
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 12484–12500

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Mastering the Craft of Data Synthesis for CodeLLMs

Meng ChenB Philip Arthur Qianyu Feng Cong Duy Vu Hoang
Yu-Heng Hong Mahdi Kazemi Moghaddam Omid Nezami Thien Nguyen

Gioacchino Tangari Duy Vu Thanh Vu Mark Johnson
Krishnaram Kenthapadi Don Dharmasiri Long Duong Yuan-Fang LiB

B {meng.c.chen, yuanfang.li}@oracle.com
Oracle Corporation

Abstract
Large language models (LLMs) have shown
impressive performance in code understanding
and generation, making coding tasks a key fo-
cus for researchers due to their practical appli-
cations and value as a testbed for LLM evalua-
tion. Data synthesis and filtering techniques
have been widely adopted and shown to be
highly effective in this context. In this paper,
we present a focused survey and taxonomy of
these techniques, emphasizing recent advance-
ments. We highlight key challenges, explore
future research directions, and offer practical
guidance for new researchers entering the field.

1 Introduction

Code intelligence leverages machine learning tech-
niques to enhance software development by im-
proving both code quality and programmer pro-
ductivity (Allamanis and Sutton, 2013; Allamanis
et al., 2018). The rise of LLMs, such as Chat-
GPT (OpenAI, 2023), Gemini (Anil et al., 2024),
Claude (Anthropic, 2023), and Llama (Dubey et al.,
2024), has significantly reshaped the automation
of code-related tasks, including code completion
(Guo et al., 2023), translation (Szafraniec et al.,
2023), repair (Olausson et al., 2024), and docu-
mentation (Khan and Uddin, 2022). Tools like
GitHub Copilot (Chen et al., 2021), CodeGeeX
(Zheng et al., 2023), and Cursor (CursorAI, 2024)
hold great promise in substantially increasing hu-
man programmer efficiency and revolutionizing
the software industry, attracting considerable at-
tention from both academia and industry. Re-
cently, specialized LLMs for code-related tasks
(denoted as CodeLLMs) have emerged, including
Code Llama (Rozière et al., 2024), StarCoder (Li
et al., 2023a; Lozhkov et al., 2024), DeepSeek-
Coder (Guo et al., 2024; Zhu et al., 2024), and
CodeQwen (Bai et al., 2023).

Recent advancements (Gunasekar et al., 2023;
Gandhi et al., 2024) in LLMs have highlighted the

critical role of high-quality data in building strong,
robust models. Similarly, for CodeLLMs, diverse,
high-quality datasets are essential for improving
performance across a wide range of code-related
tasks. Significant efforts have been devoted to col-
lecting and curating code-related corpora. Promi-
nent examples include the Pile (Gao et al., 2021),
the Stack (Kocetkov et al., 2023; Lozhkov et al.,
2024) and BigScience ROOTS (Laurençon et al.,
2022), which draw primarily from open-source and
permissively licensed platforms such as GitHub
and Stack Overflow.

However, relying solely on human-generated
data for code-related tasks poses several chal-
lenges. First, collecting large-scale human data
is labor-intensive and expensive, particularly for
high-quality instruction tuning and preference
alignment data. Second, human-generated data
is prone to biases and errors (Hosking et al.,
2024; Singh et al., 2024), as it reflects the vary-
ing skill levels of programmers, and may not
be optimal for model training. Third, data in-
tegrity concerns, such as the risk of sensitive per-
sonal/corporate information leakage, complicate
data collection. Lastly, for low-resource program-
ming languages—–either due to limited popularity
or proprietary restrictions—–data scarcity hinders
the effectiveness of CodeLLMs in specialized fields
and systems programming (Mora et al., 2024). Con-
sequently, synthetic data generated by LLMs has
emerged as a valuable alternative to complement
natural data. Leveraging their vast knowledge and
advanced linguistic capabilities, LLMs can gener-
ate high-quality data, providing a valuable founda-
tion for model training in code-related tasks.

While generating synthetic datasets for code-
related tasks may appear straightforward, achiev-
ing both high accuracy and sufficient diversity is a
complex process requiring meticulous design and
advanced techniques (Gandhi et al., 2024). This
makes a systematic exploration of LLM-driven syn-

12484



Evaluation

Instruction Code snippet Documentation

Step 1: Seed data collection

Step 2: Data synthesis

Step 3: Data filteringLLM Selection

Step 4: Data Evaluation

PATSFTPre-Training

Llama 3.1 405B

Figure 1: Practical guidance for the code related data generation pipeline. We also recommend several large
language models (LLMs) that offer strong performance while maintaining a balanced cost (Appendix A.2).

thetic data generation both essential and timely.
Although there are survey papers in the fields of
general data engineering (Liu et al., 2024b; Long
et al., 2024; Wang et al., 2024c; Ding et al., 2024a)
and code intelligence (Wan et al., 2023; Jiang et al.,
2024; Zhang et al., 2024d; Sun et al., 2024a), there
is a notable gap in literature focusing specifically
on data synthesis and filtering techniques for code-
related tasks. To fill this gap, we present a targeted
review of recent advancements in synthetic data
generation and filtering for training CodeLLMs,
covering over 50 recent works across 23 topic cat-
egories from the past two years. The techniques
discussed are organized into a taxonomy (Fig. 2)
and analyzed in terms of their motivation, method-
ologies, and key contributions. We also maintain
a GitHub repository1 to collect open-source syn-
thesis datasets for CodeLLMs and track recent ad-
vancements. Our goal is to provide an in-depth
overview of the current state of the field, high-
light key challenges, and offer insights to guide
researchers and practitioners in building efficient
and robust CodeLLMs through effective data engi-
neering practices.

2 Preliminaries and Related Works

2.1 The Data Curation Pipeline
Data curation, which aims to ensure datasets are
of high quality, diverse, relevant, and available, is
crucial to the success of CodeLLMs. The data cu-
ration process typically involves four key steps (cf.
Figure 1 in 6). (1) Seed Input Collection: Be-
fore synthesizing data, a small set of seed samples

1https://github.com/chenmengdx/
awesome-data-synthesis-for-code-llm

(e.g. problem-solution pairs), unlabeled inputs (e.g.
code snippets), or human-written instructions (e.g.
problem descriptions) are gathered to define the
characteristics of the target data and guide the syn-
thesis process. (2) Data Synthesis: LLMs are lever-
aged to generate a large volume of code-related
data samples for specific downstream tasks, ex-
ploiting their comprehensive coding-related knowl-
edge and capabilities. (3) Data Filtering: This
step involves removing low-quality, irrelevant or
redundant samples, addressing issues such as hal-
lucinations or ambiguous descriptions caused by
ineffective prompts, to ensure the dataset’s useful-
ness. (4) Data Evaluation: The final step assesses
the quality and applicability of the data to confirm
its value for downstream tasks.

2.2 Relationship to Other Works
Data Synthesis & Selection. Several recent sur-
vey papers focus on data synthesis and selection in
general, but not specifically on code-related tasks.
Liu et al. (2024b) track the state of synthetic data
research, outlining best practices and key lessons
learned. Long et al. (2024) address the lack of a uni-
fied framework in LLM-driven synthetic data gener-
ation, proposing a general workflow by organizing
studies around generation, curation, and evaluation.
Wang et al. (2024a); Albalak et al. (2024) provide
a thorough review of recent advancements in data
selection methods. Xu et al. (2024b) present a
comprehensive review of knowledge distillation,
structured around algorithms, skills, and vertical-
ization, and explore distillation mechanisms, cogni-
tive skill enhancements, and their practical applica-
tions across various domains. Wang et al. (2024c)
offer an extensive overview of data management

12485

https://github.com/chenmengdx/awesome-data-synthesis-for-code-llm
https://github.com/chenmengdx/awesome-data-synthesis-for-code-llm


strategies in both pretraining and supervised fine-
tuning stages of LLMs. Ding et al. (2024a) analyze
the impact of LLMs on data augmentation, while
Tan et al. (2024) review learning strategies for mod-
els using LLM-generated annotations. Different
from these works, our survey focuses specifically
on code-related tasks, rather than general data gen-
eration or construction methods.
Code Intelligence. Another relevant area is code
intelligence, encompassing paradigms, models,
datasets, and benchmarks. She et al. (2023); Zan
et al. (2023); Wan et al. (2023); Jiang et al. (2024);
Zhang et al. (2024d); Sun et al. (2024a); Zhang
et al. (2024c); Lyu et al. (2024) provide general
reviews of advances in code intelligence, particu-
larly in code generation. Liu et al. (2024d) present
a comprehensive analysis of LLM-based NL2SQL
techniques, covering the entire lifecycle—model,
data, evaluation, and error analysis. Zhang et al.
(2024b) conduct a systematic literature review of
LLM applications in automated program repair. In
contrast, our survey focuses on data synthesis and
filtering to produce high-quality training data for
code-related LLMs, rather than on model training
methods or public datasets.

3 Key Data Synthesis Techniques

This section reviews recent data synthesis tech-
niques for code-related tasks, structured by the
taxonomy in Figure 2 along three dimensions:
Building Phases, Core Objectives, and Specific
Tasks. Building Phases categorizes works by stages
of CodeLLM construction, including pre-training,
fine-tuning, alignment, and evaluation. Core Objec-
tives groups studies by goals like enhancing data
quality, increasing diversity, improving reasoning,
and supporting iterative programming. Specific
Tasks include NL2SQL, code repair, unit test gener-
ation, translation, refactoring, and documentation.

3.1 Model Building Phases

Pre-training. A notable example among code
LLMs is the Phi series, which is primarily trained
on synthetic “textbook-quality” data. This in-
cludes less than 1B tokens of GPT-3.5-generated
Python textbooks and approximately 180M tokens
of Python exercises and solutions. The Phi models,
such as Phi-1 (Gunasekar et al., 2023) for Python
coding and Phi-1.5 (Li et al., 2023b) for com-
monsense reasoning and language understanding,
outperform many open-weight models on coding

benchmarks like HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021), despite being 10
times smaller in model size and 100 times smaller
in dataset size. This demonstrates the effectiveness
of synthetic data in training. CodeLlama (Roz-
ière et al., 2024) generates about ˜14,000 Python
question-test-solution triplets by first creating unit
tests and then verifying generated solutions. Cheng
et al. (2024) propose augmenting corpora with
instruction-response pairs generated by an instruc-
tion synthesizer, followed by continual pre-training
on the augmented data. Trained this way, Llama3-
8B outperforms Llama3-70B in some cases.
Supervised fine-tuning. For code generation, sev-
eral notable techniques and synthetic datasets have
emerged. Code Alpaca (Chaudhary, 2023) intro-
duces a dataset of 20K code instructions, generated
via the SELF-INSTRUCT method (Wang et al.,
2023) applied to ChatGPT across 21 seed tasks.
WizardCoder (Luo et al., 2024) enhances the com-
plexity of code instructions, using the Evol-Instruct
technique (Xu et al., 2024a), resulting in a dataset
of 78K evolved code instruction examples. To ad-
dress inherent biases in LLMs and foster diverse,
creative code instructions, Magicoder (Wei et al.,
2024) employs ChatGPT to generate 75K diverse
synthetic instruction samples inspired by random
open-source code snippets. Zeng et al. (2024) intro-
duces Auto Evol-Instruct, an end-to-end framework
that evolves instruction datasets using LLMs with-
out manual intervention. WaveCoder (Yu et al.,
2024) compiles the CodeSeaXDataset, consist-
ing of 19,915 instruction instances that integrate
task definitions and associated requirements, cov-
ering tasks such as code summarization, genera-
tion, translation, and repair. SemCoder (Ding et al.,
2024c) curates PYX, a collection of 34,639 exe-
cutable code samples with functional descriptions
and execution traces. AutoCoder (Lei et al., 2024)
introduces AIEV-INSTRUCT, a two-stage agent
interaction framework that constructs 169K high-
quality code instruction samples. Fine-tuned on
this dataset, AutoCoder outperforms GPT-4 Turbo
and GPT-4o in pass@1 on the HumanEval bench-
mark. Cassano et al. (2024) introduce MultiPL-T,
an effective approach for generating semi-synthetic
data for low-resource programming languages us-
ing test-validated translation of high-quality code
in high-resource languages.
Preference alignment. Weyssow et al. (2024)
present CodeUltraFeedback, a preference dataset
comprising 10,000 complex instructions and

12486



D
at

a
S

yn
th

es
is

an
d

F
ilt

er
in

g
fo

r
C

od
e-

re
la

te
d

Ta
sk

s

D
at

a
F

ilt
er

in
g

Decontamination

Semantic-level matching Abstract syntax tree (Riddell et al., 2024), Embedding similarity
(Ding et al., 2024c)

Surface-level matching Substring matching, Hashing matching (Li et al., 2023a;
Lozhkov et al., 2024)

LLM-based Filtering LLM-as-a-Judge
ALPAGASUS (Chen et al., 2024), ICE-Score (Zhuo, 2024),
LLM discriminator (Yu et al., 2024), Model-as-judge (Dubey
et al., 2024)

Small Model-
based Filtering

Model-based
Coreset selection (Chen et al., 2023b; Yu et al., 2024),
Classifier-based (Dubey et al., 2024)

Indicator-based
Difficulty score (Li et al., 2024), Instruction quality (Cao et al.,
2024b), CodeBERTScore (Zhou et al., 2023)

Interpreter-
based Filtering

Execution-based
SemCoder (Ding et al., 2024c), AutoCoder (Lei et al., 2024),
SC2-Instruct (Liu et al., 2024a)

Parser-based Dependency Parsing (Guo et al., 2024; Zhu et al., 2024)

Rule-based Filtering

De-duplication
String matching and MinHash (Lee et al., 2022), File-level and
repository-level (Zhu et al., 2024), Global & local deduplication
(Shen et al., 2024)

Heuristic rules
Basic filters (long line filter, alpha filter, encoded data filter) (Li
et al., 2023a; Lozhkov et al., 2024), Language-specific filter
(Guo et al., 2024; Zhu et al., 2024)

D
at

a
S

yn
th

es
is

Specific Tasks

Code Documentation
CodeExp (Cui et al., 2022), DistillCodeSum (Su and McMillan,
2024)

Code Factoring Performance-Improving Edits (Shypula et al., 2024)

Code Translation Back Translation (Chen and Lampouras, 2023)

Unit Test Generation Actor-Critic RL (Gorinski et al., 2023)

Code Repair SemCoder (Ding et al., 2024c), DebugBench (Tian et al.,
2024), DistiLRR (Chen et al., 2023a)

NL2SQL
SENSE (Yang et al., 2024), AmbiQT (Bhaskar et al., 2023), DR.
Spider (Chang et al., 2023), ScienceBenchmark (Zhang et al.,
2023)

Core Objectives

Iterative Programming
OpenCodeInterpreter (Zheng et al., 2024), SemCoder (Ding
et al., 2024c), CYCLE (Ding et al., 2024b), LETI (Wang et al.,
2024b), Reflexion (Shinn et al., 2023)

Enhance Reasoning
LLM-Assisted Code Cleaning (Jain et al., 2024), SemCoder
(Ding et al., 2024c), CodePLAN (Sun et al., 2024b), Beyond-
Code (Cao et al., 2024a), Case2Code (Shao et al., 2024)

Strengthen Diversity
Magicoder (Wei et al., 2024), Auto Evol-Instruct (Zeng et al.,
2024), WaveCoder (Yu et al., 2024), LintSeq (Piterbarg et al.,
2024)

Improve Quality
LLM-Assisted Code Cleaning (Jain et al., 2024), PERsD (Chen
et al., 2023a), Self-play (Haluptzok et al., 2023), AutoCoder
(Lei et al., 2024), Llama 3.1 (Dubey et al., 2024)

Building Phases

Model Evaluation
CRUXEval (Gu et al., 2024), AmbiQT (Bhaskar et al., 2023),
DR. Spider (Chang et al., 2023), ScienceBenchmark (Zhang
et al., 2023)

Preference Alignment CodeUltraFeedback (Weyssow et al., 2024), PLUM (Zhang
et al., 2024a)

Supervised Fine-Tuning

Code Alpaca (Chaudhary, 2023), WizardCoder (Luo et al.,
2024), Magicoder (Wei et al., 2024), Auto Evol-Instruct (Zeng
et al., 2024), WaveCoder (Yu et al., 2024), SemCoder (Ding
et al., 2024c), AutoCoder (Lei et al., 2024), MultiPL-T (Cas-
sano et al., 2024)

Pre-training
Phi-1 (Gunasekar et al., 2023), Phi-1.5 (Li et al., 2023b),
CodeLlama (Rozière et al., 2024), Instruct PT (Cheng et al.,
2024)

Figure 2: Taxonomy of data synthesis and filtering techniques for code-related tasks.

12487



40,000 responses generated by 14 diverse LLMs,
aimed at aligning LLMs to coding preferences in
code generation scenarios. Zhang et al. (2024a)
propose PLUM, a preference learning framework
for training CodeLLMs. It uses GPT-4 to generate
unit test cases from natural language instructions,
samples candidate solutions, and evaluates them
against the test cases to create a preference dataset
of ˜180K samples.
Evaluation. Gu et al. (2024) develop CRUXE-
val (Code Reasoning, Understanding, and eXecu-
tion Evaluation), a benchmark consisting of 800
Python functions created using a “generate-and-
filter” approach with CodeLlama. Bhaskar et al.
(2023) introduce AmbiQT, a novel benchmark with
over 3,000 examples where each natural-language
question can be interpreted as two plausible SQL
queries due to lexical and/or structural ambiguity.
This benchmark is generated through a combina-
tion of ChatGPT-based synonym generation and
perturbation, along with standard rule-based per-
turbation. Chang et al. (2023) curate Dr.Spider,
a comprehensive diagnostic robustness evaluation
benchmark with 15K perturbed examples generated
by paraphrasing natural questions. ScienceBench-
mark Zhang et al. (2023) is a complex NL2SQL
benchmark for three real-world scenarios, created
by extending a small amount of human-generated
data with synthetic data using GPT-3.

3.2 Core Objectives
Quality. Ensuring the correctness of synthetic
data is both essential and challenging for devel-
oping CodeLLMs. Jain et al. (2024) introduce a
novel pipeline to improve the dataset quality by
enhancing code structure and readability. This
pipeline transforms existing programs by renaming
variables, modularizing and decomposing complex
code into smaller sub-functions, and incorporating
natural-language-based plans through LLM-based
transformations. PERsD (Chen et al., 2023a) em-
ploys a personalized distillation process to improve
data quality through adaptive refinement, leverag-
ing the student’s generated code and its execution
feedback. Haluptzok et al. (2023) propose enhanc-
ing CodeLLMs using a self-play technique, which
involves synthesizing programming puzzles and
iteratively verifying solutions with an interpreter.
Lei et al. (2024) generate high-quality code instruc-
tion datasets by simulating programmers writing
code and conducting unit tests through agent inter-
actions, ensuring accuracy via execution-based val-

idation. The Llama 3.1 series (Dubey et al., 2024)
produces 2.7 million high-quality synthetic exam-
ples using various techniques, including execution
feedback, programming language translation for
low-resource languages, back translation, and sys-
tem prompt steering during rejection sampling.
Diversity. Previous studies (Liu et al., 2024c; Lu
et al., 2024b) highlight the significant impact of
dataset complexity and diversity on model align-
ment. Wei et al. (2024) propose inspiring LLMs to
generate diverse, realistic, and controllable code in-
structions by providing distinct seed code snippets
from an extensive repository of real-world open-
source code. Zeng et al. (2024) enhance data com-
plexity and diversity by utilizing LLMs as optimiz-
ers to analyze input instructions and autonomously
devise evolution rules suitable for the given data.
Yu et al. (2024) manually define filtering rules to se-
lect seed code and then employ the KCenterGreedy
algorithm (Sener and Savarese, 2018) to choose di-
verse core samples, thereby avoiding sole reliance
on the teacher LLM’s capabilities or the initial
seed. Piterbarg et al. (2024) introduce a synthetic
data generation algorithm, LintSeq, which refac-
tors existing code into a sequence of edits. They
demonstrate that models fine-tuned on these edit
sequences generate more diverse programs when
repeatedly sampled.
Reasoning. To enhance the reasoning capabil-
ities of CodeLLMs, Jain et al. (2024) generate
natural-language plans from modularized programs
by summarizing functions in a top-down manner,
which are then prepended to the program as com-
ments. Ding et al. (2024c) introduce monologue
reasoning, where CodeLLMs articulate code ex-
ecution step-by-step, inspired by the concept of
rubber duck debugging (Hunt and Thomas, 2000).
This approach equips CodeLLMs with a human-
like understanding of control flow, state transitions,
and complex operations, bridging the gap between
static code analysis and dynamic execution rea-
soning. CodePLAN (Sun et al., 2024b) proposes
“backward reasoning” by generating higher-quality
plans from the given solution/code and then using
these plans and solutions to fine-tune the code gen-
eration model in an alternating multi-task fashion.
Cao et al. (2024a) construct a dataset, CodeStep-
sEval, with thought steps generated by ChatGPT
for complex code generation. Shao et al. (2024)
compile a diverse set of executable programs and
synthesize input-output transformations for each.
By presenting these synthetic I/O pairs to language

12488



models, they aim to improve the models’ inductive
reasoning capabilities for code generation.
Iterative programming. Generating correct code
in a single attempt is difficult, leading to iterative
programming where CodeLLMs generate solutions
over multiple turns with feedback at each step.
To enhance multi-turn capabilities, Zheng et al.
(2024) created the Code-Feedback dataset, contain-
ing 68K interactions that combine execution and
LLM feedback for dynamic code refinement. Ding
et al. (2024c) introduced the PYX-R debugging
dataset, which includes descriptions, buggy code,
traces, and rationales to train LLMs for debugging
and self-refinement. CYCLE (Ding et al., 2024b)
improves faulty code by integrating problem de-
scriptions, previous code, and execution feedback.
LETI (Wang et al., 2024b) fine-tunes models using
natural-language instructions, generated programs,
and textual feedback from errors. Reflexion (Shinn
et al., 2023) introduces a framework for reinforcing
language agents with verbal and heuristic feedback,
including self-evaluation techniques like unit tests.

3.3 Specific Tasks
In addition to core code generation tasks, several
studies focus on data synthesis for specific code-
related applications. NL2SQL has been widely
investigated due to SQL’s prominence as a query
language. SENSE (Yang et al., 2024) employs syn-
thetic data from strong models for domain diver-
sity and weak models for preference learning, en-
hancing NL2SQL performance through alignment
with executors. AmbiQT (Bhaskar et al., 2023),
DR.Spider (Chang et al., 2023), and ScienceBench-
mark (Zhang et al., 2023) use LLMs to generate
paraphrases or perturbations of natural questions,
improving NL2SQL benchmarks. For code repair,
Ding et al. (2024c) and Tian et al. (2024) utilize
weak LLMs (7B CodeLLMs) and strong LLMs
(GPT-4) to create buggy code from correct code, in-
corporating linguistic feedback. Wong et al. (2024)
introduce DistiLRR, which transfers code repair
capabilities from high-resource to low-resource lan-
guages, using ChatGPT to generate code repairs
and rationales. For unit test generation, Gorinski
et al. (2023) propose a method to automatically
obtain function signatures and associated unit tests,
suitable for reinforcement learning training of code
synthesis models. Chen and Lampouras (2023) ap-
ply back-translation to augment training sets for
code translation tasks. In code refactoring, Shy-
pula et al. (2024) enhance human-written datasets

with 1,485 synthetic “slow-fast” program pairs gen-
erated by ChatGPT to optimize program runtime ef-
ficiency, supplemented by additional unit tests from
AlphaCode (Li et al., 2022). For code documen-
tation, Cui et al. (2022) create a code explanation
corpus CodeExp with three sets of code-docstring
pairs, and Su and McMillan (2024) synthesize a
code summarization dataset with 2.15 million sam-
ples using ChatGPT for knowledge distillation.

Data Synthesis Takeaways

Quality & Efficiency: CodeLLMs rely on human data
(e.g., GitHub) for pre-training and synthetic data for
instruction tuning, with models like Llama 3.1 and
Qwen2.5-Coder favoring the latter for its efficiency.
Key Enhancements: Improving synthetic data via in-
terpreter feedback, better seed selection, and reasoning
steps enhances CodeLLMs. Multi-turn datasets with
execution feedback further support iterative program-
ming. Future work explores agent-like learning.
Task Adaptation: Synthetic data effectively tailors
CodeLLMs to specific tasks, though challenges re-
main in supporting low-resource languages and version-
specific code generation.

4 Key Data Filtering Techniques

Data filtering is the process of selecting specific
subsets of data based on predefined criteria to op-
timize performance. Effective filtering offers key
advantages: (1) improving model accuracy by re-
ducing noise and bias, especially in synthesized
datasets; (2) lowering training costs through dataset
size reduction; and (3) maintaining evaluation in-
tegrity by eliminating contaminated data. In this
section, we review various data filtering techniques
for code-related tasks, categorizing them by mech-
anism: rule-based, interpreter-driven, small model-
based, LLM-based, and decontamination methods.

4.1 Rule-based Filtering

Rule-based filtering is widely adopted for data
cleaning in leading CodeLLMs due to its efficiency
and simplicity. The most common techniques in-
volve heuristic rules for cleaning and deduplica-
tion. For instance, StarCoder (Li et al., 2023a;
Lozhkov et al., 2024) applies a range of filters to
exclude autogenerated files, data files, and other
low-quality data. This includes long line filters
(e.g., files exceeding 100 lines or lines exceeding
100 characters), alpha filters (e.g., files with less
than 25% alphabetic characters), and encoded data
filters (e.g., base64 strings, hexadecimal sequences,
Unicode strings). DeepSeek-Coder (Guo et al.,
2024) incorporates language-specific filters for dif-

12489



ferent file types (e.g., Text, JSON, YAML, Web
Ontology Language, Graphviz (DOT), HTML), ef-
fectively reducing large data-heavy files. For dedu-
plication, Lee et al. (2022) propose two scalable
methods: exact substring matching, which iden-
tifies repeated verbatim strings, and approximate
full-document matching, which uses hash-based
techniques (Broder, 1997) to detect high n-gram
overlap between documents. Additionally, Guo
et al. (2024) employ a near-deduplication algo-
rithm (Kocetkov et al., 2023) at the repository level,
avoiding file-level filtering to preserve repository
structure. Shen et al. (2024) compared global and
local deduplication, recommending global dedupli-
cation for multi-source datasets. It offers balanced
information representation and reduces redundancy,
though it demands higher memory resources.

4.2 Interpreter-based Filtering

Interpreter-based filtering organizes relevant code
files into training samples using dependency
parsers or validates the code by executing it in an
interpreter. Guo et al. (2024) leverage dependency
parsing to arrange files in an order where each
file’s context is provided beforehand, allowing for
seamless concatenation of project-level code into a
single training sample. This approach enhances the
model’s ability to handle comprehensive codebases.
For execution-based filtering, Ding et al. (2024c);
Lei et al. (2024); Liu et al. (2024a) adopt a self-
validation strategy to filter incorrect synthesized
code. This method involves generating both solu-
tions and test cases with CodeLLMs, executing the
generated code, and retaining only samples that run
successfully. The model’s debugging capabilities
are further employed to retry failed cases until the
code executes correctly, ensuring the accuracy of
the resulting dataset.

4.3 Small Model-based Filtering

Several studies suggest using trainable small mod-
els for data filtering, moving beyond rule-based
or interpreter-driven methods. Superfiltering (Li
et al., 2024) assesses the consistency between
weak and strong models in determining instruction-
tuning sample difficulty, demonstrating that the
Instruction-Following Difficulty (IFD) score sur-
passes perplexity in capturing sample complexity.
This method proposes smaller models, like GPT-2,
as more efficient filters for identifying high-quality
data for LLM fine-tuning. Similarly, Cao et al.
(2024b) leverage natural language indicators to

predict inference loss, offering a more efficient
evaluation of data than fine-tuning LLMs. For
code filtering, Zhou et al. (2023) introduce Code-
BERTScore, which computes soft similarity scores
between code snippets using contextual encoding.
Beyond indicators, some studies advocate for clus-
tering or classifiers in filtering. Chen et al. (2023b);
Yu et al. (2024) utilize the KCenterGreedy core-
set algorithm (Sener and Savarese, 2018) to select
data subsets that approximate the full distribution.
Dubey et al. (2024) further implement model-based
classifiers, using fasttext (Joulin et al., 2017) and
resource-heavy Roberta-based models (Liu et al.,
2019), to identify high-quality tokens.

4.4 LLM-based Filtering

The growing use of LLM-as-a-Judge has led to
increased interest in leveraging LLMs for data fil-
tering. Chen et al. (2024) utilize ChatGPT as an au-
tomatic grader, scoring each training triplet on a 0
to 5 scale. The filtered data, with scores exceeding
a defined threshold, is then used to fine-tune AL-
PAGASUS using the same instruction fine-tuning
process as ALPACA. Zhuo (2024) introduce ICE-
Score, a novel evaluation metric for assessing code
usefulness and functional correctness via LLMs,
which can also guide data selection. Yu et al. (2024)
employ GPT-4 as a discriminator to analyze and
filter instructional data, leveraging CoT reasoning
to evaluate each instance step by step, classifying
them as either valid or invalid. Dubey et al. (2024)
apply earlier versions of Llama 3 to assign binary
(0/1) scores to synthetic code data based on code
correctness and style, addressing the challenge of
some synthetic code being unexecutable due to the
intermixing of natural language and code.

4.5 Decontamination

Decontaminating code datasets is essential due to
the frequent online publication of competition so-
lutions (Li et al., 2022). Surface- and semantic-
level matching techniques have been employed
to tackle this issue. StarCoder (Li et al., 2023a;
Lozhkov et al., 2024) addresses contamination by
filtering out files with docstrings or solutions from
HumanEval and MBPP, docstrings from APPS
(Hendrycks et al., 2021), questions from GSM8K
(Cobbe et al., 2021), and prompts from DS1000
(Lai et al., 2022), ensuring clean training data.
While surface-level metrics detect similar code
based on superficial traits, semantically identical
programs may vary in structure due to differences

12490



in identifiers or formatting. To handle semantic sim-
ilarity, Riddell et al. (2024) use the Dolos toolkit
(Maertens et al., 2022), which tokenizes programs
into abstract syntax trees (ASTs) via tree-sitter and
computes similarity through k-gram matching. Ad-
ditionally, Ding et al. (2024c) evaluate contamina-
tion by embedding datasets and benchmarks with
OpenAI’s text-embedding-3-large model, and cal-
culating cosine similarity to measure overlap.

Data Filtering Takeaways

Optimized Filtering: A hybrid of rule-based and
model-based techniques balances computational effi-
ciency and dataset size. Iterative “filter-correct-filter”
cycles enhance data quality and maximize utility.
Dataset Composition: Beyond filtering, strategically
mixing datasets in optimal ratios improves diverse capa-
bilities, including reasoning, mathematical proficiency,
and general language skills in CodeLLMs.
Decontamination for Robust Evaluation: Ensuring
unbiased CodeLLM evaluation requires rigorous decon-
tamination. In addition to surface- and semantic-level
matching, leveraging benchmarks from recent human
projects enhances assessment comprehensiveness.

5 Challenges and Future Directions

We envisage the following important challenges
and research directions worthy of investigation.
Supporting low-resource languages. The eval-
uation of CodeLLMs predominantly focuses on
mainstream languages like Python and Java. How-
ever, data synthesis and filtering play an even more
important role for low-resource languages (Cas-
sano et al., 2024; Mora et al., 2024), which include
legacy languages such as COBOL, FORTRAN,
and Haskell; domain-specific languages like R and
Elixir; and commercial languages such as IBM
RPG, Oracle SuiteScript, and SAP ABAP.
Mitigating performance degradation. Catas-
trophic forgetting (French, 1999) is a long-standing
problem in machine learning. For code synthesis,
it is possible that the synthesised code exhibits dis-
tributional drifts and thus cause the model to forget
and experience degradation in existing tasks and/or
instruction following capabilities. Sophisticated
training approaches, synthesis/filtering techniques
for diverse yet realistic data, and careful data mix-
ing strategies are promising directions.
Preventing leakage of sensitive information. The
seed data for synthesis may include sensitive infor-
mation such as personally identifiable information
(PII) or proprietary, commercially sensitive data
protected by copyright. It is crucial to implement
strong safeguards (Yao et al., 2024) throughout

the synthesis and filtering processes to ensure that
sensitive information is not unintentionally incorpo-
rated into the generated synthetic data and mitigate
the risk of copyright infringement or other legal
concerns.
Adapting to the evolution of coding knowledge.
The software development ecosystem is in a con-
stant state of flux, with new versions, programming
languages, frameworks, and best practices emerg-
ing frequently. LLMs face the risk of becoming
obsolete if they fail to adapt to these shifts and
integrate the most up-to-date programming knowl-
edge. A key limitation of current coding-related
techniques is their lack of awareness of code ver-
sioning (Wu et al., 2024). To address this challenge,
it is essential to synthesize code that is cognizant
of evolving coding knowledge.
Reducing biases. To ensure that the synthetic data
does not suffer from explicit or implicit biases, it
may be desirable to curate a set of biased prob-
lem descriptions (e.g., “Write a python function

to determine if someone would be a good scientist

based on their race and gender”) (Liu et al., 2023b)
and generate corresponding code snippets that align
with societal expectations. A related challenge is
to ensure that the synthetic data includes sufficient
examples wherein code snippets should not be gen-
erated, e.g., for problem statements that are am-
biguous or considered undesirable.
Synthesis from scratch. For well-defined tasks
such as games, reinforcement learning from self-
play approaches have been shown to achieve super-
human performance without requiring any human
curated dataset (Silver et al., 2018). Considering
that coding is a relatively well-defined task that can
be precisely evaluated, a promising direction is to
explore similar approaches to synthesize code from
scratch, potentially extending reinforcement learn-
ing based methods (Gorinski et al., 2023; Halupt-
zok et al., 2023; Le et al., 2022; Wang et al., 2022).
Automated synthesis with agents. Most, if not
all, of the techniques covered in this survey require
deep human expertise and ingenuity in designing
approaches, planning experiments and evaluating
results, which is an expensive process. Recently, it
has been shown in the literature that frontier LLMs
have the capability of automating empirical scien-
tific discovery (Ma et al., 2024; Lu et al., 2024a; Si
et al., 2024). Thus, developing an agent-based ap-
proach to automated data synthesis and filtering is
a promising research direction to further accelerate
the improvements of CodeLLMs.

12491



6 Practical Guidance

This section introduces a streamlined pipeline (Fig.
1) for synthetic data generation in CodeLLMs, pro-
viding practical guidance for researchers.

6.1 Seed Data Collection

The first step in synthetic data generation is collect-
ing seed data, which can be labeled (e.g., problem-
solution pairs) or unlabeled (e.g., code snippets,
API documentation). For fine-tuning, seed data
falls into three categories: (1) Instructions, which
define code-related task requirements. For instance,
a code generation instruction might be “write a

Python program that generates a random password

of 8 characters”. These can be manually crafted
via crowdsourcing, with broad task coverage and
1-2 variants per task to enhance diversity. (2)
Code snippets, sourced from open platforms like
GitHub, based on relevant programming languages.
If licensing allows, proprietary codebases can be
used, provided sensitive information (e.g., personal
names, contact details) is anonymized. If target-
language code is unavailable, snippets from similar
languages may serve as substitutes. (3) Documen-
tation, particularly valuable for low-resource lan-
guages lacking introductory materials and scarce
human-written repositories. Online API documen-
tation, with syntax details and examples like text-
books, can serve as an alternative seed source.

6.2 Data Synthesis

The choice of data synthesis techniques depends
on the seed data type. For instruction-only seed
data, the process begins by expanding the instruc-
tion set into more natural, fluent, and diverse vari-
ants. Techniques such as Self-Instruct (Chaudhary,
2023), WizardCoder (Luo et al., 2024), Auto Evol-
Instruct (Zeng et al., 2024), and AIEV-INSTRUCT
(Lei et al., 2024) serve as effective starting points.
Once sufficient variants are generated, LLMs are
prompted with each instruction to produce corre-
sponding responses, forming instruction-solution
pairs. For seed data comprising only code snippets,
Magicoder (Wei et al., 2024) facilitates the simulta-
neous generation of problem-solution pairs and can
produce code in languages beyond those present
in the seed data. For documentation-based seed
data, methods like (Cheng et al., 2024) leverage
instruction-synthesizers to extract question-answer
pairs by interpreting the underlying knowledge and
formatting it for fine-tuning. These techniques
are typically employed in supervised fine-tuning

pipelines. Besides, leveraging both strong and
weak LLMs generates diverse responses, including
high- and low-quality solutions, supporting prefer-
ence alignment training (Weyssow et al., 2024).

6.3 Data Filtering
After generating raw synthetic data, iterative filter-
ing is crucial to enhance dataset quality and diver-
sity. The process involves: (1) Applying a combi-
nation of filtering techniques to assess data quality.
LLM-based methods (Dubey et al., 2024) initially
predict quality scores, followed by execution-based
filtering (Liu et al., 2024a) to gather interpreter
feedback. (2) Leveraging LLM-based code correc-
tion (Wadhwa et al., 2023) to refine synthetic code
based on quality scores and execution feedback. (3)
Employing small model-based (Li et al., 2024) and
rule-based (Li et al., 2023a) filtering to remove low-
quality data and eliminate duplicates efficiently. (4)
Conducting rigorous data decontamination at sur-
face (Li et al., 2023a) and semantic (Riddell et al.,
2024) levels to ensure model evaluation integrity.

6.4 Data Evaluation
Evaluating synthetic data for training code-focused
LLMs involves experimenting with diverse dataset
combinations. Synthetic datasets vary across multi-
ple dimensions, including domain specificity, seed
data sources, and the teacher LLMs used for genera-
tion. Comprehensive ablation studies and data com-
bination experiments help quantify each dataset’s
contribution, guiding optimal dataset selection. A
key challenge is data mixing. Beyond traditional
heuristics or manually assigned weights, recent
advances in offline (Xie et al., 2023) and online
(Albalak et al., 2023) data mixing offer promis-
ing alternatives. These methods can be applied
across CodeLLM development stages, including
pre-training, supervised fine-tuning, and preference
alignment training.

7 Conclusion
Code-related tasks, showcasing LLMs’ capabilities,
have gained significant interest for their practical
value and as a robust testbed for LLMs. In this
paper, we survey recent data synthesis and filtering
techniques for these tasks, outlining their objec-
tives, methods and outcomes, providing a struc-
tured taxonomy, discussing challenges, and propos-
ing future research directions. To our knowledge,
this is the first survey on data synthesis and filter-
ing for code tasks, and we hope to inspire further
research in this important area.

12492



Limitations

In this paper, we provide a focused survey of
data synthesis and filtering techniques for coding-
related tasks. As we discussed in Sec. 2, there
are existing surveys that cover both of these top-
ics, namely (1) data synthesis in general and (2)
LLMs for coding. Thus, our survey may overlap in
coverage with these existing ones.

Due to page limits, we may not have included
all relevant works and technical details. The pri-
mary studies we included are mostly 2022 onwards.
While we strive to remain up-to-date, as this is a
fast moving field, there may be more recent studies
that have not been included. For the latest updates,
please refer to our GitHub repository1.

Since we did not conduct extensive experimental
evaluations, a detailed comparative analysis of sim-
ilar techniques is beyond the scope of this paper. In
practice, various data synthesis and filtering meth-
ods can be effectively combined to enhance data
quality. Due to space constraints, we are unable to
provide comprehensive empirical insights within
the main body of this paper.

References
Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne

Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Hae-
won Jeong, Colin Raffel, Shiyu Chang, Tatsunori
Hashimoto, and William Yang Wang. 2024. A survey
on data selection for language models. Transactions
on Machine Learning Research. Survey Certifica-
tion.

Alon Albalak, Liangming Pan, Colin Raffel, and
William Yang Wang. 2023. Efficient online data
mixing for language model pre-training. In R0-
FoMo:Robustness of Few-shot and Zero-shot Learn-
ing in Large Foundation Models.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu,
and Charles Sutton. 2018. A survey of machine learn-
ing for big code and naturalness. ACM Comput. Surv.,
51(4).

Miltiadis Allamanis and Charles Sutton. 2013. Min-
ing source code repositories at massive scale using
language modeling. In 2013 10th Working Confer-
ence on Mining Software Repositories (MSR), pages
207–216.

Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac,
et al. 2024. Gemini: A family of highly capable
multimodal models. Preprint, arXiv:2312.11805.

Anthropic. 2023. Claude: the claude model family.
https://www.anthropic.com/claude. Accessed:
October 7, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Adithya Bhaskar, Tushar Tomar, Ashutosh Sathe, and
Sunita Sarawagi. 2023. Benchmarking and improv-
ing text-to-SQL generation under ambiguity. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7053–
7074, Singapore. Association for Computational Lin-
guistics.

A. Broder. 1997. On the resemblance and containment
of documents. In Compression and Complexity of
Sequences, International Conference on, page 21,
Los Alamitos, CA, USA. IEEE Computer Society.

Liuwen Cao, Yi Cai, Jiexin Wang, Hongkui He, and
Hailin Huang. 2024a. Beyond code: Evaluate
thought steps for complex code generation. In Pro-
ceedings of the 2024 Joint International Conference
on Computational Linguistics, Language Resources
and Evaluation (LREC-COLING 2024), pages 2296–
2306, Torino, Italia. ELRA and ICCL.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun.
2024b. Instruction mining: Instruction data selec-
tion for tuning large language models. Preprint,
arXiv:2307.06290.

Federico Cassano, John Gouwar, Francesca Lucchetti,
Claire Schlesinger, Anders Freeman, Carolyn Jane
Anderson, Molly Q Feldman, Michael Greenberg,
Abhinav Jangda, and Arjun Guha. 2024. Knowl-
edge transfer from high-resource to low-resource
programming languages for code llms. Preprint,
arXiv:2308.09895.

Shuaichen Chang, Jun Wang, Mingwen Dong, Lin
Pan, Henghui Zhu, Alexander Hanbo Li, Wuwei
Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien,
Steve Ash, William Yang Wang, Zhiguo Wang, Vit-
torio Castelli, Patrick Ng, and Bing Xiang. 2023.
Dr.spider: A diagnostic evaluation benchmark to-
wards text-to-SQL robustness. In The Eleventh Inter-
national Conference on Learning Representations.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Hailin Chen, Amrita Saha, Steven Hoi, and Shafiq Joty.
2023a. Personalized distillation: Empowering open-
sourced LLMs with adaptive learning for code gen-
eration. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 6737–6749, Singapore. Association for Com-
putational Linguistics.

12493

https://openreview.net/forum?id=XfHWcNTSHp
https://openreview.net/forum?id=XfHWcNTSHp
https://openreview.net/forum?id=9Tze4oy4lw
https://openreview.net/forum?id=9Tze4oy4lw
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3212695
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://doi.org/10.1109/MSR.2013.6624029
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://www.anthropic.com/claude
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.18653/v1/2023.emnlp-main.436
https://doi.org/10.18653/v1/2023.emnlp-main.436
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://aclanthology.org/2024.lrec-main.205
https://aclanthology.org/2024.lrec-main.205
https://arxiv.org/abs/2307.06290
https://arxiv.org/abs/2307.06290
https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2308.09895
https://arxiv.org/abs/2308.09895
https://openreview.net/forum?id=Wc5bmZZU9cy
https://openreview.net/forum?id=Wc5bmZZU9cy
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://doi.org/10.18653/v1/2023.emnlp-main.417
https://doi.org/10.18653/v1/2023.emnlp-main.417
https://doi.org/10.18653/v1/2023.emnlp-main.417


Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xi-
aomeng Hu, Xuetao Ma, Yifan Yanggong, and Junbo
Zhao. 2023b. Maybe only 0.5% data is needed: A
preliminary exploration of low training data instruc-
tion tuning. Preprint, arXiv:2305.09246.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2024. Alpagasus: Training a better alpaca with fewer
data. In The Twelfth International Conference on
Learning Representations.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Pinzhen Chen and Gerasimos Lampouras. 2023. Ex-
ploring data augmentation for code generation tasks.
In Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1542–1550, Dubrovnik,
Croatia. Association for Computational Linguistics.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi,
Minlie Huang, and Furu Wei. 2024. Instruction pre-
training: Language models are supervised multitask
learners. Preprint, arXiv:2406.14491.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Haotian Cui, Chenglong Wang, Junjie Huang, Jee-
vana Priya Inala, Todd Mytkowicz, Bo Wang, Jian-
feng Gao, and Nan Duan. 2022. CodeExp: Explana-
tory code document generation. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 2342–2354, Abu Dhabi, United Arab
Emirates. Association for Computational Linguistics.

CursorAI. 2024. Cursor: the ai code editor. https:
//www.cursor.com/features. Accessed: October
7, 2024.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze
Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie
Hu, Anh Tuan Luu, and Shafiq Joty. 2024a. Data aug-
mentation using LLMs: Data perspectives, learning
paradigms and challenges. In Findings of the Associ-
ation for Computational Linguistics ACL 2024, pages
1679–1705, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Yangruibo Ding, Marcus J. Min, Gail Kaiser, and
Baishakhi Ray. 2024b. Cycle: Learning to self-refine
the code generation. Preprint, arXiv:2403.18746.

Yangruibo Ding, Jinjun Peng, Marcus J. Min, Gail
Kaiser, Junfeng Yang, and Baishakhi Ray. 2024c.
Semcoder: Training code language models with com-
prehensive semantics. Preprint, arXiv:2406.01006.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, et al. 2024. The
llama 3 herd of models. Preprint, arXiv:2407.21783.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3(4):128–135.

Saumya Gandhi, Ritu Gala, Vijay Viswanathan, Tong-
shuang Wu, and Graham Neubig. 2024. Better syn-
thetic data by retrieving and transforming existing
datasets. In Findings of the Association for Com-
putational Linguistics ACL 2024, pages 6453–6466,
Bangkok, Thailand and virtual meeting. Association
for Computational Linguistics.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2021. The pile: An
800gb dataset of diverse text for language modeling.
CoRR, abs/2101.00027.

Philip Gorinski, Matthieu Zimmer, Gerasimos Lam-
pouras, Derrick Goh Xin Deik, and Ignacio Iacobacci.
2023. Automatic unit test data generation and actor-
critic reinforcement learning for code synthesis. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 370–384, Singapore.
Association for Computational Linguistics.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.
2024. Cruxeval: A benchmark for code rea-
soning, understanding and execution. Preprint,
arXiv:2401.03065.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio Ce-
sar, Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Ju-
lian McAuley. 2023. Longcoder: A long-range
pre-trained language model for code completion.
Preprint, arXiv:2306.14893.

12494

https://arxiv.org/abs/2305.09246
https://arxiv.org/abs/2305.09246
https://arxiv.org/abs/2305.09246
https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.18653/v1/2023.findings-eacl.114
https://doi.org/10.18653/v1/2023.findings-eacl.114
https://arxiv.org/abs/2406.14491
https://arxiv.org/abs/2406.14491
https://arxiv.org/abs/2406.14491
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2022.findings-emnlp.174
https://doi.org/10.18653/v1/2022.findings-emnlp.174
https://www.cursor.com/features
https://www.cursor.com/features
https://doi.org/10.18653/v1/2024.findings-acl.97
https://doi.org/10.18653/v1/2024.findings-acl.97
https://doi.org/10.18653/v1/2024.findings-acl.97
https://arxiv.org/abs/2403.18746
https://arxiv.org/abs/2403.18746
https://arxiv.org/abs/2406.01006
https://arxiv.org/abs/2406.01006
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.findings-acl.385
https://doi.org/10.18653/v1/2024.findings-acl.385
https://doi.org/10.18653/v1/2024.findings-acl.385
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2023.findings-emnlp.28
https://doi.org/10.18653/v1/2023.findings-emnlp.28
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://www.microsoft.com/en-us/research/publication/textbooks-are-all-you-need/
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/2306.14893


Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. 2023. Language models can teach themselves
to program better. In The Eleventh International
Conference on Learning Representations.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

Tom Hosking, Phil Blunsom, and Max Bartolo. 2024.
Human feedback is not gold standard. In The Twelfth
International Conference on Learning Representa-
tions.

Andrew Hunt and David Thomas. 2000. The pragmatic
programmer: from journeyman to master. Addison-
Wesley Longman Publishing Co., Inc., USA.

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E.
Gonzalez, Koushik Sen, and Ion Stoica. 2024. LLM-
assisted code cleaning for training accurate code gen-
erators. In The Twelfth International Conference on
Learning Representations.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large
language models for code generation. Preprint,
arXiv:2406.00515.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Junaed Younus Khan and Gias Uddin. 2022. Automatic
code documentation generation using gpt-3. Preprint,
arXiv:2209.02235.

Denis Kocetkov, Raymond Li, Loubna Ben allal, Jia LI,
Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro Von Werra, and Harm
de Vries. 2023. The stack: 3 TB of permissively li-
censed source code. Transactions on Machine Learn-
ing Research.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-1000:
A natural and reliable benchmark for data science
code generation. Preprint, arXiv:2211.11501.

Hugo Laurençon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral,
Teven Le Scao, Leandro Von Werra, Chenghao
Mou, Eduardo González Ponferrada, Huu Nguyen,
Jörg Frohberg, Mario Šaško, Quentin Lhoest, An-
gelina McMillan-Major, Gerard Dupont, Stella Bi-
derman, Anna Rogers, Loubna Ben allal, Francesco
De Toni, Giada Pistilli, Olivier Nguyen, Somaieh
Nikpoor, Maraim Masoud, Pierre Colombo, Javier
de la Rosa, Paulo Villegas, Tristan Thrush, Shayne
Longpre, Sebastian Nagel, Leon Weber, Manuel
Muñoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai,
Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-
Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Or-
tiz Suarez, Aaron Gokaslan, Shamik Bose, David
Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai,
Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret
Mitchell, Sasha Alexandra Luccioni, and Yacine Jer-
nite. 2022. The bigscience roots corpus: A 1.6tb com-
posite multilingual dataset. In Advances in Neural
Information Processing Systems, volume 35, pages
31809–31826. Curran Associates, Inc.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:
Mastering code generation through pretrained models
and deep reinforcement learning. In Advances in
Neural Information Processing Systems, volume 35,
pages 21314–21328. Curran Associates, Inc.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Bin Lei, Yuchen Li, and Qiuwu Chen. 2024. Autocoder:
Enhancing code large language model with AIEV-
INSTRUCT. Preprint, arXiv:2405.14906.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu
Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou.
2024. Superfiltering: Weak-to-strong data filtering
for fast instruction-tuning. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
14255–14273, Bangkok, Thailand. Association for
Computational Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo

12495

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=SaRj2ka1XZ3
https://openreview.net/forum?id=SaRj2ka1XZ3
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=sD93GOzH3i5
https://openreview.net/forum?id=7W3GLNImfS
https://openreview.net/forum?id=maRYffiUpI
https://openreview.net/forum?id=maRYffiUpI
https://openreview.net/forum?id=maRYffiUpI
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
https://arxiv.org/abs/2209.02235
https://arxiv.org/abs/2209.02235
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2211.11501
https://proceedings.neurips.cc/paper_files/paper/2022/file/ce9e92e3de2372a4b93353eb7f3dc0bd-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ce9e92e3de2372a4b93353eb7f3dc0bd-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8636419dea1aa9fbd25fc4248e702da4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://arxiv.org/abs/2405.14906
https://aclanthology.org/2024.acl-long.769
https://aclanthology.org/2024.acl-long.769


Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Lean-
dro von Werra, and Harm de Vries. 2023a. Star-
coder: may the source be with you! Preprint,
arXiv:2305.06161.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023b.
Textbooks are all you need ii: phi-1.5 technical report.
Preprint, arXiv:2309.05463.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023a. Visual instruction tuning. In Thirty-
seventh Conference on Neural Information Process-
ing Systems.

Jiawei Liu, Yifeng Ding, Naman Jain, Harm de Vries,
Leandro von Werra, Arjun Guha, Lingming Zhang,
and Yuxiang Wei. 2024a. Starcoder2-instruct: Fully
transparent and permissive self-alignment for code
generation. Preprint, arXiv:2307.08701.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng,
Diyi Yang, Denny Zhou, and Andrew M. Dai. 2024b.
Best practices and lessons learned on synthetic data.
Preprint, arXiv:2404.07503.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2024c. What makes good data for align-
ment? a comprehensive study of automatic data se-
lection in instruction tuning. In The Twelfth Interna-
tional Conference on Learning Representations.

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi
Jiang, Yuyu Luo, Yuxin Zhang, Ju Fan, Guoliang Li,
and Nan Tang. 2024d. A survey of nl2sql with large
language models: Where are we, and where are we
going? Preprint, arXiv:2408.05109.

Yan Liu, Xiaokang Chen, Yan Gao, Zhe Su, Fengji
Zhang, Daoguang Zan, Jian-Guang Lou, Pin-Yu
Chen, and Tsung-Yi Ho. 2023b. Uncovering and
quantifying social biases in code generation. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 2368–2380. Curran Associates,
Inc.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao
Ding, Gang Chen, and Haobo Wang. 2024. On
LLMs-driven synthetic data generation, curation, and
evaluation: A survey. In Findings of the Associa-
tion for Computational Linguistics ACL 2024, pages
11065–11082, Bangkok, Thailand and virtual meet-
ing. Association for Computational Linguistics.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz
Ferrandis, Lingming Zhang, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2024. Starcoder 2 and the stack v2: The
next generation. Preprint, arXiv:2402.19173.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Fo-
erster, Jeff Clune, and David Ha. 2024a. The AI
scientist: Towards fully automated open-ended scien-
tific discovery. arXiv preprint arXiv:2408.06292.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. 2024b. #instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
In The Twelfth International Conference on Learning
Representations.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

Michael R. Lyu, Baishakhi Ray, Abhik Roychoudhury,
Shin Hwei Tan, and Patanamon Thongtanunam. 2024.
Automatic programming: Large language models and
beyond. Preprint, arXiv:2405.02213.

Pingchuan Ma, Tsun-Hsuan Wang, Minghao Guo,
Zhiqing Sun, Joshua B Tenenbaum, Daniela Rus,
Chuang Gan, and Wojciech Matusik. 2024. Llm and
simulation as bilevel optimizers: A new paradigm

12496

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2309.05463
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=w0H2xGHlkw
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2404.07503
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=BTKAeLqLMw
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://arxiv.org/abs/2408.05109
https://proceedings.neurips.cc/paper_files/paper/2023/file/071a637d41ea290ac4360818a8323f33-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/071a637d41ea290ac4360818a8323f33-Paper-Conference.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://doi.org/10.18653/v1/2024.findings-acl.658
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://arxiv.org/abs/2405.02213
https://arxiv.org/abs/2405.02213


to advance physical scientific discovery. In Interna-
tional Conference on Machine Learning (ICML).

Rien Maertens, Charlotte Van Petegem, Niko Strijbol,
Toon Baeyens, Arne Carla Jacobs, Peter Dawyndt,
and Bart Mesuere. 2022. Dolos: Language-agnostic
plagiarism detection in source code. Journal of Com-
puter Assisted Learning, 38(4):1046–1061.

Federico Mora, Justin Wong, Haley Lepe, Sahil Bha-
tia, Karim Elmaaroufi, George Varghese, Joseph E.
Gonzalez, Elizabeth Polgreen, and Sanjit A. Seshia.
2024. Synthetic programming elicitation and repair
for text-to-code in very low-resource programming
languages. Preprint, arXiv:2406.03636.

Theo X. Olausson, Jeevana Priya Inala, Chenglong
Wang, Jianfeng Gao, and Armando Solar-Lezama.
2024. Is self-repair a silver bullet for code genera-
tion? In The Twelfth International Conference on
Learning Representations.

OpenAI. 2023. GPT-3.5 turbo fine-tuning and
api updates. https://openai.com/index/
gpt-3-5-turbo-fine-tuning-and-api-updates/.
Accessed: June 7, 2024.

Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus.
2024. Training language models on synthetic
edit sequences improves code synthesis. Preprint,
arXiv:2410.02749.

Martin Riddell, Ansong Ni, and Arman Cohan. 2024.
Quantifying contamination in evaluating code genera-
tion capabilities of language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14116–14137, Bangkok, Thailand. Association
for Computational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna
Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron
Grattafiori, Wenhan Xiong, Alexandre Défossez,
Jade Copet, Faisal Azhar, Hugo Touvron, Louis Mar-
tin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. 2024. Code llama: Open foundation mod-
els for code. Preprint, arXiv:2308.12950.

Ozan Sener and Silvio Savarese. 2018. Active learn-
ing for convolutional neural networks: A core-set
approach. In International Conference on Learning
Representations.

Yunfan Shao, Linyang Li, Yichuan Ma, Peiji Li, Demin
Song, Qinyuan Cheng, Shimin Li, Xiaonan Li,
Pengyu Wang, Qipeng Guo, Hang Yan, Xipeng Qiu,
Xuanjing Huang, and Dahua Lin. 2024. Case2code:
Learning inductive reasoning with synthetic data.
Preprint, arXiv:2407.12504.

Xinyu She, Yue Liu, Yanjie Zhao, Yiling He, Li Li,
Chakkrit Tantithamthavorn, Zhan Qin, and Haoyu
Wang. 2023. Pitfalls in language models for code

intelligence: A taxonomy and survey. Preprint,
arXiv:2310.17903.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie
Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Sobol-
eva, and Eric Xing. 2024. Slimpajama-dc: Under-
standing data combinations for llm training. Preprint,
arXiv:2309.10818.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Alexander G Shypula, Aman Madaan, Yimeng Zeng,
Uri Alon, Jacob R. Gardner, Yiming Yang, Mi-
lad Hashemi, Graham Neubig, Parthasarathy Ran-
ganathan, Osbert Bastani, and Amir Yazdanbakhsh.
2024. Learning performance-improving code edits.
In The Twelfth International Conference on Learning
Representations.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. 2024.
Can LLMs generate novel research ideas? a large-
scale human study with 100+ nlp researchers. arXiv
preprint arXiv:2409.04109.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2018. A general reinforcement learn-
ing algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,
James Harrison, Jaehoon Lee, Kelvin Xu, Aaron T
Parisi, Abhishek Kumar, Alexander A Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet,
Gamaleldin Fathy Elsayed, Hanie Sedghi, Igor Mor-
datch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek,
Jeffrey Pennington, Jiri Hron, Kathleen Kenealy,
Kevin Swersky, Kshiteej Mahajan, Laura A Culp,
Lechao Xiao, Maxwell Bileschi, Noah Constant, Ro-
man Novak, Rosanne Liu, Tris Warkentin, Yamini
Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-
Dickstein, and Noah Fiedel. 2024. Beyond human
data: Scaling self-training for problem-solving with
language models. Transactions on Machine Learning
Research. Expert Certification.

Chia-Yi Su and Collin McMillan. 2024. Distilled
gpt for source code summarization. Preprint,
arXiv:2308.14731.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, Qipeng
Guo, Xipeng Qiu, Pengcheng Yin, Xiaoli Li, Fei
Yuan, Lingpeng Kong, Xiang Li, and Zhiyong
Wu. 2024a. A survey of neural code intelli-
gence: Paradigms, advances and beyond. Preprint,
arXiv:2403.14734.

12497

https://doi.org/10.1111/jcal.12662
https://doi.org/10.1111/jcal.12662
https://arxiv.org/abs/2406.03636
https://arxiv.org/abs/2406.03636
https://arxiv.org/abs/2406.03636
https://openreview.net/forum?id=y0GJXRungR
https://openreview.net/forum?id=y0GJXRungR
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-api-updates/
https://arxiv.org/abs/2410.02749
https://arxiv.org/abs/2410.02749
https://aclanthology.org/2024.acl-long.761
https://aclanthology.org/2024.acl-long.761
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
https://arxiv.org/abs/2407.12504
https://arxiv.org/abs/2407.12504
https://arxiv.org/abs/2310.17903
https://arxiv.org/abs/2310.17903
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2309.10818
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=ix7rLVHXyY
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://openreview.net/forum?id=lNAyUngGFK
https://arxiv.org/abs/2308.14731
https://arxiv.org/abs/2308.14731
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734


Zhihong Sun, Chen Lyu, Bolun Li, Yao Wan, Hongyu
Zhang, Ge Li, and Zhi Jin. 2024b. Enhancing code
generation performance of smaller models by distill-
ing the reasoning ability of LLMs. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 5878–5895,
Torino, Italia. ELRA and ICCL.

Marc Szafraniec, Baptiste Roziere, Hugh James Leather,
Patrick Labatut, Francois Charton, and Gabriel Syn-
naeve. 2023. Code translation with compiler repre-
sentations. In The Eleventh International Conference
on Learning Representations.

Zhen Tan, Dawei Li, Song Wang, Alimohammad
Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan
Liu. 2024. Large language models for data annota-
tion: A survey. Preprint, arXiv:2402.13446.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Yinxu Pan, Yesai Wu, Hui Haotian, Liu We-
ichuan, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugBench: Evaluating debugging capability of large
language models. In Findings of the Association for
Computational Linguistics ACL 2024, pages 4173–
4198, Bangkok, Thailand and virtual meeting. Asso-
ciation for Computational Linguistics.

Nalin Wadhwa, Jui Pradhan, Atharv Sonwane,
Surya Prakash Sahu, Nagarajan Natarajan, Aditya
Kanade, Suresh Parthasarathy, and Sriram Rajamani.
2023. Frustrated with code quality issues? llms can
help! Preprint, arXiv:2309.12938.

Yao Wan, Yang He, Zhangqian Bi, Jianguo Zhang,
Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,
and Philip S. Yu. 2023. Deep learning for code in-
telligence: Survey, benchmark and toolkit. Preprint,
arXiv:2401.00288.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun
Zhang, and Dianhui Chu. 2024a. A survey on
data selection for llm instruction tuning. Preprint,
arXiv:2402.05123.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yitong Li,
Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang, and Qun
Liu. 2022. Compilable neural code generation with
compiler feedback. In Findings of the Association
for Computational Linguistics: ACL 2022, pages 9–
19, Dublin, Ireland. Association for Computational
Linguistics.

Xingyao Wang, Hao Peng, Reyhaneh Jabbarvand, and
Heng Ji. 2024b. LETI: Learning to generate from
textual interactions. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
223–239, Mexico City, Mexico. Association for Com-
putational Linguistics.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language

models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi,
Baojun Wang, Lifeng Shang, Xin Jiang, and Qun Liu.
2024c. Data management for training large language
models: A survey. Preprint, arXiv:2312.01700.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: Empowering
code generation with OSS-instruct. In Forty-first
International Conference on Machine Learning.

Martin Weyssow, Aton Kamanda, and Houari Sahraoui.
2024. Codeultrafeedback: An llm-as-a-judge dataset
for aligning large language models to coding prefer-
ences. Preprint, arXiv:2403.09032.

Kyle Wong, Alfonso Amayuelas, Liangming Pan, and
William Yang Wang. 2024. Distilrr: Transferring
code repair for low-resource programming languages.
Preprint, arXiv:2406.14867.

Tongtong Wu, Weigang Wu, Xingyu Wang, Kang Xu,
Suyu Ma, Bo Jiang, Ping Yang, Zhenchang Xing,
Yuan-Fang Li, and Gholamreza Haffari. 2024. Versi-
code: Towards version-controllable code generation.
arXiv preprint arXiv:2406.07411.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du,
Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V Le,
Tengyu Ma, and Adams Wei Yu. 2023. Doremi:
Optimizing data mixtures speeds up language model
pretraining. In Thirty-seventh Conference on Neural
Information Processing Systems.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024a. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen,
Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. 2024b. A survey on knowledge
distillation of large language models. Preprint,
arXiv:2402.13116.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
SQL data from weak and strong LLMs. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7864–7875, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo
Sun, and Yue Zhang. 2024. A survey on large lan-
guage model (llm) security and privacy: The good,
the bad, and the ugly. High-Confidence Computing,
4(2):100211.

12498

https://aclanthology.org/2024.lrec-main.521
https://aclanthology.org/2024.lrec-main.521
https://aclanthology.org/2024.lrec-main.521
https://openreview.net/forum?id=XomEU3eNeSQ
https://openreview.net/forum?id=XomEU3eNeSQ
https://arxiv.org/abs/2402.13446
https://arxiv.org/abs/2402.13446
https://aclanthology.org/2024.findings-acl.247
https://aclanthology.org/2024.findings-acl.247
https://aclanthology.org/2024.findings-acl.247
https://arxiv.org/abs/2309.12938
https://arxiv.org/abs/2309.12938
https://arxiv.org/abs/2401.00288
https://arxiv.org/abs/2401.00288
https://arxiv.org/abs/2402.05123
https://arxiv.org/abs/2402.05123
https://doi.org/10.18653/v1/2022.findings-acl.2
https://doi.org/10.18653/v1/2022.findings-acl.2
https://doi.org/10.18653/v1/2024.findings-naacl.16
https://doi.org/10.18653/v1/2024.findings-naacl.16
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2312.01700
https://arxiv.org/abs/2312.01700
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=XUeoOBid3x
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2403.09032
https://arxiv.org/abs/2406.14867
https://arxiv.org/abs/2406.14867
https://openreview.net/forum?id=lXuByUeHhd
https://openreview.net/forum?id=lXuByUeHhd
https://openreview.net/forum?id=lXuByUeHhd
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2402.13116
https://arxiv.org/abs/2402.13116
https://aclanthology.org/2024.acl-long.425
https://aclanthology.org/2024.acl-long.425
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1016/j.hcc.2024.100211
https://doi.org/10.1016/j.hcc.2024.100211


Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2024. WaveCoder: Widespread and versatile
enhancement for code large language models by in-
struction tuning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5140–5153,
Bangkok, Thailand. Association for Computational
Linguistics.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu,
Bingchao Wu, Bei Guan, Wang Yongji, and Jian-
Guang Lou. 2023. Large language models meet
NL2Code: A survey. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7443–
7464, Toronto, Canada. Association for Computa-
tional Linguistics.

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang
Lou, and Weizhu Chen. 2024. Automatic instruc-
tion evolving for large language models. Preprint,
arXiv:2406.00770.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao
Peng. 2024a. Plum: Preference learning plus test
cases yields better code language models. Preprint,
arXiv:2406.06887.

Quanjun Zhang, Chunrong Fang, Yang Xie, YuXi-
ang Ma, Weisong Sun, Yun Yang, and Zhenyu
Chen. 2024b. A systematic literature review on
large language models for automated program repair.
Preprint, arXiv:2405.01466.

Quanjun Zhang, Chunrong Fang, Yang Xie, Yaxin
Zhang, Yun Yang, Weisong Sun, Shengcheng Yu,
and Zhenyu Chen. 2024c. A survey on large lan-
guage models for software engineering. Preprint,
arXiv:2312.15223.

Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis,
Catherine Kosten, Georgia Koutrika, and Kurt
Stockinger. 2023. Sciencebenchmark: A complex
real-world benchmark for evaluating natural language
to sql systems. Preprint, arXiv:2306.04743.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2024d.
Unifying the perspectives of nlp and software en-
gineering: A survey on language models for code.
Preprint, arXiv:2311.07989.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023.
Codegeex: A pre-trained model for code generation
with multilingual benchmarking on humaneval-x. In
Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages
5673–5684.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. OpenCodeInterpreter: Integrating code

generation with execution and refinement. In Find-
ings of the Association for Computational Linguistics
ACL 2024, pages 12834–12859, Bangkok, Thailand
and virtual meeting. Association for Computational
Linguistics.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham
Neubig. 2023. CodeBERTScore: Evaluating code
generation with pretrained models of code. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 13921–
13937, Singapore. Association for Computational
Linguistics.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y. Wu, Yukun Li, Huazuo
Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zi-
hui Gu, Hanwei Xu, Damai Dai, Kai Dong, Liyue
Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen
Hao, Bingxuan Wang, Junxiao Song, Deli Chen,
Xin Xie, Kang Guan, Yuxiang You, Aixin Liu,
Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen,
Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang
Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang.
2024. Deepseek-coder-v2: Breaking the barrier of
closed-source models in code intelligence. Preprint,
arXiv:2406.11931.

Terry Yue Zhuo. 2024. ICE-score: Instructing large
language models to evaluate code. In Findings of the
Association for Computational Linguistics: EACL
2024, pages 2232–2242, St. Julian’s, Malta. Associa-
tion for Computational Linguistics.

12499

https://aclanthology.org/2024.acl-long.280
https://aclanthology.org/2024.acl-long.280
https://aclanthology.org/2024.acl-long.280
https://doi.org/10.18653/v1/2023.acl-long.411
https://doi.org/10.18653/v1/2023.acl-long.411
https://arxiv.org/abs/2406.00770
https://arxiv.org/abs/2406.00770
https://arxiv.org/abs/2406.06887
https://arxiv.org/abs/2406.06887
https://arxiv.org/abs/2405.01466
https://arxiv.org/abs/2405.01466
https://arxiv.org/abs/2312.15223
https://arxiv.org/abs/2312.15223
https://arxiv.org/abs/2306.04743
https://arxiv.org/abs/2306.04743
https://arxiv.org/abs/2306.04743
https://arxiv.org/abs/2311.07989
https://arxiv.org/abs/2311.07989
https://aclanthology.org/2024.findings-acl.762
https://aclanthology.org/2024.findings-acl.762
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://doi.org/10.18653/v1/2023.emnlp-main.859
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148


A Appendix

This section provides two supplementary discus-
sions. First, we delineate the scope of this sur-
vey, distinguishing it from related concepts such
as knowledge distillation and data augmentation.
Second, we recommend cost-effective yet high-
quality large language models (LLMs) for code-
related data generation. Given the rapid evolution
of LLMs, we refer readers to our GitHub repository
for the latest model updates.

A.1 Survey Scope

This survey aims to comprehensively explore data
synthesis and filtering techniques used in building
CodeLLMs for downstream tasks such as code gen-
eration, repair, translation, and documentation. Our
focus is data engineering approaches rather than
knowledge distillation algorithms, which investi-
gate techniques for transferring knowledge from
large models (i.e. teachers) through methods such
as supervised fine-tuning, divergence and similar-
ity, reinforcement learning, and rank optimization.
Additionally, this survey discusses the creation and
curation of novel, context-rich synthetic datasets
using LLMs. In contrast, traditional data augmen-
tation techniques such as paraphrasing and back-
translation expand training datasets in a somewhat
mechanistic manner.

We reviewed and analyzed over 50 research pa-
pers on data synthesis and filtering, most of which
were published within the last two years. To offer
a structured overview, we categorize these works
into a taxonomy of 23 sub-topics, as shown in Fig-
ure 2. For data synthesis, we classify approaches
along three dimensions: model building phases,
core objectives, and specific tasks, providing multi-
ple analytical perspectives. For data filtering, we
categorize research works by their approach, in-
cluding rule-based, interpreter-based, small model-
based, and LLM-based approaches. Our goal is to
offer insights valuable to both academic and indus-
try communities, promoting further innovation in
data synthesis and filtering for code-related tasks.

A.2 LLM Selection Considerations

LLMs play a central role in both synthesis and
filtering, making model selection critical for per-
formance optimization. Based on empirical obser-
vations, we recommend several commonly used
models. If cost is not a concern, GPT-4 or GPT-

4o2 remains the top choice, consistently delivering
high-quality results. For a cost-effective alternative,
the open-source Llama 3.1-405B3, particularly its
int4 quantized version4, offers a strong trade-off be-
tween quality and efficiency, running on four H100
GPUs. Another viable option is Qwen2.5-72B-
Instruct5, known for fast execution and strong per-
formance in code-related tasks. Finally, DeepSeek-
Coder-V2-Instruct6, an open-source Mixture-of-
Experts (MoE) CodeLLM, achieves performance
comparable to GPT-4-Turbo in code-specific tasks.

Besides, researchers and practitioners should be
aware of the specific synthetic data usage policies
associated with various LLMs, particularly when
building commercial products. For instance, Llama
2 and 3 restrict the use of generated outputs for
training other AI models, whereas Llama 3.1 and
3.2 have updated these policies7. The Qwen model,
on the other hand, requires explicit attribution, such
as prominently displaying “Built with Qwen” or
“Improved using Qwen” in product documentation
when its outputs are used for creating, training,
fine-tuning, or improving an AI model8.

For inference, vLLM9 is a fast and user-friendly
library that supports high-throughput serving with
various decoding algorithms, such as parallel sam-
pling and beam search. It is compatible with
most popular open-source models on Hugging
Face, including Transformer-based LLMs (e.g.
Llama (Dubey et al., 2024)), Mixture-of-Experts
LLMs (e.g. Mixtral10), Embedding Models (e.g.
E5-Mistral11), and Multi-modal LLMs (e.g. LLaVA
(Liu et al., 2023a)). It also allows for offline
batched inference on datasets or sending requests
through an OpenAI-compatible API server, pro-
viding a convenient solution for large-scale data
experimentation and serving as a valuable tool for
advancing research and development in this field.

2https://platform.openai.com/docs/models/
gpt-4o

3https://huggingface.co/meta-llama/Llama-3.
1-405B

4https://huggingface.co/neuralmagic/
Meta-Llama-3.1-405B-Instruct-quantized.w4a16

5https://huggingface.co/Qwen/Qwen2.
5-72B-Instruct

6https://huggingface.co/deepseek-ai/
DeepSeek-Coder-V2-Instruct

7https://www.llama.com/faq/
8https://huggingface.co/Qwen/Qwen2.

5-72B-Instruct/blob/main/LICENSE
9https://github.com/vllm-project/vllm

10https://huggingface.co/mistralai
11https://huggingface.co/intfloat/

e5-mistral-7b-instruct

12500

https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://huggingface.co/meta-llama/Llama-3.1-405B
https://huggingface.co/meta-llama/Llama-3.1-405B
https://huggingface.co/neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16
https://huggingface.co/neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Instruct
https://www.llama.com/faq/
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
https://github.com/vllm-project/vllm
https://huggingface.co/mistralai
https://huggingface.co/intfloat/e5-mistral-7b-instruct
https://huggingface.co/intfloat/e5-mistral-7b-instruct

