracted commands for Environment Setup / Requirement / Installation:

git clone https://github.com/cleardusk/3DDFA_V2.git; cd 3DDFA_V2; sh ./build.sh

Error message from bash shell:

"stderr": "Traceback (most recent call last):\n File \"/workspace/3DDFA_V2/FaceBoxes/

utils/build.py\", line 15, in <module>\n from Cython.Distutils import build_ext\n

ModuleNotFoundError: No module named 'Cython'\nTraceback (most recent call last):\n

File \"/workspace/3DDFA_V2/Sim3DR/setup.py\", line 7, in <module>\n from Cython.

Build import cythonize\nModuleNotFoundError: No module named 'Cython'",

Analyzer suggested solution:

"command": "git clone https://github.com/cleardusk/3DDFA_V2.git; cd 3DDFA_V2;

pip install cython; sh ./build.sh"

Table 8: Commands and errors for setting up 3DDFA_V2 repository using GPT-4o.

12722

LLaMA 3.1:
Extracted commands for Environment Setup / Requirement / Installation:

pip install -r requirements.txt

brew install libomp

Claude 3:
Extracted commands for Environment Setup / Requirement / Installation:

git clone https://github.com/cleardusk/3DDFA_V2.git

cd 3DDFA_V2

sh ./build.sh

Error message from bash shell:

"stderr": "Traceback (most recent call last):\n File \"/workspace/3DDFA_V2/FaceBoxes/

utils/build.py\", line 15, in <module>\n from Cython.Distutils import build_ext\n

ModuleNotFoundError: No module named 'Cython'\nTraceback (most recent call last):\n

File \"/workspace/3DDFA_V2/Sim3DR/setup.py\", line 7, in <module>\n from Cython.

Build import cythonize\nModuleNotFoundError: No module named 'Cython'",

Analyzer suggested solution:

"command": "pip install Cython && sh ./build.sh",

Mistral:
Extracted commands for Environment Setup / Requirement / Installation:

git clone https://github.com/cleardusk/3DDFA_V2.git && cd 3DDFA_V2 && sh ./build.sh &&

brew install libomp

Error message from bash shell:

"stderr": "bash: brew: command not found"

Analyzer suggested solution:

"command": "sudo apt-get install homebrew && git clone https://github.com/cleardusk/

3DDFA_V2.git && cd 3DDFA_V2 && sh ./build.sh && brew install libomp",

Table 9: Commands and errors for setting up 3DDFA_V2 repository using LLaMA 3.1, Claude 3 and Mistral.

12723

