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Abstract
Large language models (LLMs) have shown
impressive performance in code understanding
and generation, making coding tasks a key fo-
cus for researchers due to their practical appli-
cations and value as a testbed for LLM evalua-
tion. Data synthesis and filtering techniques
have been widely adopted and shown to be
highly effective in this context. In this paper,
we present a focused survey and taxonomy of
these techniques, emphasizing recent advance-
ments. We highlight key challenges, explore
future research directions, and offer practical
guidance for new researchers entering the field.

1 Introduction

Code intelligence leverages machine learning tech-
niques to enhance software development by im-
proving both code quality and programmer pro-
ductivity (Allamanis and Sutton, 2013; Allamanis
et al., 2018). The rise of LLMs, such as Chat-
GPT (OpenAI, 2023), Gemini (Anil et al., 2024),
Claude (Anthropic, 2023), and Llama (Dubey et al.,
2024), has significantly reshaped the automation
of code-related tasks, including code completion
(Guo et al., 2023), translation (Szafraniec et al.,
2023), repair (Olausson et al., 2024), and docu-
mentation (Khan and Uddin, 2022). Tools like
GitHub Copilot (Chen et al., 2021), CodeGeeX
(Zheng et al., 2023), and Cursor (CursorAI, 2024)
hold great promise in substantially increasing hu-
man programmer efficiency and revolutionizing
the software industry, attracting considerable at-
tention from both academia and industry. Re-
cently, specialized LLMs for code-related tasks
(denoted as CodeLLMs) have emerged, including
Code Llama (Rozière et al., 2024), StarCoder (Li
et al., 2023a; Lozhkov et al., 2024), DeepSeek-
Coder (Guo et al., 2024; Zhu et al., 2024), and
CodeQwen (Bai et al., 2023).

Recent advancements (Gunasekar et al., 2023;
Gandhi et al., 2024) in LLMs have highlighted the

critical role of high-quality data in building strong,
robust models. Similarly, for CodeLLMs, diverse,
high-quality datasets are essential for improving
performance across a wide range of code-related
tasks. Significant efforts have been devoted to col-
lecting and curating code-related corpora. Promi-
nent examples include the Pile (Gao et al., 2021),
the Stack (Kocetkov et al., 2023; Lozhkov et al.,
2024) and BigScience ROOTS (Laurençon et al.,
2022), which draw primarily from open-source and
permissively licensed platforms such as GitHub
and Stack Overflow.

However, relying solely on human-generated
data for code-related tasks poses several chal-
lenges. First, collecting large-scale human data
is labor-intensive and expensive, particularly for
high-quality instruction tuning and preference
alignment data. Second, human-generated data
is prone to biases and errors (Hosking et al.,
2024; Singh et al., 2024), as it reflects the vary-
ing skill levels of programmers, and may not
be optimal for model training. Third, data in-
tegrity concerns, such as the risk of sensitive per-
sonal/corporate information leakage, complicate
data collection. Lastly, for low-resource program-
ming languages—–either due to limited popularity
or proprietary restrictions—–data scarcity hinders
the effectiveness of CodeLLMs in specialized fields
and systems programming (Mora et al., 2024). Con-
sequently, synthetic data generated by LLMs has
emerged as a valuable alternative to complement
natural data. Leveraging their vast knowledge and
advanced linguistic capabilities, LLMs can gener-
ate high-quality data, providing a valuable founda-
tion for model training in code-related tasks.

While generating synthetic datasets for code-
related tasks may appear straightforward, achiev-
ing both high accuracy and sufficient diversity is a
complex process requiring meticulous design and
advanced techniques (Gandhi et al., 2024). This
makes a systematic exploration of LLM-driven syn-
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Figure 1: Practical guidance for the code related data generation pipeline. We also recommend several large
language models (LLMs) that offer strong performance while maintaining a balanced cost (Appendix A.2).

thetic data generation both essential and timely.
Although there are survey papers in the fields of
general data engineering (Liu et al., 2024b; Long
et al., 2024; Wang et al., 2024c; Ding et al., 2024a)
and code intelligence (Wan et al., 2023; Jiang et al.,
2024; Zhang et al., 2024d; Sun et al., 2024a), there
is a notable gap in literature focusing specifically
on data synthesis and filtering techniques for code-
related tasks. To fill this gap, we present a targeted
review of recent advancements in synthetic data
generation and filtering for training CodeLLMs,
covering over 50 recent works across 23 topic cat-
egories from the past two years. The techniques
discussed are organized into a taxonomy (Fig. 2)
and analyzed in terms of their motivation, method-
ologies, and key contributions. We also maintain
a GitHub repository1 to collect open-source syn-
thesis datasets for CodeLLMs and track recent ad-
vancements. Our goal is to provide an in-depth
overview of the current state of the field, high-
light key challenges, and offer insights to guide
researchers and practitioners in building efficient
and robust CodeLLMs through effective data engi-
neering practices.

2 Preliminaries and Related Works

2.1 The Data Curation Pipeline
Data curation, which aims to ensure datasets are
of high quality, diverse, relevant, and available, is
crucial to the success of CodeLLMs. The data cu-
ration process typically involves four key steps (cf.
Figure 1 in 6). (1) Seed Input Collection: Be-
fore synthesizing data, a small set of seed samples

1https://github.com/chenmengdx/
awesome-data-synthesis-for-code-llm

(e.g. problem-solution pairs), unlabeled inputs (e.g.
code snippets), or human-written instructions (e.g.
problem descriptions) are gathered to define the
characteristics of the target data and guide the syn-
thesis process. (2) Data Synthesis: LLMs are lever-
aged to generate a large volume of code-related
data samples for specific downstream tasks, ex-
ploiting their comprehensive coding-related knowl-
edge and capabilities. (3) Data Filtering: This
step involves removing low-quality, irrelevant or
redundant samples, addressing issues such as hal-
lucinations or ambiguous descriptions caused by
ineffective prompts, to ensure the dataset’s useful-
ness. (4) Data Evaluation: The final step assesses
the quality and applicability of the data to confirm
its value for downstream tasks.

2.2 Relationship to Other Works
Data Synthesis & Selection. Several recent sur-
vey papers focus on data synthesis and selection in
general, but not specifically on code-related tasks.
Liu et al. (2024b) track the state of synthetic data
research, outlining best practices and key lessons
learned. Long et al. (2024) address the lack of a uni-
fied framework in LLM-driven synthetic data gener-
ation, proposing a general workflow by organizing
studies around generation, curation, and evaluation.
Wang et al. (2024a); Albalak et al. (2024) provide
a thorough review of recent advancements in data
selection methods. Xu et al. (2024b) present a
comprehensive review of knowledge distillation,
structured around algorithms, skills, and vertical-
ization, and explore distillation mechanisms, cogni-
tive skill enhancements, and their practical applica-
tions across various domains. Wang et al. (2024c)
offer an extensive overview of data management
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strategies in both pretraining and supervised fine-
tuning stages of LLMs. Ding et al. (2024a) analyze
the impact of LLMs on data augmentation, while
Tan et al. (2024) review learning strategies for mod-
els using LLM-generated annotations. Different
from these works, our survey focuses specifically
on code-related tasks, rather than general data gen-
eration or construction methods.
Code Intelligence. Another relevant area is code
intelligence, encompassing paradigms, models,
datasets, and benchmarks. She et al. (2023); Zan
et al. (2023); Wan et al. (2023); Jiang et al. (2024);
Zhang et al. (2024d); Sun et al. (2024a); Zhang
et al. (2024c); Lyu et al. (2024) provide general
reviews of advances in code intelligence, particu-
larly in code generation. Liu et al. (2024d) present
a comprehensive analysis of LLM-based NL2SQL
techniques, covering the entire lifecycle—model,
data, evaluation, and error analysis. Zhang et al.
(2024b) conduct a systematic literature review of
LLM applications in automated program repair. In
contrast, our survey focuses on data synthesis and
filtering to produce high-quality training data for
code-related LLMs, rather than on model training
methods or public datasets.

3 Key Data Synthesis Techniques

This section reviews recent data synthesis tech-
niques for code-related tasks, structured by the
taxonomy in Figure 2 along three dimensions:
Building Phases, Core Objectives, and Specific
Tasks. Building Phases categorizes works by stages
of CodeLLM construction, including pre-training,
fine-tuning, alignment, and evaluation. Core Objec-
tives groups studies by goals like enhancing data
quality, increasing diversity, improving reasoning,
and supporting iterative programming. Specific
Tasks include NL2SQL, code repair, unit test gener-
ation, translation, refactoring, and documentation.

3.1 Model Building Phases

Pre-training. A notable example among code
LLMs is the Phi series, which is primarily trained
on synthetic “textbook-quality” data. This in-
cludes less than 1B tokens of GPT-3.5-generated
Python textbooks and approximately 180M tokens
of Python exercises and solutions. The Phi models,
such as Phi-1 (Gunasekar et al., 2023) for Python
coding and Phi-1.5 (Li et al., 2023b) for com-
monsense reasoning and language understanding,
outperform many open-weight models on coding

benchmarks like HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021), despite being 10
times smaller in model size and 100 times smaller
in dataset size. This demonstrates the effectiveness
of synthetic data in training. CodeLlama (Roz-
ière et al., 2024) generates about ˜14,000 Python
question-test-solution triplets by first creating unit
tests and then verifying generated solutions. Cheng
et al. (2024) propose augmenting corpora with
instruction-response pairs generated by an instruc-
tion synthesizer, followed by continual pre-training
on the augmented data. Trained this way, Llama3-
8B outperforms Llama3-70B in some cases.
Supervised fine-tuning. For code generation, sev-
eral notable techniques and synthetic datasets have
emerged. Code Alpaca (Chaudhary, 2023) intro-
duces a dataset of 20K code instructions, generated
via the SELF-INSTRUCT method (Wang et al.,
2023) applied to ChatGPT across 21 seed tasks.
WizardCoder (Luo et al., 2024) enhances the com-
plexity of code instructions, using the Evol-Instruct
technique (Xu et al., 2024a), resulting in a dataset
of 78K evolved code instruction examples. To ad-
dress inherent biases in LLMs and foster diverse,
creative code instructions, Magicoder (Wei et al.,
2024) employs ChatGPT to generate 75K diverse
synthetic instruction samples inspired by random
open-source code snippets. Zeng et al. (2024) intro-
duces Auto Evol-Instruct, an end-to-end framework
that evolves instruction datasets using LLMs with-
out manual intervention. WaveCoder (Yu et al.,
2024) compiles the CodeSeaXDataset, consist-
ing of 19,915 instruction instances that integrate
task definitions and associated requirements, cov-
ering tasks such as code summarization, genera-
tion, translation, and repair. SemCoder (Ding et al.,
2024c) curates PYX, a collection of 34,639 exe-
cutable code samples with functional descriptions
and execution traces. AutoCoder (Lei et al., 2024)
introduces AIEV-INSTRUCT, a two-stage agent
interaction framework that constructs 169K high-
quality code instruction samples. Fine-tuned on
this dataset, AutoCoder outperforms GPT-4 Turbo
and GPT-4o in pass@1 on the HumanEval bench-
mark. Cassano et al. (2024) introduce MultiPL-T,
an effective approach for generating semi-synthetic
data for low-resource programming languages us-
ing test-validated translation of high-quality code
in high-resource languages.
Preference alignment. Weyssow et al. (2024)
present CodeUltraFeedback, a preference dataset
comprising 10,000 complex instructions and
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Decontamination

Semantic-level matching Abstract syntax tree (Riddell et al., 2024), Embedding similarity
(Ding et al., 2024c)

Surface-level matching Substring matching, Hashing matching (Li et al., 2023a;
Lozhkov et al., 2024)

LLM-based Filtering LLM-as-a-Judge
ALPAGASUS (Chen et al., 2024), ICE-Score (Zhuo, 2024),
LLM discriminator (Yu et al., 2024), Model-as-judge (Dubey
et al., 2024)

Small Model-
based Filtering

Model-based
Coreset selection (Chen et al., 2023b; Yu et al., 2024),
Classifier-based (Dubey et al., 2024)

Indicator-based
Difficulty score (Li et al., 2024), Instruction quality (Cao et al.,
2024b), CodeBERTScore (Zhou et al., 2023)

Interpreter-
based Filtering

Execution-based
SemCoder (Ding et al., 2024c), AutoCoder (Lei et al., 2024),
SC2-Instruct (Liu et al., 2024a)

Parser-based Dependency Parsing (Guo et al., 2024; Zhu et al., 2024)

Rule-based Filtering

De-duplication
String matching and MinHash (Lee et al., 2022), File-level and
repository-level (Zhu et al., 2024), Global & local deduplication
(Shen et al., 2024)

Heuristic rules
Basic filters (long line filter, alpha filter, encoded data filter) (Li
et al., 2023a; Lozhkov et al., 2024), Language-specific filter
(Guo et al., 2024; Zhu et al., 2024)

D
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a
S

yn
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Specific Tasks

Code Documentation
CodeExp (Cui et al., 2022), DistillCodeSum (Su and McMillan,
2024)

Code Factoring Performance-Improving Edits (Shypula et al., 2024)

Code Translation Back Translation (Chen and Lampouras, 2023)

Unit Test Generation Actor-Critic RL (Gorinski et al., 2023)

Code Repair SemCoder (Ding et al., 2024c), DebugBench (Tian et al.,
2024), DistiLRR (Chen et al., 2023a)

NL2SQL
SENSE (Yang et al., 2024), AmbiQT (Bhaskar et al., 2023), DR.
Spider (Chang et al., 2023), ScienceBenchmark (Zhang et al.,
2023)

Core Objectives

Iterative Programming
OpenCodeInterpreter (Zheng et al., 2024), SemCoder (Ding
et al., 2024c), CYCLE (Ding et al., 2024b), LETI (Wang et al.,
2024b), Reflexion (Shinn et al., 2023)

Enhance Reasoning
LLM-Assisted Code Cleaning (Jain et al., 2024), SemCoder
(Ding et al., 2024c), CodePLAN (Sun et al., 2024b), Beyond-
Code (Cao et al., 2024a), Case2Code (Shao et al., 2024)

Strengthen Diversity
Magicoder (Wei et al., 2024), Auto Evol-Instruct (Zeng et al.,
2024), WaveCoder (Yu et al., 2024), LintSeq (Piterbarg et al.,
2024)

Improve Quality
LLM-Assisted Code Cleaning (Jain et al., 2024), PERsD (Chen
et al., 2023a), Self-play (Haluptzok et al., 2023), AutoCoder
(Lei et al., 2024), Llama 3.1 (Dubey et al., 2024)

Building Phases

Model Evaluation
CRUXEval (Gu et al., 2024), AmbiQT (Bhaskar et al., 2023),
DR. Spider (Chang et al., 2023), ScienceBenchmark (Zhang
et al., 2023)

Preference Alignment CodeUltraFeedback (Weyssow et al., 2024), PLUM (Zhang
et al., 2024a)

Supervised Fine-Tuning

Code Alpaca (Chaudhary, 2023), WizardCoder (Luo et al.,
2024), Magicoder (Wei et al., 2024), Auto Evol-Instruct (Zeng
et al., 2024), WaveCoder (Yu et al., 2024), SemCoder (Ding
et al., 2024c), AutoCoder (Lei et al., 2024), MultiPL-T (Cas-
sano et al., 2024)

Pre-training
Phi-1 (Gunasekar et al., 2023), Phi-1.5 (Li et al., 2023b),
CodeLlama (Rozière et al., 2024), Instruct PT (Cheng et al.,
2024)

Figure 2: Taxonomy of data synthesis and filtering techniques for code-related tasks.
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40,000 responses generated by 14 diverse LLMs,
aimed at aligning LLMs to coding preferences in
code generation scenarios. Zhang et al. (2024a)
propose PLUM, a preference learning framework
for training CodeLLMs. It uses GPT-4 to generate
unit test cases from natural language instructions,
samples candidate solutions, and evaluates them
against the test cases to create a preference dataset
of ˜180K samples.
Evaluation. Gu et al. (2024) develop CRUXE-
val (Code Reasoning, Understanding, and eXecu-
tion Evaluation), a benchmark consisting of 800
Python functions created using a “generate-and-
filter” approach with CodeLlama. Bhaskar et al.
(2023) introduce AmbiQT, a novel benchmark with
over 3,000 examples where each natural-language
question can be interpreted as two plausible SQL
queries due to lexical and/or structural ambiguity.
This benchmark is generated through a combina-
tion of ChatGPT-based synonym generation and
perturbation, along with standard rule-based per-
turbation. Chang et al. (2023) curate Dr.Spider,
a comprehensive diagnostic robustness evaluation
benchmark with 15K perturbed examples generated
by paraphrasing natural questions. ScienceBench-
mark Zhang et al. (2023) is a complex NL2SQL
benchmark for three real-world scenarios, created
by extending a small amount of human-generated
data with synthetic data using GPT-3.

3.2 Core Objectives
Quality. Ensuring the correctness of synthetic
data is both essential and challenging for devel-
oping CodeLLMs. Jain et al. (2024) introduce a
novel pipeline to improve the dataset quality by
enhancing code structure and readability. This
pipeline transforms existing programs by renaming
variables, modularizing and decomposing complex
code into smaller sub-functions, and incorporating
natural-language-based plans through LLM-based
transformations. PERsD (Chen et al., 2023a) em-
ploys a personalized distillation process to improve
data quality through adaptive refinement, leverag-
ing the student’s generated code and its execution
feedback. Haluptzok et al. (2023) propose enhanc-
ing CodeLLMs using a self-play technique, which
involves synthesizing programming puzzles and
iteratively verifying solutions with an interpreter.
Lei et al. (2024) generate high-quality code instruc-
tion datasets by simulating programmers writing
code and conducting unit tests through agent inter-
actions, ensuring accuracy via execution-based val-

idation. The Llama 3.1 series (Dubey et al., 2024)
produces 2.7 million high-quality synthetic exam-
ples using various techniques, including execution
feedback, programming language translation for
low-resource languages, back translation, and sys-
tem prompt steering during rejection sampling.
Diversity. Previous studies (Liu et al., 2024c; Lu
et al., 2024b) highlight the significant impact of
dataset complexity and diversity on model align-
ment. Wei et al. (2024) propose inspiring LLMs to
generate diverse, realistic, and controllable code in-
structions by providing distinct seed code snippets
from an extensive repository of real-world open-
source code. Zeng et al. (2024) enhance data com-
plexity and diversity by utilizing LLMs as optimiz-
ers to analyze input instructions and autonomously
devise evolution rules suitable for the given data.
Yu et al. (2024) manually define filtering rules to se-
lect seed code and then employ the KCenterGreedy
algorithm (Sener and Savarese, 2018) to choose di-
verse core samples, thereby avoiding sole reliance
on the teacher LLM’s capabilities or the initial
seed. Piterbarg et al. (2024) introduce a synthetic
data generation algorithm, LintSeq, which refac-
tors existing code into a sequence of edits. They
demonstrate that models fine-tuned on these edit
sequences generate more diverse programs when
repeatedly sampled.
Reasoning. To enhance the reasoning capabil-
ities of CodeLLMs, Jain et al. (2024) generate
natural-language plans from modularized programs
by summarizing functions in a top-down manner,
which are then prepended to the program as com-
ments. Ding et al. (2024c) introduce monologue
reasoning, where CodeLLMs articulate code ex-
ecution step-by-step, inspired by the concept of
rubber duck debugging (Hunt and Thomas, 2000).
This approach equips CodeLLMs with a human-
like understanding of control flow, state transitions,
and complex operations, bridging the gap between
static code analysis and dynamic execution rea-
soning. CodePLAN (Sun et al., 2024b) proposes
“backward reasoning” by generating higher-quality
plans from the given solution/code and then using
these plans and solutions to fine-tune the code gen-
eration model in an alternating multi-task fashion.
Cao et al. (2024a) construct a dataset, CodeStep-
sEval, with thought steps generated by ChatGPT
for complex code generation. Shao et al. (2024)
compile a diverse set of executable programs and
synthesize input-output transformations for each.
By presenting these synthetic I/O pairs to language
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models, they aim to improve the models’ inductive
reasoning capabilities for code generation.
Iterative programming. Generating correct code
in a single attempt is difficult, leading to iterative
programming where CodeLLMs generate solutions
over multiple turns with feedback at each step.
To enhance multi-turn capabilities, Zheng et al.
(2024) created the Code-Feedback dataset, contain-
ing 68K interactions that combine execution and
LLM feedback for dynamic code refinement. Ding
et al. (2024c) introduced the PYX-R debugging
dataset, which includes descriptions, buggy code,
traces, and rationales to train LLMs for debugging
and self-refinement. CYCLE (Ding et al., 2024b)
improves faulty code by integrating problem de-
scriptions, previous code, and execution feedback.
LETI (Wang et al., 2024b) fine-tunes models using
natural-language instructions, generated programs,
and textual feedback from errors. Reflexion (Shinn
et al., 2023) introduces a framework for reinforcing
language agents with verbal and heuristic feedback,
including self-evaluation techniques like unit tests.

3.3 Specific Tasks
In addition to core code generation tasks, several
studies focus on data synthesis for specific code-
related applications. NL2SQL has been widely
investigated due to SQL’s prominence as a query
language. SENSE (Yang et al., 2024) employs syn-
thetic data from strong models for domain diver-
sity and weak models for preference learning, en-
hancing NL2SQL performance through alignment
with executors. AmbiQT (Bhaskar et al., 2023),
DR.Spider (Chang et al., 2023), and ScienceBench-
mark (Zhang et al., 2023) use LLMs to generate
paraphrases or perturbations of natural questions,
improving NL2SQL benchmarks. For code repair,
Ding et al. (2024c) and Tian et al. (2024) utilize
weak LLMs (7B CodeLLMs) and strong LLMs
(GPT-4) to create buggy code from correct code, in-
corporating linguistic feedback. Wong et al. (2024)
introduce DistiLRR, which transfers code repair
capabilities from high-resource to low-resource lan-
guages, using ChatGPT to generate code repairs
and rationales. For unit test generation, Gorinski
et al. (2023) propose a method to automatically
obtain function signatures and associated unit tests,
suitable for reinforcement learning training of code
synthesis models. Chen and Lampouras (2023) ap-
ply back-translation to augment training sets for
code translation tasks. In code refactoring, Shy-
pula et al. (2024) enhance human-written datasets

with 1,485 synthetic “slow-fast” program pairs gen-
erated by ChatGPT to optimize program runtime ef-
ficiency, supplemented by additional unit tests from
AlphaCode (Li et al., 2022). For code documen-
tation, Cui et al. (2022) create a code explanation
corpus CodeExp with three sets of code-docstring
pairs, and Su and McMillan (2024) synthesize a
code summarization dataset with 2.15 million sam-
ples using ChatGPT for knowledge distillation.

Data Synthesis Takeaways

Quality & Efficiency: CodeLLMs rely on human data
(e.g., GitHub) for pre-training and synthetic data for
instruction tuning, with models like Llama 3.1 and
Qwen2.5-Coder favoring the latter for its efficiency.
Key Enhancements: Improving synthetic data via in-
terpreter feedback, better seed selection, and reasoning
steps enhances CodeLLMs. Multi-turn datasets with
execution feedback further support iterative program-
ming. Future work explores agent-like learning.
Task Adaptation: Synthetic data effectively tailors
CodeLLMs to specific tasks, though challenges re-
main in supporting low-resource languages and version-
specific code generation.

4 Key Data Filtering Techniques

Data filtering is the process of selecting specific
subsets of data based on predefined criteria to op-
timize performance. Effective filtering offers key
advantages: (1) improving model accuracy by re-
ducing noise and bias, especially in synthesized
datasets; (2) lowering training costs through dataset
size reduction; and (3) maintaining evaluation in-
tegrity by eliminating contaminated data. In this
section, we review various data filtering techniques
for code-related tasks, categorizing them by mech-
anism: rule-based, interpreter-driven, small model-
based, LLM-based, and decontamination methods.

4.1 Rule-based Filtering

Rule-based filtering is widely adopted for data
cleaning in leading CodeLLMs due to its efficiency
and simplicity. The most common techniques in-
volve heuristic rules for cleaning and deduplica-
tion. For instance, StarCoder (Li et al., 2023a;
Lozhkov et al., 2024) applies a range of filters to
exclude autogenerated files, data files, and other
low-quality data. This includes long line filters
(e.g., files exceeding 100 lines or lines exceeding
100 characters), alpha filters (e.g., files with less
than 25% alphabetic characters), and encoded data
filters (e.g., base64 strings, hexadecimal sequences,
Unicode strings). DeepSeek-Coder (Guo et al.,
2024) incorporates language-specific filters for dif-
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ferent file types (e.g., Text, JSON, YAML, Web
Ontology Language, Graphviz (DOT), HTML), ef-
fectively reducing large data-heavy files. For dedu-
plication, Lee et al. (2022) propose two scalable
methods: exact substring matching, which iden-
tifies repeated verbatim strings, and approximate
full-document matching, which uses hash-based
techniques (Broder, 1997) to detect high n-gram
overlap between documents. Additionally, Guo
et al. (2024) employ a near-deduplication algo-
rithm (Kocetkov et al., 2023) at the repository level,
avoiding file-level filtering to preserve repository
structure. Shen et al. (2024) compared global and
local deduplication, recommending global dedupli-
cation for multi-source datasets. It offers balanced
information representation and reduces redundancy,
though it demands higher memory resources.

4.2 Interpreter-based Filtering

Interpreter-based filtering organizes relevant code
files into training samples using dependency
parsers or validates the code by executing it in an
interpreter. Guo et al. (2024) leverage dependency
parsing to arrange files in an order where each
file’s context is provided beforehand, allowing for
seamless concatenation of project-level code into a
single training sample. This approach enhances the
model’s ability to handle comprehensive codebases.
For execution-based filtering, Ding et al. (2024c);
Lei et al. (2024); Liu et al. (2024a) adopt a self-
validation strategy to filter incorrect synthesized
code. This method involves generating both solu-
tions and test cases with CodeLLMs, executing the
generated code, and retaining only samples that run
successfully. The model’s debugging capabilities
are further employed to retry failed cases until the
code executes correctly, ensuring the accuracy of
the resulting dataset.

4.3 Small Model-based Filtering

Several studies suggest using trainable small mod-
els for data filtering, moving beyond rule-based
or interpreter-driven methods. Superfiltering (Li
et al., 2024) assesses the consistency between
weak and strong models in determining instruction-
tuning sample difficulty, demonstrating that the
Instruction-Following Difficulty (IFD) score sur-
passes perplexity in capturing sample complexity.
This method proposes smaller models, like GPT-2,
as more efficient filters for identifying high-quality
data for LLM fine-tuning. Similarly, Cao et al.
(2024b) leverage natural language indicators to

predict inference loss, offering a more efficient
evaluation of data than fine-tuning LLMs. For
code filtering, Zhou et al. (2023) introduce Code-
BERTScore, which computes soft similarity scores
between code snippets using contextual encoding.
Beyond indicators, some studies advocate for clus-
tering or classifiers in filtering. Chen et al. (2023b);
Yu et al. (2024) utilize the KCenterGreedy core-
set algorithm (Sener and Savarese, 2018) to select
data subsets that approximate the full distribution.
Dubey et al. (2024) further implement model-based
classifiers, using fasttext (Joulin et al., 2017) and
resource-heavy Roberta-based models (Liu et al.,
2019), to identify high-quality tokens.

4.4 LLM-based Filtering

The growing use of LLM-as-a-Judge has led to
increased interest in leveraging LLMs for data fil-
tering. Chen et al. (2024) utilize ChatGPT as an au-
tomatic grader, scoring each training triplet on a 0
to 5 scale. The filtered data, with scores exceeding
a defined threshold, is then used to fine-tune AL-
PAGASUS using the same instruction fine-tuning
process as ALPACA. Zhuo (2024) introduce ICE-
Score, a novel evaluation metric for assessing code
usefulness and functional correctness via LLMs,
which can also guide data selection. Yu et al. (2024)
employ GPT-4 as a discriminator to analyze and
filter instructional data, leveraging CoT reasoning
to evaluate each instance step by step, classifying
them as either valid or invalid. Dubey et al. (2024)
apply earlier versions of Llama 3 to assign binary
(0/1) scores to synthetic code data based on code
correctness and style, addressing the challenge of
some synthetic code being unexecutable due to the
intermixing of natural language and code.

4.5 Decontamination

Decontaminating code datasets is essential due to
the frequent online publication of competition so-
lutions (Li et al., 2022). Surface- and semantic-
level matching techniques have been employed
to tackle this issue. StarCoder (Li et al., 2023a;
Lozhkov et al., 2024) addresses contamination by
filtering out files with docstrings or solutions from
HumanEval and MBPP, docstrings from APPS
(Hendrycks et al., 2021), questions from GSM8K
(Cobbe et al., 2021), and prompts from DS1000
(Lai et al., 2022), ensuring clean training data.
While surface-level metrics detect similar code
based on superficial traits, semantically identical
programs may vary in structure due to differences
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in identifiers or formatting. To handle semantic sim-
ilarity, Riddell et al. (2024) use the Dolos toolkit
(Maertens et al., 2022), which tokenizes programs
into abstract syntax trees (ASTs) via tree-sitter and
computes similarity through k-gram matching. Ad-
ditionally, Ding et al. (2024c) evaluate contamina-
tion by embedding datasets and benchmarks with
OpenAI’s text-embedding-3-large model, and cal-
culating cosine similarity to measure overlap.

Data Filtering Takeaways

Optimized Filtering: A hybrid of rule-based and
model-based techniques balances computational effi-
ciency and dataset size. Iterative “filter-correct-filter”
cycles enhance data quality and maximize utility.
Dataset Composition: Beyond filtering, strategically
mixing datasets in optimal ratios improves diverse capa-
bilities, including reasoning, mathematical proficiency,
and general language skills in CodeLLMs.
Decontamination for Robust Evaluation: Ensuring
unbiased CodeLLM evaluation requires rigorous decon-
tamination. In addition to surface- and semantic-level
matching, leveraging benchmarks from recent human
projects enhances assessment comprehensiveness.

5 Challenges and Future Directions

We envisage the following important challenges
and research directions worthy of investigation.
Supporting low-resource languages. The eval-
uation of CodeLLMs predominantly focuses on
mainstream languages like Python and Java. How-
ever, data synthesis and filtering play an even more
important role for low-resource languages (Cas-
sano et al., 2024; Mora et al., 2024), which include
legacy languages such as COBOL, FORTRAN,
and Haskell; domain-specific languages like R and
Elixir; and commercial languages such as IBM
RPG, Oracle SuiteScript, and SAP ABAP.
Mitigating performance degradation. Catas-
trophic forgetting (French, 1999) is a long-standing
problem in machine learning. For code synthesis,
it is possible that the synthesised code exhibits dis-
tributional drifts and thus cause the model to forget
and experience degradation in existing tasks and/or
instruction following capabilities. Sophisticated
training approaches, synthesis/filtering techniques
for diverse yet realistic data, and careful data mix-
ing strategies are promising directions.
Preventing leakage of sensitive information. The
seed data for synthesis may include sensitive infor-
mation such as personally identifiable information
(PII) or proprietary, commercially sensitive data
protected by copyright. It is crucial to implement
strong safeguards (Yao et al., 2024) throughout

the synthesis and filtering processes to ensure that
sensitive information is not unintentionally incorpo-
rated into the generated synthetic data and mitigate
the risk of copyright infringement or other legal
concerns.
Adapting to the evolution of coding knowledge.
The software development ecosystem is in a con-
stant state of flux, with new versions, programming
languages, frameworks, and best practices emerg-
ing frequently. LLMs face the risk of becoming
obsolete if they fail to adapt to these shifts and
integrate the most up-to-date programming knowl-
edge. A key limitation of current coding-related
techniques is their lack of awareness of code ver-
sioning (Wu et al., 2024). To address this challenge,
it is essential to synthesize code that is cognizant
of evolving coding knowledge.
Reducing biases. To ensure that the synthetic data
does not suffer from explicit or implicit biases, it
may be desirable to curate a set of biased prob-
lem descriptions (e.g., “Write a python function

to determine if someone would be a good scientist

based on their race and gender”) (Liu et al., 2023b)
and generate corresponding code snippets that align
with societal expectations. A related challenge is
to ensure that the synthetic data includes sufficient
examples wherein code snippets should not be gen-
erated, e.g., for problem statements that are am-
biguous or considered undesirable.
Synthesis from scratch. For well-defined tasks
such as games, reinforcement learning from self-
play approaches have been shown to achieve super-
human performance without requiring any human
curated dataset (Silver et al., 2018). Considering
that coding is a relatively well-defined task that can
be precisely evaluated, a promising direction is to
explore similar approaches to synthesize code from
scratch, potentially extending reinforcement learn-
ing based methods (Gorinski et al., 2023; Halupt-
zok et al., 2023; Le et al., 2022; Wang et al., 2022).
Automated synthesis with agents. Most, if not
all, of the techniques covered in this survey require
deep human expertise and ingenuity in designing
approaches, planning experiments and evaluating
results, which is an expensive process. Recently, it
has been shown in the literature that frontier LLMs
have the capability of automating empirical scien-
tific discovery (Ma et al., 2024; Lu et al., 2024a; Si
et al., 2024). Thus, developing an agent-based ap-
proach to automated data synthesis and filtering is
a promising research direction to further accelerate
the improvements of CodeLLMs.
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6 Practical Guidance

This section introduces a streamlined pipeline (Fig.
1) for synthetic data generation in CodeLLMs, pro-
viding practical guidance for researchers.

6.1 Seed Data Collection

The first step in synthetic data generation is collect-
ing seed data, which can be labeled (e.g., problem-
solution pairs) or unlabeled (e.g., code snippets,
API documentation). For fine-tuning, seed data
falls into three categories: (1) Instructions, which
define code-related task requirements. For instance,
a code generation instruction might be “write a

Python program that generates a random password

of 8 characters”. These can be manually crafted
via crowdsourcing, with broad task coverage and
1-2 variants per task to enhance diversity. (2)
Code snippets, sourced from open platforms like
GitHub, based on relevant programming languages.
If licensing allows, proprietary codebases can be
used, provided sensitive information (e.g., personal
names, contact details) is anonymized. If target-
language code is unavailable, snippets from similar
languages may serve as substitutes. (3) Documen-
tation, particularly valuable for low-resource lan-
guages lacking introductory materials and scarce
human-written repositories. Online API documen-
tation, with syntax details and examples like text-
books, can serve as an alternative seed source.

6.2 Data Synthesis

The choice of data synthesis techniques depends
on the seed data type. For instruction-only seed
data, the process begins by expanding the instruc-
tion set into more natural, fluent, and diverse vari-
ants. Techniques such as Self-Instruct (Chaudhary,
2023), WizardCoder (Luo et al., 2024), Auto Evol-
Instruct (Zeng et al., 2024), and AIEV-INSTRUCT
(Lei et al., 2024) serve as effective starting points.
Once sufficient variants are generated, LLMs are
prompted with each instruction to produce corre-
sponding responses, forming instruction-solution
pairs. For seed data comprising only code snippets,
Magicoder (Wei et al., 2024) facilitates the simulta-
neous generation of problem-solution pairs and can
produce code in languages beyond those present
in the seed data. For documentation-based seed
data, methods like (Cheng et al., 2024) leverage
instruction-synthesizers to extract question-answer
pairs by interpreting the underlying knowledge and
formatting it for fine-tuning. These techniques
are typically employed in supervised fine-tuning

pipelines. Besides, leveraging both strong and
weak LLMs generates diverse responses, including
high- and low-quality solutions, supporting prefer-
ence alignment training (Weyssow et al., 2024).

6.3 Data Filtering
After generating raw synthetic data, iterative filter-
ing is crucial to enhance dataset quality and diver-
sity. The process involves: (1) Applying a combi-
nation of filtering techniques to assess data quality.
LLM-based methods (Dubey et al., 2024) initially
predict quality scores, followed by execution-based
filtering (Liu et al., 2024a) to gather interpreter
feedback. (2) Leveraging LLM-based code correc-
tion (Wadhwa et al., 2023) to refine synthetic code
based on quality scores and execution feedback. (3)
Employing small model-based (Li et al., 2024) and
rule-based (Li et al., 2023a) filtering to remove low-
quality data and eliminate duplicates efficiently. (4)
Conducting rigorous data decontamination at sur-
face (Li et al., 2023a) and semantic (Riddell et al.,
2024) levels to ensure model evaluation integrity.

6.4 Data Evaluation
Evaluating synthetic data for training code-focused
LLMs involves experimenting with diverse dataset
combinations. Synthetic datasets vary across multi-
ple dimensions, including domain specificity, seed
data sources, and the teacher LLMs used for genera-
tion. Comprehensive ablation studies and data com-
bination experiments help quantify each dataset’s
contribution, guiding optimal dataset selection. A
key challenge is data mixing. Beyond traditional
heuristics or manually assigned weights, recent
advances in offline (Xie et al., 2023) and online
(Albalak et al., 2023) data mixing offer promis-
ing alternatives. These methods can be applied
across CodeLLM development stages, including
pre-training, supervised fine-tuning, and preference
alignment training.

7 Conclusion
Code-related tasks, showcasing LLMs’ capabilities,
have gained significant interest for their practical
value and as a robust testbed for LLMs. In this
paper, we survey recent data synthesis and filtering
techniques for these tasks, outlining their objec-
tives, methods and outcomes, providing a struc-
tured taxonomy, discussing challenges, and propos-
ing future research directions. To our knowledge,
this is the first survey on data synthesis and filter-
ing for code tasks, and we hope to inspire further
research in this important area.
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Limitations

In this paper, we provide a focused survey of
data synthesis and filtering techniques for coding-
related tasks. As we discussed in Sec. 2, there
are existing surveys that cover both of these top-
ics, namely (1) data synthesis in general and (2)
LLMs for coding. Thus, our survey may overlap in
coverage with these existing ones.

Due to page limits, we may not have included
all relevant works and technical details. The pri-
mary studies we included are mostly 2022 onwards.
While we strive to remain up-to-date, as this is a
fast moving field, there may be more recent studies
that have not been included. For the latest updates,
please refer to our GitHub repository1.

Since we did not conduct extensive experimental
evaluations, a detailed comparative analysis of sim-
ilar techniques is beyond the scope of this paper. In
practice, various data synthesis and filtering meth-
ods can be effectively combined to enhance data
quality. Due to space constraints, we are unable to
provide comprehensive empirical insights within
the main body of this paper.
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A Appendix

This section provides two supplementary discus-
sions. First, we delineate the scope of this sur-
vey, distinguishing it from related concepts such
as knowledge distillation and data augmentation.
Second, we recommend cost-effective yet high-
quality large language models (LLMs) for code-
related data generation. Given the rapid evolution
of LLMs, we refer readers to our GitHub repository
for the latest model updates.

A.1 Survey Scope

This survey aims to comprehensively explore data
synthesis and filtering techniques used in building
CodeLLMs for downstream tasks such as code gen-
eration, repair, translation, and documentation. Our
focus is data engineering approaches rather than
knowledge distillation algorithms, which investi-
gate techniques for transferring knowledge from
large models (i.e. teachers) through methods such
as supervised fine-tuning, divergence and similar-
ity, reinforcement learning, and rank optimization.
Additionally, this survey discusses the creation and
curation of novel, context-rich synthetic datasets
using LLMs. In contrast, traditional data augmen-
tation techniques such as paraphrasing and back-
translation expand training datasets in a somewhat
mechanistic manner.

We reviewed and analyzed over 50 research pa-
pers on data synthesis and filtering, most of which
were published within the last two years. To offer
a structured overview, we categorize these works
into a taxonomy of 23 sub-topics, as shown in Fig-
ure 2. For data synthesis, we classify approaches
along three dimensions: model building phases,
core objectives, and specific tasks, providing multi-
ple analytical perspectives. For data filtering, we
categorize research works by their approach, in-
cluding rule-based, interpreter-based, small model-
based, and LLM-based approaches. Our goal is to
offer insights valuable to both academic and indus-
try communities, promoting further innovation in
data synthesis and filtering for code-related tasks.

A.2 LLM Selection Considerations

LLMs play a central role in both synthesis and
filtering, making model selection critical for per-
formance optimization. Based on empirical obser-
vations, we recommend several commonly used
models. If cost is not a concern, GPT-4 or GPT-

4o2 remains the top choice, consistently delivering
high-quality results. For a cost-effective alternative,
the open-source Llama 3.1-405B3, particularly its
int4 quantized version4, offers a strong trade-off be-
tween quality and efficiency, running on four H100
GPUs. Another viable option is Qwen2.5-72B-
Instruct5, known for fast execution and strong per-
formance in code-related tasks. Finally, DeepSeek-
Coder-V2-Instruct6, an open-source Mixture-of-
Experts (MoE) CodeLLM, achieves performance
comparable to GPT-4-Turbo in code-specific tasks.

Besides, researchers and practitioners should be
aware of the specific synthetic data usage policies
associated with various LLMs, particularly when
building commercial products. For instance, Llama
2 and 3 restrict the use of generated outputs for
training other AI models, whereas Llama 3.1 and
3.2 have updated these policies7. The Qwen model,
on the other hand, requires explicit attribution, such
as prominently displaying “Built with Qwen” or
“Improved using Qwen” in product documentation
when its outputs are used for creating, training,
fine-tuning, or improving an AI model8.

For inference, vLLM9 is a fast and user-friendly
library that supports high-throughput serving with
various decoding algorithms, such as parallel sam-
pling and beam search. It is compatible with
most popular open-source models on Hugging
Face, including Transformer-based LLMs (e.g.
Llama (Dubey et al., 2024)), Mixture-of-Experts
LLMs (e.g. Mixtral10), Embedding Models (e.g.
E5-Mistral11), and Multi-modal LLMs (e.g. LLaVA
(Liu et al., 2023a)). It also allows for offline
batched inference on datasets or sending requests
through an OpenAI-compatible API server, pro-
viding a convenient solution for large-scale data
experimentation and serving as a valuable tool for
advancing research and development in this field.

2https://platform.openai.com/docs/models/
gpt-4o

3https://huggingface.co/meta-llama/Llama-3.
1-405B

4https://huggingface.co/neuralmagic/
Meta-Llama-3.1-405B-Instruct-quantized.w4a16

5https://huggingface.co/Qwen/Qwen2.
5-72B-Instruct

6https://huggingface.co/deepseek-ai/
DeepSeek-Coder-V2-Instruct

7https://www.llama.com/faq/
8https://huggingface.co/Qwen/Qwen2.

5-72B-Instruct/blob/main/LICENSE
9https://github.com/vllm-project/vllm

10https://huggingface.co/mistralai
11https://huggingface.co/intfloat/

e5-mistral-7b-instruct
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