
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 112–141

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

Improving Retrospective Language Agents via Joint Policy Gradient
Optimization

Xueyang Feng1, Bo Lan2, Quanyu Dai3, Lei Wang1, Jiakai Tang1,
Xu Chen1*, Zhenghua Dong3, Ji-Rong Wen1

1Gaoling School of Artificial Intelligence, Renmin University of China, Beijing, China
2 School of Software and Microelectronics, Peking University, Beijing, China

3 Huawei Noah’s Ark Lab, China
{xueyangfeng, xu.chen}@ruc.edu.cn

Abstract

In recent research advancements within the
community, large language models (LLMs)
have sparked great interest in creating au-
tonomous agents. However, current prompt-
based agents often heavily rely on large-
scale LLMs. Meanwhile, although fine-tuning
methods significantly enhance the capabilities
of smaller LLMs, the fine-tuned agents of-
ten lack the potential for self-reflection and
self-improvement. To address these chal-
lenges, we introduce a novel agent framework
named RetroAct, which is a framework that
jointly optimizes both task-planning and self-
reflective evolution capabilities in language
agents. Specifically, we develop a two-stage
joint optimization process that integrates imita-
tion learning and reinforcement learning, and
design an off-policy joint policy gradient op-
timization algorithm with imitation learning
regularization to enhance the data efficiency
and training stability in agent tasks. RetroAct
significantly improves the performance of open-
source models, reduces dependency on closed-
source LLMs, and enables fine-tuned agents
to learn and evolve continuously. We conduct
extensive experiments across various testing
environments, demonstrating RetroAct has sub-
stantial improvements in task performance and
decision-making processes.

1 Introduction

Achieving independent, autonomous agents capa-
ble of thinking, reasoning, and dynamically in-
teracting with their environment has long been a
fundamental goal for researchers in the field of
artificial intelligence. In recent years, with the
emergence of the powerful capabilities of Large
Language Models (LLMs) (Zhao et al., 2023), re-
searchers have started to utilize these models in
building advanced intelligent agents (Wang et al.,
2024; Yao et al., 2023a; Shinn et al., 2024). These

* Corresponding Authors.

Env

Reflector Planner

Reflection Tool Calling

Differential Reward

Feedback Reward

Interact with Env

Joint Policy Gradient Optimization

Figure 1: Overview of retrospective language agent.
The planner analyzes task requirements, calls external
tools, and gathers feedback. If planning fails, the re-
flector intervenes to adjust the strategy until the issue is
resolved. Through joint strategy optimization, RetroAct
continually enhances both the planner and reflector to
tackle complex tasks more effectively.

agents demonstrate advanced capabilities in under-
standing complex language inputs, engaging in in-
tricate planning (Ahn et al., 2022; Wei et al., 2022;
Wang et al., 2022; Huang et al., 2022; Yao et al.,
2024) and utilizing tools (Qin et al., 2023; Schick
et al., 2024; Shen et al., 2023; Kong et al., 2023).

Since LLMs are not initially intended for agent
tasks, they need to be adjusted to carry out such
tasks efficiently. Currently, there are two primary
adaptation paradigms: (1) Prompt-based Agent:
In this paradigm, LLMs leverage their in-context
learning abilities to adapt to new environments
(Brown et al., 2020). Many researchers have de-
signed self-reflection mechanisms, allowing agents
to explicitly reflect on feedback from the environ-
ment and incorporate these reflections into subse-
quent trials for iterative self-improvement (Shinn
et al., 2024; Madaan et al., 2024; Yao et al., 2023b).
However, these methods typically rely on large-
scale LLMs, leading to substantial costs and delays.
Moreover, most smaller LLMs often exhibit insuf-

112

Planner Reflector

Name Prompt IL RL Prompt IL RL

ReAct (Yao et al., 2023a) " % % % % %

Self-Refine (Madaan et al., 2024) " % % " % %

Reflexion (Shinn et al., 2024) " % % " % %

Retroformer (Yao et al., 2023b) " % % " " "

FireAct (Chen et al., 2023a) " " % % % %

ArCHer (Xi et al., 2024) " " " % % %

RetroAct " " " " " "

Table 1: Related work on Language Agent. Prompt, IL, RL stand for Prompt-based Method, Imitation Learning-
based Method, and Reinforcement Learning-based Method.

ficient performance and robustness when deployed
as agents (Chen et al., 2023a). (2) Agent Fine-
tuning. This paradigm primarily includes using
imitation learning to fine-tune smaller LLMs with
expert datasets, enabling agents to learn specific
tasks from the data (Zeng et al., 2023; Chen et al.,
2023a), as well as employing reinforcement learn-
ing to allow agents to explore and learn on train-
ing sets (Zhou et al., 2024). However, these fine-
tuned agents depend on the knowledge acquired
through fine-tuning and lack the ability to contin-
uously learn new information and self-improve in
testing environments without updating parameters.
As shown in Table 1, there is no research on how to
simultaneously enhance an agent’s task-planning
abilities and self-reflection capabilities from fail-
ures, nor is there a comprehensive framework that
combines IL and RL to jointly fine-tune these two
capabilities of the agent.

In this work, we propose a novel agent frame-
work called RetroAct, which jointly optimizes the
task-planning and self-reflection capabilities of
open-source LLMs. This approach eliminates the
dependency on closed-source models during infer-
ence while retaining the ability for continuous re-
flection and evolution. Specifically, we developed
a two-phase joint optimization process that inte-
grates imitation learning and reinforcement learn-
ing. First, we use imitation learning to distill the
planning and reflection capabilities of large-scale
LLMs into smaller LLMs. Then, we propose an
off-policy joint policy gradient optimization algo-
rithm with imitation learning regularization to en-
hance data efficiency and training stability in the
reinforcement learning process. During the joint
optimization process, the planner and reflector can
mutually facilitate each other and collectively im-
prove the overall performance of the agent, show-
casing the unique advantages of joint optimization.

We conduct experiments on three represen-
tative agent tasks: Complex Reasoning (Hot-
potQA (Yang et al., 2018)), Embodied Decision
(ALFWorld (Shridhar et al., 2020)), and Interac-
tive Programming (InterCode (Yang et al., 2023)),
based on the Llama-7b and Llama-13b (Touvron
et al., 2023). Through joint optimization, our model
achieves performance improvements ranging from
22.3% to 348.3% on these tasks, attaining perfor-
mance comparable to or exceeding that of Chat-
GPT (OpenAI, 2022). Moreover, we further val-
idate the mutual promotion between the planner
and reflector. We also demonstrate that a single
model can concurrently learn both planning and
reflection capabilities, albeit with a slight decrease
in performance. Finally, we conduct systematic
ablation studies to demonstrate the importance of
each module in our approach.

To summarize, our contributions are shown in
the following:

• We propose a language agent framework
that jointly optimizes task-planning and self-
reflective evolution capabilities. This frame-
work enables agents built on open-source
models to improve performance through fine-
tuning and empowers them to continuously
learn and adapt to the environment.

• We design an off-policy joint policy gradient
algorithm with an imitation learning regular-
ization term, which improves data efficiency
and training stability.

• We validate the effectiveness of our proposed
methods through extensive experiments across
multiple representative testing environments,
demonstrating substantial improvements in
task performance and decision-making pro-
cesses.

113

Teacher Reflector

Regular Loss

(a)

(b)

Imitation Learning

Reinforcement Learning

Reflector Policy

Reflector Policy

Teacher Planner

Cross Entropy

Loss
Filtered Trajectories

Evaluator

Planner Policy

Environment k

Environment 2

Environment 1

……

Verbal Reflection

Verbal Reflection

Policy Gradient

Loss

Environment k

Environment 2

Environment 1

……

Reward Function
RL-Augmented

Loss

Planner Policy

Replay Buffer

Figure 2: Schematic of Joint Policy Gradient Optimization for Retrospective Language Agent. Our approach is
divided into two stages: (a) Imitation Learning: We use expert models to generate expert trajectories, employ
evaluators to filter out these trajectories, and then use them to fine-tune the student models. (b) Reinforcement
Learning: The planner and reflector are jointly optimized through the off-policy reinforcement learning algorithm
with the imitation learning regularizer.

2 Approach

Existing methods for agent-tuning primarily rely
on knowledge acquired during the fine-tuning pro-
cess, lacking the ability for real-time self-reflection
and self-improvement. To address these limitations,
we propose RetroAct, a novel approach that jointly
optimizes LLMs’ task-planning and self-reflection
capabilities. Our approach significantly enhances
the performance of open-source LLMs through a
combination of imitation learning (IL) and rein-
forcement learning (RL). This eliminates the de-
pendency on large-scale LLMs in agent tasks and
retains the potential to evolve in new environments
without parameter updates. Figure 2 illustrates the
overall framework of our RetroAct. In this section,
we frame the process of LLM-based agent task-
solving as a Markov Decision Process (MDP) and
construct our method within this MDP framework.

2.1 Preliminaries: LLM-based Agent for
Task-Solving

In this study, we frame LLM-based agent task-
solving within the Markov Decision Process
(MDP) framework, represented as the tuple
(S,A, P,O,R). Here, S denotes the set of states,
A represents the available actions for the agent,

P : S × A × S defines transition probabilities
between states given action, O is the environmen-
tal feedback, and R : S × A → R is the reward
function, which assigns values to actions taken in
different states. The LLM-based agent π(a|s) aims
to choose actions that maximize rewards. Notably,
s ∈ S, a ∈ A, and o ∈ O are all represented
in natural language. Typically, r ∈ R is sparse,
with values mostly zero except for specific states,
where rewards are obtained upon the conclusion
of particular trajectories, such as success or failure.
With a slight abuse of notation, a typical execu-
tion trajectory, consisting of n steps, is denoted as
τ = {s0, a0, o0, . . . , sn, an, on, r}.

2.2 Agent Architecture

The RetroAct agent architecture is comprised of
two language model components: a planner LLM
denoted as π and a reflector LLM denoted as µ.
The planner directly interacts with the environment
and generates thoughts and actions, while the reflec-
tor generates verbal reflections to help the planner
iteratively improve the plan. It is similar to the
Reflexion (Shinn et al., 2024).

Planner Model The planner model π resem-
bles a policy model in reinforcement learning, em-

114

ployed to generate an action at at a specified step
t and given state st. The state st is textual, com-
posed of task prompts, environmental descriptions,
and historical interactions. The action at comprises
two distinct components: Thought and Action (Yao
et al., 2023a). Thought denotes the agent’s explicit
thought process about the task; Action refers to the
actual interactive responses of the agent, such as
utilizing tools and executing tasks. The planner can
be formulated as follows:

at ∼ π(·|st) (1)

Reflector Model The reflector model µ resem-
bles a reward model in reinforcement learning.
When facing complex tasks, LLM-based agent of-
ten engages in multiple interactions with the envi-
ronment to accomplish them. Tasks may fail either
due to execution errors or upon encountering spe-
cific constraints. When the agent fails in the k-th
(0 ≤ k ≤ n) trial, the unsuccessful trajectory τk is
presented to the reflector µ to produce verbal reflec-
tions denoted as fk. These verbal reflections act as
semantic gradient signals to improve the planner
model without parameter updates. The reflector
can be formulated as:

fk ∼ µ(·|τk) (2)

The initial state of the new trial is adjusted based on
the initial state of the previous trial and the received
feedback, i.e., sk+1

0 = sk0 + fk. Consequently,
the trajectory for trial k + 1 becomes τk+1 =
{sk+1

0 , ak+1
0 , ok+1

0 , . . . , sk+1
n , ak+1

n , ok+1
n , rk+1}.

The overall goal is to iteratively refine the policy
model π through the feedback provided by µ,
aiming to optimize decisions and maximize
cumulative rewards across trials.

2.3 Imitation Learning
Despite the ability of few-shot examples and self-
reflection mechanisms to adapt agents to particular
tasks, these methods heavily rely on more pow-
erful LLMs and often underperform with smaller
LLMs. To overcome this issue, we first create ex-
pert datasets using large-scale LLMs. Then, we use
these datasets to fine-tune the planner and reflector
components of smaller LLMs. This approach en-
ables smaller LLMs to enhance their performance
by learning from the demonstrations of the larger
LLMs, facilitating rapid adaptation to new tasks.

Expert Data Collection We utilize a powerful
LLM, Mixtral-8*7b (Jiang et al., 2024) with few-
shot examples, serving as the teacher agents, which

is denoted as πexpert and µexpert. These teacher
agents engage extensively with various environ-
ments in the training sets to generate expert tra-
jectories for fine-tuning. We implement different
rule-based evaluators for planner and reflector tra-
jectories across multiple datasets (see Appendix
C.5 for more information). These evaluators help
us filter out positive examples from the expert data
to create fine-tuning datasets DIL

planner and DIL
reflector.

Imitation Learning The training objective is to
closely align the distribution π(a|s) of the planner
and the distribution µ(f |τ) of the reflector with the
expert model’s action distribution. This optimiza-
tion objective can be expressed as:

LIL
planner = Es∼DIL

planner

[
−πexpert(a|s) log πθ(a|s)

]
,

(3)

LIL
reflector = Es∼DIL

reflector

[
−µexpert(f |τ) logµϕ(f |τ)

]
.

(4)

2.4 Joint Policy Gradient Optimization
Although IL has demonstrated notable efficacy, it
still has several limitations. Firstly, IL relies on
expert demonstrations, meaning the agent can only
learn behaviors in datasets, making it difficult to
surpass expert performance. Secondly, IL lacks
the ability to learn from broader reward signals,
such as negative feedback, which results in subop-
timal outcomes when dealing with complex tasks.
To this end, we use a joint policy gradient algo-
rithm to simultaneously optimize both the plan-
ner and reflector. Leveraging trial-and-error and
broad reward signals to learn environmental infor-
mation, the planner and reflector could surpass ex-
pert demonstrations and achieve superior policies.

Reward Shaping The reward function for the
planner Rπ is the environment-provided reward
Rτ , which is defined according to the datasets, e.g.,
task completion rate (more details are in Appendix
C.5). Moreover, following the Retroformer (Yao
et al., 2023b), we design a reward function Rµ for
the reflector, defined as the difference in environ-
mental rewards between the trial conducted after
reflection by the reflector and the last failed trial.
In conclusion, the reward functions of the planner
and reflector in the k-th trial are as follows:

Rπk
= Rτk , (5)

Rµk
= (Rτk+1

−Rτk). (6)

Off-Policy Joint Policy Gradient Optimiza-
tion In LLM-based agent tasks, online RL algo-
rithms like Policy Gradient often suffer from poor

115

performance due to low sample efficiency and train-
ing instability, while the training process is further
hindered by high inference costs and significant
latency. To address these issues, we design an off-
policy joint policy gradient algorithm inspired by
PPO-Clip (Schulman et al., 2017). Specifically, we
construct replay buffers to store historical trajecto-
ries and use these data in each iteration to perform
off-policy optimization. The optimization objective
is formulated as follows:

LRL
planner = Es∼DRL

planner

[
−
∑

a

wπ(s, a)Rπ(s, a)

]
,

(7)

LRL
reflector = Es∼DRL

reflector

[
−
∑

a

wµ(τ, f)Rµ(τ, f)

]
,

(8)

where wπ and wµ are importance sampling weights
that adjust for the difference between the policies
under parameter updates and the behavior policies,
πbeh and µbeh, which generate the data. These
weights help mitigate the distribution shift in off-
policy data (Chen et al., 2021). Given that im-
portance sampling weights can introduce signifi-
cant variance (Schulman et al., 2017), we mitigate
this by applying a clipping function, which lim-
its the importance sampling term to the interval
{1− ϵ, 1 + ϵ}:

wπ(s, a) = Clip
(

πθ(a|s)
πbeh(a|s)

, 1− ϵ, 1 + ϵ

)

wµ(τ, f) = Clip
(

µϕ(f |τ)
µbeh(f |τ)

, 1− ϵ, 1 + ϵ

)

Notably, we adopt a related technique (Chen et al.,
2024, 2021) to control the optimization speed by
adjusting the gradient clipping coefficient, ensur-
ing it remains within a reasonable range. When the
optimization speed is too fast or too slow, the clip-
ping coefficient helps regulate gradient changes,
improving training stability. In contrast, standard
PPO halts optimization when the discrepancy be-
comes too large, which can lead to the waste of a
significant amount of samples in off-policy/offline
scenarios. Additionally, the knowledge acquired
during RL may conflict with the knowledge learned
during IL, causing the model to forget previous
knowledge and leading to a performance decrease.
Therefore, we introduce a regularizer based on imi-
tation learning to mitigate this effect and stabilize
the training process. The resulting augmented RL

loss functions for the planner and the reflector can
be written as:

LRL
planner, augmented = LRL

planner + λπLIL
planner, (9)

LRL
reflector, augmented = LRL

reflector + λµLIL
reflector, (10)

where λπ and λµ are regularization weights that
balance the influence of the RL objectives and the
imitation learning objectives.

3 Experiments

In this section, we systematically explore the per-
formance of our proposed method. Our experimen-
tal design revolves around four key questions: Q1:
How does RetroAct perform compared with the ex-
isting prompt-based and fine-tuning method? What
are the benefits of joint optimization in improving
the learning process of both the planner and reflec-
tor? Q2: How about integrating the planner and
reflector within the same open-source model? Can
the model effectively learn both planning and self-
reflection capabilities simultaneously? Q3: How
do the optimized planner and reflector respectively
influence the behavior of RetroAct? Q4&Q5: How
does the reinforcement learning process and imita-
tion learning regularization impact RetroAct?

3.1 Environmental Settings

We select three representative agent environments:
(1) Complex Reasoning: HotpotQA (Yang et al.,
2018) is a multi-turn QA dataset. Following Re-
Act (Yao et al., 2023a) and ChatCoT (Chen et al.,
2023b), we reconstruct the HotpotQA environ-
ments. The agent needs to call an external retriever
based on SimCSE (Gao et al., 2021) multiple times
to obtain the necessary information for answer-
ing complex questions. (2) Embodied Decision:
ALFWorld (Shridhar et al., 2020) is a text-based
environment designed to simulate real-world in-
teractions through embodied agents. In this set-
ting, agents are tasked with executing a sequence
of natural language actions informed by surround-
ing environment feedback to accomplish complex
goals. (3) Interactive Coding: InterCode (Yang
et al., 2023) is a framework for evaluating language
agents capable of interactive coding. In this work,
we utilize the InterCode-SQL to thoroughly assess
the agent’s interactive SQL query generation capa-
bility. Moreover, We discuss in detail the selection
criteria and configuration settings of the baselines
and evaluation metrics in Appendix C.

116

Model Method HotpotQA ALFWorld InterCode Avg
IR FR AR IR FR AR IR FR AR

Llama-7b

ReAct 39.7 39.7 39.7 8.96 8.96 8.96 14.24 14.24 14.24 21.15
Reflexion 39.7 58.49 54.39 8.96 21.64 18.28 14.24 32.16 28.40 30.14

SFT 55.58 55.58 55.58 72.39 72.39 72.39 30.67 30.67 30.67 52.65
SFT+EI 58.22 58.22 58.22 68.66 68.66 68.66 34.86 34.86 34.86 53.91
SFT+RL 60.70 60.70 60.70 80.60 80.60 80.60 39.42 39.42 39.42 60.24

Ours 60.92 71.51 67.90 82.84 97.01 93.28 41.12 54.17 51.46 68.91

Llama-13b

ReAct 43.99 43.99 43.99 28.36 28.36 28.36 26.83 26.83 26.83 32.94
Reflexion 43.99 62.39 59.73 28.36 46.27 39.70 26.83 43.00 38.79 43.01

SFT 58.99 58.99 58.99 79.10 79.10 79.10 43.17 43.17 43.17 60.75
SFT+EI 60.23 60.23 60.23 71.64 71.64 71.64 47.01 47.01 47.01 59.63
SFT+RL 61.90 61.90 61.90 77.61 77.61 77.61 42.25 42.25 42.25 60.59

Ours 57.99 70.11 66.58 78.36 91.04 87.39 44.30 61.83 58.38 68.11

ChatGPT
ReAct 41.84 41.84 41.84 52.24 52.24 52.24 62.47 62.47 62.47 52.32

Reflexion 41.84 68.61 62.12 52.24 79.10 71.04 62.47 69.00 68.63 63.34

Table 2: Experimental results on HotpotQA, ALFWorld, InterCode. Avg is the average accuracy of all tasks. IR,
FR, and AR stand for initial reward, final reward, and average reward, respectively. The best results and second best
results are bold and underlined, respectively.

3.2 Main Experiment on Multi-Agent (Q1)

In this section, we implement the planner and re-
flector as two different LLMs, thereby instanti-
ating RetroAct as a multi-agent framework. We
then compare it with baseline agents based on
prompts and fine-tuning, respectively. Compari-
son of RetroAct agents with other baseline agents
across three environments and two base LLMs are
shown in Table 2. Overall, our method demon-
strates significant advantages compared to baseline
methods. Additionally, there is mutual facilitation
between the reflector and the planner during the
joint optimization process.

Baseline Analysis (1) For prompt-based meth-
ods, ChatGPT agents outperform Llama agents in
all environments, demonstrating that agents based
on open-source LLMs perform significantly worse
than those based on closed-source LLMs, indicat-
ing that current open-source LLMs are not yet
sufficient for handling complex agent tasks; (2)
Reflexion-based agents significantly improve both
average and final rewards, even with the same ini-
tial reward. Fine-tuning methods show clear advan-
tages over prompt-based methods, underscoring the
potential of self-reflection to enhance agent perfor-
mance. However, current fine-tuning approaches
rarely consider the joint optimization of task plan-
ning and self-reflection capabilities; (3) Benefiting
from self-exploration, EI and RL methods, particu-
larly in the 7b model, achieve better performance
than SFT, with broader reward signals making RL

algorithms more effective in agent tasks. Addi-
tionally, we demonstrate in the Appendix D.1 our
specifically designed off-policy RL is better suited
for agent tasks than the standard PPO algorithm.

RetroAct Result Compared to prompt-based
baselines, our approach significantly enhances the
agent performance based on the same size LLMs.
More notably, RetroAct based on Llama-7b ex-
ceeds the reflexion agent based on ChatGPT by an
average of 8%. The sustained superior performance
of RetroAct demonstrates its effectiveness in en-
hancing task planning and self-reflection capabili-
ties through the knowledge gained from fine-tuning.
Compared to the best fine-tuning baseline meth-
ods, RetroAct achieves a 13.4% performance im-
provement on average. Specifically, existing fine-
tuning baseline methods do not include a reflector
and cannot continuously self-improve. As a result,
after multiple iterations of trials and reflections,
RetroAct shows significant advantages in both final
rewards and average rewards. Furthermore, even in
terms of initial rewards, RetroAct slightly outper-
forms the RL baseline that optimizes the planner
alone. This result underscores the mutual facilita-
tion between the reflector and the planner dur-
ing the joint optimization process. Interestingly,
our approach brings more significant improvements
to lower-performing base LLMs. This could be at-
tributed to the fact that larger base models have
already developed more advanced planning and re-
flection abilities during the pre-training phase. As

117

0 2 4 6 8
Trial Num

32.6

43.9

55.3

66.6

78.0
F1

 S
co

re
HotpotQA Llama-7b

0 2 4 6 8
Trial Num

0.0

25.0

50.0

75.0

100.0

Su
cc

es
s R

at
e

ALFWorld Llama-7b

0 2 4 6 8
Trial Num

6.2

20.3

34.5

48.6

62.8

Re
wa

rd
 S

co
e

InterCode Llama-7b

Base Multi Single

Figure 3: Multi-Agent vs Single Agent (Q2)

0 2 4 6 8
Trial Num

0.0

25.0

50.0

75.0

100.0

Su
cc

es
s R

at
e

ALFWorld Llama-7b

0 2 4 6 8
Trial Num

4.8

19.1

33.5

47.9

62.2

Su
cc

es
s R

at
e

InterCode Llama-7b

0 2 4 6 8
Trial Num

15.8

36.9

57.9

79.0

100.0

Su
cc

es
s R

at
e

ALFWorld Llama-13b

0 2 4 6 8
Trial Num

19.0

31.2

43.5

55.8

68.0

Su
cc

es
s R

at
e

InterCode Llama-13b

Orig. w/o-tuned planner w/o-tuned reflector our

Figure 4: Effectiveness of Optimized Planner and Reflector (Q3)

a result, larger models derive less benefit from fur-
ther training through supervised fine-tuning and
reinforcement learning with expert or exploratory
samples. This phenomenon is similar to what was
observed in (Yuan et al., 2023).

3.3 Comparison of Multi-Agent and
Single-Agent (Q2)

In the last experiment, we validate the effective-
ness of instantiating RetroAct as a multi-agent
framework. In this section, we will further ex-
plore whether a single agent can simultaneously
learn task-planning and self-reflection through fine-
tuning. The results in Figure 3 show that in Hot-
potQA, the single agent has almost no performance
loss. In ALFWorld and InterCode, although our
method is still effective, it has about 10% perfor-
mance loss compared to the multi-agent method.
We posit that these findings are due to the differ-
ence in trajectories consistency between the plan-
ner and reflector. In HotpotQA, there is a high sim-
ilarity between the planning and reflection tasks, as
both involve standard natural language processing
tasks. Consequently, the single agent is capable
of effectively managing these tasks simultaneously.
However, the ALFWorld and InterCode environ-
ments exhibit significant differences in task types:

the planner in ALFWorld primarily utilizes spe-
cific natural language instruction sets, whereas the
planner in InterCode involves SQL commands (we
provide some trajectories in the appendix D.4, C.4).
Meanwhile, reflection tasks in both environments
are executed using conventional natural language.
Compared to the multi-agent, the single-agent may
lead to specific knowledge conflicts when learn-
ing task planning and self-reflection, resulting in
decreased performance.

3.4 Effectiveness of Optimized Planner and
Reflector (Q3)

In this section, we explore how the optimized plan-
ner and reflector respectively influence the behavior
of RetroAct. Specifically, we separately removed
the optimization from the planner and the reflector,
which allowed us to study the interaction between
the optimized planner and the unoptimized reflec-
tor, and vice versa. The experimental results are
shown in Figure 4. Overall, removing the optimiza-
tion from either the planner or the reflector nega-
tively impacts performance. If the planner is not
optimized, the agent’s performance in the first trial
will degrade to the base model level. Although the
optimized reflector can generally help the planner
improve through trial and error, this initial perfor-

118

Llama-7b Llama-13b

60

65

70

F1
 S

co
re

HotpotQA FR

Llama-7b Llama-13b
20

40

60

80

100

Su
cc

es
s R

at
e

AlfWorld FR

Llama-7b Llama-13b
55

60

65

F1
 S

co
re

HotpotQA AR

Llama-7b Llama-13b
20

40

60

80

100
Su

cc
es

s R
at

e
AlfWorld AR

Base IL IL + RL

Figure 5: Effectiveness of Reinforcement Learning (Q4)

mance loss is significant and cannot be recovered
through self-reflection. When the reflector is not
optimized, the well-optimized planner performs
well in the first trial. However, due to the reflector
not being sufficiently compelling, the potential for
performance improvement through self-reflection
is less than with our jointly optimized agent.

Notably, compared to the base model, optimiz-
ing the planner alone is more efficient than opti-
mizing the reflector. We attribute this to two main
reasons. First, the optimization of the planner is
a direct optimization of the tasks, making it more
straightforward and effective. In contrast, the op-
timization of the reflector is essentially tuning the
planner’s prompts, which is less advantageous com-
pared to directly updating the parameters. Second,
there is an imbalance in the amount of data avail-
able for the planner and the reflector (we provide a
comparison of effective data amounts for imitation
learning in the Appendix C), leading to the planner
often being better trained.

Therefore, we conclude that for smaller LLMs,
simultaneously optimizing the planner and the re-
flector is optimal. Additionally, optimizing the
planner alone is more effective than optimizing the
reflector alone. Optimizing the reflector alone is
preferable when the planner cannot be optimized
or the cost is too high. This finding supports the
claims made in previous studies (Chen et al., 2023a;
Yao et al., 2023b). To more specifically describe
how the optimized planner and reflector work to-
gether to better complete tasks, we provide several
cases in Appendix D.4.

λ Initial Reward Final Reward Average Reward

0.0 52.72 67.71 64.15
1.0 56.52 68.60 66.24
2.0 55.41 63.19 62.67

Table 3: Hyperparameter Analysis on λ.

0 2 4 6 8
Trial Num

49.3

55.3

61.3

67.2

73.2

F1
 S

co
re

HotpotQA Llama-7b

w/o RL w/o IL regular RetroAct

Figure 6: Effectiveness of Imitation Learning Regular-
ization (Q5)

3.5 Effectiveness of Reinforcement Learning
and Regularization (Q4&Q5)

In this section, we explore how each component of
our proposed off-policy joint reinforcement learn-
ing impacts the overall performance of RetroAct.

Effectiveness of RL phase Overall, as shown
in Figure 5, we find that our RL algorithm out-
performed IL in three different environments. We
attribute these performance improvements to the
agent’s ability in RL to discover optimal behav-
iors beyond the constraints of the imitation learn-
ing dataset through exploration. Additionally, the
performance improvements are more pronounced
in HotpotQA and InterCode, likely because these
datasets provide broader reward signals, whereas
the binary reward signals in ALFWorld limit the
effectiveness of RL. These findings underscore the
importance of reward signal design in RL, suggest-
ing that broader reward signals can better aid the
agent in learning environmental information.

Effectiveness of IL Regularization By setting
λ to 0, we remove the imitation learning regu-
larization from the RL phase. As shown in Fig-
ure 6, eliminating this regularization objective led
to some performance degradation, which demon-
strates the role of regularization to retain the knowl-
edge acquired during the imitation learning phase.
Moreover, using the RL objective independently
still resulted in acceptable performance, confirm-

119

ing the effectiveness of the RL objective. Addition-
ally, we analyze the effect of the hyperparameter
λ, which controls the weight of the regularization
term, under different values. As shown in Table 3,
we find that setting the hyperparameter around 1.0
yields the best performance. When the hyperpa-
rameter value is too small, conflicts arise between
the knowledge learned during the reinforcement
learning (RL) phase and the knowledge acquired
during the imitation learning (IL) phase, leading to
performance degradation. On the other hand, when
the hyperparameter value is too large, IL regular-
ization dominates, causing the model to be overly
constrained by the IL rules, thereby limiting the
benefits of RL and reducing overall performance.

4 Conclusion

In this work, we introduce RetroAct, an agent
framework that utilizes imitation learning and off-
policy reinforcement learning to jointly optimize
the task-planning and self-reflective capabilities
of open-source LLMs. RetroAct significantly en-
hances the performance of these models, reduc-
ing the reliance on closed-source LLMs in agent
tasks. We conduct extensive experiments across
various agent environments, demonstrating the sub-
stantial improvements over existing baselines. Fu-
ture work may involve designing more complex
reinforcement learning systems, such as training
reward models for the planner and reflector to pro-
vide more fine-grained reward signals.

5 Ethical Considerations and Limitations

Ethical Considerations Our work leverages the
powerful capabilities of Large Language Models
(LLMs) to build advanced intelligent agents. While
the potential benefits of these advancements are
substantial, it is crucial to consider their broader
impact and ethical implications. We summarize the
broader impact and ethics statement of our research
as follows:

• Bias and Fairness: We utilize reinforcement
learning to enable open-source LLMs to learn
and adapt to domain-specific agent tasks. If
there are biases and discrimination in specific
tasks, the agent may exacerbate these issues.
Therefore, ensuring fairness in the application
field is vitally important.

• Safety: Despite significant efforts to align
LLMs with safety standards, their deployment
as agents raises additional safety concerns.
Agents must avoid invoking harmful tools
when interacting with external systems. Im-
plementing constrained reinforcement learn-
ing can help ensure that agents do not engage
in harmful actions, thereby enhancing their
safety and reliability.

• Data Security: Although we have made ev-
ery effort to review and verify the data we
release, some security concerns may still re-
main. Ensuring the integrity and security of
the data is crucial to prevent potential misuse
or vulnerabilities.

Limitation Our current approach is the reliance
on rewards directly provided by the environment.
While this method is straightforward and effective
to a certain extent, it may not always provide the
most granular and informative feedback necessary
for optimal performance. A more sophisticated ap-
proach would involve training separate reward mod-
els for the planner and the reflector, which could
offer more detailed and tailored reward informa-
tion for each component. This could potentially en-
hance the agent’s ability to fine-tune its actions and
reflections, leading to better overall performance
and adaptability in complex tasks. We encourage
future work to explore the development and inte-
gration of these reward models to further improve
the effectiveness of our proposed approach.

120

Acknowledgement

This work is supported in part by National Natural
Science Foundation of China (No. 62422215 and
No. 62472427), Beijing Outstanding Young Sci-
entist Program NO.BJJWZYJH012019100020098,
Intelligent Social Governance Platform, Major In-
novation & Planning Interdisciplinary Platform for
the “DoubleFirst Class” Initiative, Renmin Uni-
versity of China, Public Computing Cloud, Ren-
min University of China, fund for building world-
class universities (disciplines) of Renmin Univer-
sity of China, Intelligent Social Governance Plat-
form, Huawei Innovation Research Programs. We
gratefully acknowledge the support from Mind-
spore1, CANN(Compute Architecture for Neural
Networks) and Ascend AI Processor used for this
research.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Col-
lier, Karthik Narasimhan, and Shunyu Yao. 2023a.
Fireact: Toward language agent fine-tuning. arXiv
preprint arXiv:2310.05915.

Minmin Chen, Alex Beutel, Paul Covington, Sagar
Jain, Francois Belletti, and Ed Chi. 2021. Top-k
off-policy correction for a reinforce recommender
system. Preprint, arXiv:1812.02353.

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng
Gong, Wayne Xin Zhao, and Ji-Rong Wen. 2023b.
Chatcot: Tool-augmented chain-of-thought reason-
ing on\\chat-based large language models. arXiv
preprint arXiv:2305.14323.

Zhipeng Chen, Kun Zhou, Wayne Xin Zhao, Junchen
Wan, Fuzheng Zhang, Di Zhang, and Ji-Rong Wen.
1https://www.mindspore.cn

2024. Improving large language models via fine-
grained reinforcement learning with minimum edit-
ing constraint. arXiv preprint arXiv:2401.06081.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. arXiv preprint arXiv:2104.08821.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al.
2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024a. Teaching large lan-
guage models to reason with reinforcement learning.
arXiv preprint arXiv:2403.04642.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy,
Christoforos Nalmpantis, Jane Dwivedi-Yu, Maksym
Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar,
and Roberta Raileanu. 2024b. Teaching large lan-
guage models to reason with reinforcement learning.
Preprint, arXiv:2403.04642.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022.
Large language models are reasoning teachers. arXiv
preprint arXiv:2212.10071.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, et al. 2022.
Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint
arXiv:2207.05608.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. Preprint, arXiv:2401.04088.

Yilun Kong, Jingqing Ruan, Yihong Chen, Bin Zhang,
Tianpeng Bao, Shiwei Shi, Guoqing Du, Xiaoru Hu,
Hangyu Mao, Ziyue Li, et al. 2023. Tptu-v2: Boost-
ing task planning and tool usage of large language
model-based agents in real-world systems. arXiv
preprint arXiv:2311.11315.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient

121

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1812.02353
https://arxiv.org/abs/1812.02353
https://arxiv.org/abs/1812.02353
https://www.mindspore.cn
https://arxiv.org/abs/2403.04642
https://arxiv.org/abs/2403.04642
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2309.06180

memory management for large language model serv-
ing with pagedattention. Preprint, arXiv:2309.06180.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information
Processing Systems, 36.

OpenAI. 2022. Chatgpt.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Chengfei
Lv, and Huajun Chen. 2024. Autoact: Automatic
agent learning from scratch via self-planning. arXiv
preprint arXiv:2401.05268.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom.
2024. Toolformer: Language models can teach them-
selves to use tools. Advances in Neural Information
Processing Systems, 36.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI tasks with chatGPT and its friends
in hugging face. In Advances in Neural Information
Processing Systems.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforce-
ment learning. Advances in Neural Information
Processing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian
Li, and Bill Yuchen Lin. 2024. Trial and error:
Exploration-based trajectory optimization for llm
agents. Preprint, arXiv:2403.02502.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Leandro von Werra, Younes Belkada, Lewis Tun-
stall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. 2020. Trl: Trans-
former reinforcement learning. https://github.
com/huggingface/trl.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):1–26.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin,
Rui Zheng, Wei He, Yiwen Ding, Shichun Liu, Xin
Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran
Fan, Yuhao Zhou, Shihan Dou, Xiao Wang, Xinbo
Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2024. Training large language models for
reasoning through reverse curriculum reinforcement
learning. Preprint, arXiv:2402.05808.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing
and benchmarking interactive coding with execution
feedback. Preprint, arXiv:2306.14898.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Zonghan Yang, Peng Li, Ming Yan, Ji Zhang, Fei Huang,
and Yang Liu. 2024. React meets actre: Autonomous

122

https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/2309.06180
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://openreview.net/forum?id=yHdTscY6Ci
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://arxiv.org/abs/2403.02502
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2402.05808
https://arxiv.org/abs/2402.05808
https://arxiv.org/abs/2402.05808
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2306.14898

annotations of agent trajectories for contrastive self-
training. arXiv preprint arXiv:2403.14589.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023a.
ReAct: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles,
Zhiwei Liu, Yihao Feng, Le Xue, Rithesh Murthy,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, et al.
2023b. Retroformer: Retrospective large language
agents with policy gradient optimization. arXiv
preprint arXiv:2308.02151.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.
Preprint, arXiv:2308.01825.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning:
Enabling generalized agent abilities for llms. arXiv
preprint arXiv:2310.12823.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. 2024. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv
preprint arXiv:2402.19446.

123

https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825

Contents

1 Introduction 1

2 Approach 3
2.1 Preliminaries: LLM-based Agent for Task-Solving . 3
2.2 Agent Architecture . 3
2.3 Imitation Learning . 4
2.4 Joint Policy Gradient Optimization . 4

3 Experiments 5
3.1 Environmental Settings . 5
3.2 Main Experiment on Multi-Agent (Q1) . 6
3.3 Comparison of Multi-Agent and Single-Agent (Q2) . 7
3.4 Effectiveness of Optimized Planner and Reflector (Q3) 7
3.5 Effectiveness of Reinforcement Learning and Regularization (Q4&Q5) 8

4 Conclusion 9

5 Ethical Considerations and Limitations 9

A Algorithm 14

B Related Works 14

C More Detailed Experimental Settings 15
C.1 Evaluation Detials . 15
C.2 Baselines . 15
C.3 Expert Dataset . 15
C.4 Prompt Details . 16
C.5 Evaluation Metrics and Reward Function . 17
C.6 Training Details . 18

D More Experiments 20
D.1 Comparison of Standard PPO and our proposed Off-policy policy gradient optimization . 20
D.2 Main Experiments on Multi-Agent (Complete Results and Additional Metrics) 20
D.3 Error Analysis in ALFWorld . 20
D.4 Case Study . 21

124

A Algorithm

Algorithm 1 Practical Framework
1: Initialize parameters θ, ϕ, λ, α
2: Initialize replay buffer DIL

planner, D
IL
reflector, D

RL
planner, D

RL
reflector

3: ## IL Data Collection
4: Initialize Expert Language Agent πexpert, µexpert
5: for each environment in trainset do
6: for each trial do
7: Update the initial state
8: Generate τk = {sk0, ak0, ok0, . . . , skn, akn, okn} using πexpert
9: Generate verbal reward fk ∼ µexpert(·|τk)

10: end for
11: Filter expert trajectories using evaluators and add to DIL

planner, D
IL
reflector

12: end for
13: ## IL training
14: Supervised Fine-tuning of πθ and µϕ using DIL

planner and DIL
reflector, respectively (Eq. 3 and 4)

15: for each iteration do
16: ## RL exploration
17: for each environment in trainset do
18: for each trial do
19: Update the initial state
20: Generate τk = {sk0, ak0, ok0, . . . , skn, akn, okn} using πθ, add to replay buffer DRL

planner

21: Generate verbal reward fk ∼ µϕ(·|τk), add to replay buffer DRL
reflector

22: end for
23: end for
24: ## RL training
25: Update θ and ϕ using off-policy policy gradient optimization (Eq. 9 and 10)
26: end for

The algorithm for RetroAct method is shown in Algorithm 1.

B Related Works

Retrospective language agent Benefitting from the LLMs’ in-context learning capabilities, they can
summarize environmental feedback into natural language-based reflections and use these reflections to
improve performance in subsequent trials. Self-Refine (Madaan et al., 2024) processes results from
environmental interactions, using these outcomes to improve performance. Reflexion (Shinn et al.,
2024) involves introspection about feedback from the environment, generating reflective experiences
that enhance reasoning abilities. Retroformer (Yao et al., 2023b) introduces a framework by learning a
retrospective model to enhance LLM-based agents, which automatically adjusts language agent prompts
based on environmental feedback through policy gradient. Nonetheless, these approaches typically rely
on large-scale LLMs, resulting in significant costs and delays. Moreover, most smaller LLMs typically
exhibit insufficient performance and robustness when deployed as agents.

Language Agent Fine-tuning To address the reliance of agent tasks on large-scale LLMs, the agent-
tuning method is a standard solution. Researchers leverage powerful closed-source LLMs or human experts
to generate expert trajectories, acting as a dataset for fine-tuning smaller open-source LLMs through
imitation learning (Ho et al., 2022; Chen et al., 2023a; Zeng et al., 2023; Gou et al., 2023; Yang et al.,
2024). Moreover, AutoAct (Qiao et al., 2024) enhances the planning, reflection and action capabilities of
multi-agent systems through self-synthetic trajectories. However, its reflection is only a summary of the
current situation and does not have the ability to continue learning and evolution. Compared to imitation
learning, reinforcement learning aims to learn through self-exploration and trial-and-error without relying

125

on the guidance of external experts. Archer (Xi et al., 2024) employs a hierarchical RL approach with
two parallel RL algorithms to enhance the planning ability of LLM-based agents. Several other works
(Lightman et al., 2023; Chen et al., 2024; Havrilla et al., 2024a) propose intricate reward models with
more fine-grained reward signals to improve performance. In summary, these methods focus on training
planner models through fine-tuning, but the fine-tuned agents usually struggle to retain their capability for
learning and adaptation to the environment.

In summary, while these methods enhance planning models through fine-tuning, this process often
diminishes the agent’s ability for self-reflection.

C More Detailed Experimental Settings

C.1 Evaluation Detials

For HotpotQA and InterCode, we select 100 tasks as the test environments. For ALFWorld, we use 134
“out-of-distribution” tasks as the test environments. In all environments, we conduct ten rounds of trials
and reflections. In terms of evaluation metrics, we report the F1 Score for HotpotQA, the Success Rate
for ALFWorld, and the Reward Score (IoU) for InterCode in the main text. Additionally, we provide the
Exact Match Score for HotpotQA and the Success Rate data for InterCode as supplementary experiments
in the Appendix D. In tables, we report the initial reward (IR) to measure the planner’s performance on
the first trial, as well as the final reward (FR) and average reward (AR) to evaluate the performance of
both the planner and reflector comprehensively.

C.2 Baselines

ReAct (Yao et al., 2023a) is a method that combines reasoning and action in language models, enhancing
performance in understanding and decision-making tasks by alternately generating reasoning trajectories
and task-specific actions.

Reflexion (Shinn et al., 2024) builds on the ReAct framework, allowing language agents to learn from
past errors by converting feedback into textual summaries, providing context for future tasks to improve
performance through self-reflection.

SFT (Chen et al., 2023a) is a fine-tuning method for language agents that enhances performance by
utilizing expert trajectories, significantly improving efficiency and accuracy compared to prompt-based
models. We use the FireAct method to fine-tune the language agent separately on each dataset.

EI (Havrilla et al., 2024b)(Expert Iteration) is a strong baseline that involves using a model initialized
with SFT to generate data, filtering successful samples, and then using them to further fine-tune the model

RL We design an off-policy policy gradient algorithm to fine-tune the planner model as a baseline. This
algorithm follows the same reinforcement learning (RL) framework as used in RetroAct, incorporating
off-policy RL with imitation learning regularization. A detailed comparison between this algorithm and
the standard PPO algorithm is provided in Appendix D.1, further justifying our choice of this baseline.

C.3 Expert Dataset

Environment and Dataset Positive Examples (Planner) Positive Examples (Reflector)

HotpotQA 6956 1304
ALFWorld 693 221
InterCode 866 97

Table 4: Imitation Learning Dataset

In our research, we collect an imitation learning dataset using expert models. The dataset encompasses
three different environments. We employ our custom evaluator to retain the positive examples from this
dataset. Detailed information is provided in Table 4.

126

C.4 Prompt Details

Across three datasets, Our prompt design on HotpotQA and ALFWorld follow (Yao et al., 2023a; Shinn
et al., 2024), given that the aforementioned approach has not been previously tested on InterCode, we
proceed by designing our prompts in accordance with the underlying design philosophy of the method
described above.

Prompt C.1: Intercode Few-shot Planner Generation

#Problem description

Interact with a MySQL Database system using SQL queries to answer a question.

Use interleaving Thought, Action, Observation steps.

Thought can reason about the current situation, and Action can be two types:

(1) execute, which executes SQL code on the MySQL Database system

(2) submit, which indicates that the previous observation is the answer

#Few-shot description

Here are some examples.

Question: What are the names and grades for each high schooler?

Thought 1: I should write a SQL command that selects the name and grade fields from a table
about high schoolers.

Action 1: execute [SELECT_ name, grade FROM high_schoolers]

Observation 1: Error executing query: Table “network_1.high_schoolers” doesn’t exist

......

Thought x: ...This should be the answer.

Action x: submit

#Target task information

Here is the task:

Question: What are the names of poker players, ordered ascending by the number of final
tables they have made?
Thought 1:

Prompt C.2: Intercode Few-shot Reflector Generation

#Problem description

You will be given the history of a past experience in which you were placed in an environment and
given a programming task to complete. You were unsuccessful in completing the task. Do not
summarize your environment, but rather think about the strategy and path you took to attempt
to complete the task. Devise a concise, new plan of action that accounts for your mistake with
reference to specific actions that you should have taken. For example, if you tried A and B but
forgot C, then devise a plan to achieve C with environment-specific actions. You will need this
later when you are solving the same task. Give your plan after “Plan”.

127

#Few-shot description

Here are some examples:
[# the history of the failure trajectory

Question:

Thought x:

Action x:

Observation x:

......

]

STATUS: FAIL

New plan: I was unsuccessful in finding the most common bond type because I did not consider
the possibility of null or empty values in the “bond_type” column. In the future, I should modify
my SQL query to exclude these values. The revised plan would be to first check the tables in the
database, then check the columns in the “bond” table, and finally execute a SQL query to find the
most common bond type, excluding null or empty values. The new SQL query would be: ...

#Target task information

Here is the task:
[# A trajectory that requires reflection

Question:

Thought x:

Action x:

Observation x:

......

STATUS: FAIL

]

Plans from past attempts:

reflection of the past failure trajectory in this task

New plan:

C.5 Evaluation Metrics and Reward Function

We summarize the reward functions and evaluation metrics for the three datasets in a table 5. Additionally,
we provide the final evaluation results for all these metrics.

HotpotQA We employ two primary metrics to assess the performance of models: Exact Match (EM)
and the F1 Score. The EM score is a strict metric that measures whether the normalized predicted answer

128

Environment and Dataset Evaluator Planner Reward Function

HotpotQA EM Score (Eq. 11) F1 Score (Eq. 12)

ALFWorld Success Rate (Eq. 13)

InterCode Success Rate (Eq. 14) Reward Score (Eq. 15)

Table 5: Evalator and Reward Function

exactly matches the normalized gold answer. It is defined as:

EM =

{
1 if normalized prediction = normalized gold
0 otherwise

(11)

The F1 Score is the harmonic mean of precision and recall. Precision (precision), recall (recall), and the
F1 score (F1) are calculated as follows:

precision =
num_same
prediction

, recall =
num_same

gold
, F1 = 2× precision × recall

precision + recall
(12)

These metrics effectively evaluate the accuracy and reliability of answers generated by models in the
HotpotQA dataset. When building the expert data set for imitation learning, we use the EM metric to filter
the expert data. When performing reinforcement learning, we use the F1 score as the planner’s reward.

ALFWorld Since ALFWorld only provides information on failure and success, we use whether the
agent completes the task in the environment as the evaluation criterion and reward function.

SR =

{
1 if agent completes the task
0 otherwise

(13)

InterCode We employ two primary metrics to assess the performance of models: Success Rate (SR)
and the Reward Score. The SR score is a strict metric that measures whether the SQL operations
completed according to the task requirements. It is defined as:

SR =

{
1 if the result of the program execution matches the gold answers
0 otherwise

(14)

The execution outcome of all SQL queries is a list of records. In order to more accurately and
meticulously evaluate the results of the agent’s command execution, we employ the same method as (Yang
et al., 2023), utilizing Intersection over Union (IoU), or more formally the Jaccard Index, to quantify the
accuracy of the latest output generated by the agent in comparison to the gold standard output. Given
the agent’s latest execution output A and the gold answer’s execution output G, the reward function is as
follows:

R =
A ∩G

A ∪G
×
(

kendalltau(A ∩G,G ∩A) + 1

2

)
(15)

C.6 Training Details

Model Details We use Llama-chat-7b and Llama-chat-13b models in our experiments respectively.
During training, we do not introduce additional prompt templates. Moreover, although calculating
loss only in the model-generated parts of the trajectory is the optimal choice, splitting the trajectory
significantly increases training costs. To balance training costs, we directly use the entire trajectory for
auto-regressive training. We find that this approach does not result in significant performance loss while
reducing training costs.

129

Inference Details During testing, we fix the temperature parameter of all models to 0.0. This eliminates
any randomness in the local models, ensuring the reproducibility of experiments and confirming that
improvements in reflection are not due to randomness. In reinforcement learning training, we set the
temperature to 1.0 to allow for exploration. We use the vllm (Kwon et al., 2023) framework to accelerate
all inference processes. For HotpotQA, we limit the number of steps for a single trial to 5; for ALFWorld,
we set the limit to 50; and for InterCode, we set the limit to 10.

Training Details We implement LoRA based on PEFT (Hu et al., 2021) and set rLoRA = 8 and
αLoRA = 16 for training in all experiments. We implement our own off-policy reinforcement learning
algorithm based on the transformers (Wolf et al., 2020) and open-source the code at https://anonymous.
4open.science/r/RetroAct-04E8.

System Specifications The system specifications for our experiments is shown in Table 6.

Name Details

CPU Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz
GPU 4 * Nvidia A800 80GB PCIE
Memory 1TB RAM
Python Version 3.9
Transformers Version 4.38.2

Table 6: System Specifications

Hyperparameters We set the regularization coefficient in RL, λplanner = 1.0, λreflector = 1.0 and
the reward coefficient for the reflector, α = 1.0. Additionally, we conduct hyperparameter searches for
the baseline IL and RL methods, as well as our RetroAct method, within the range of learning rates
{5e− 05, 1e− 04, 3e− 04} and epochs {3, 5}. In our experiments, due to the small data volume in the
ALFWorld and InterCode datasets, we find that using a large batch size leads to insufficient update steps,
resulting in severe underfitting. To maintain uniform settings, we use a batch size of 1 across all datasets.
However, we strongly recommend increasing the batch size in scenarios with sufficient data volume to
improve training stability.

130

 https://anonymous.4open.science/r/RetroAct-04E8.
 https://anonymous.4open.science/r/RetroAct-04E8.

D More Experiments

D.1 Comparison of Standard PPO and our proposed Off-policy policy gradient optimization
The standard PPO algorithm for LLM was originally designed for standard Reinforcement Learning
with Human Feedback (RLHF) tasks, particularly suitable for preference optimization scenarios. In
such cases, since it’s not feasible to obtain real-time human feedback during training, it relies on pre-
labeled preference datasets to train a reward model, which then guides the reinforcement learning process.
However, in LLM-Agent tasks, the agent interacts with the environment multiple times and can directly
obtain rewards from it. Additionally, training a reward model in multi-step tasks is particularly challenging.
We conduct an initial evaluation of the standard PPO algorithm’s effectiveness in agent tuning tasks using
the HotpotQA dataset:

0 2 4 6 8
Trial Num

52.5

57.5

62.6

67.6

72.7

F1
 S

co
re

HotpotQA Llama-7b

IL Standard-PPO Off-policy policy gradient

Figure 7: Experiments on Multi-Agent (Complete Results)

In the figure 7, the performance of the standard PPO algorithm and imitation learning is similar, both
lower than the Off-policy policy gradient algorithm we designed. In fact, we find that the standard PPO can
easily cause the agent to lose the ability to follow instructions and fail to complete the task correctly. We
analyze the reasons as follows: Standard PPO for RLHF (von Werra et al., 2020) operates on a token-level
reward mechanism, where the environment reward (provided by the reward model) only applies to the last
token of a sequence, while the intermediate tokens rely on rewards provided by the continually learning
critic model. Therefore, to achieve the desired results with PPO, typically, extensive training time and a
large amount of data are required, along with thorough training of the reward model, critic model, and
policy model to ensure proper convergence of the final objective. However, standard agent tasks often
struggle to provide the high-quality data needed for this process.

The standard token-level PPO algorithms, while theoretically capable of providing more fine-grained
supervision signals, face significant challenges in achieving good convergence in agent tuning tasks. As
demonstrated in (Song et al., 2024), PPO, when used as a baseline, exhibit poor performance, making
it a less meaningful and costly choice as a general RL baseline. Therefore, to make the experimental
comparison more valuable, we use our designed off-policy policy gradient algorithm with imitation
learning regularization as a more challenging RL baseline in our paper.

D.2 Main Experiments on Multi-Agent (Complete Results and Additional Metrics)
In this section, we present the complete data of our method and baseline methods in Figure 8. It can be
observed that, whether in terms of rewards or additional metrics, the overall trends are consistent with the
conclusions drawn in the main text. Our method outperforms the baseline methods significantly and is
comparable to methods based on closed-source models.

D.3 Error Analysis in ALFWorld
RetroAct significantly outperforms the baseline agent by completing 130 out of 134 tasks based on
Llama-7b. In this section, we present a classification of ALFWorld trajectories by reason of failure in

131

0 2 4 6 8
Trial Num

32.6

43.9

55.3

66.6

78.0
F1

 S
co

re
HotpotQA Llama-7b

0 2 4 6 8
Trial Num

36.2

46.1

56.0

65.9

75.8

F1
 S

co
re

HotpotQA Llama-13b

0 2 4 6 8
Trial Num

0.0

25.0

50.0

75.0

100.0

Su
cc

es
s R

at
e

ALFWorld Llama-7b

0 2 4 6 8
Trial Num

15.8

36.9

57.9

79.0

100.0

Su
cc

es
s R

at
e

ALFWorld Llama-13b

0 2 4 6 8
Trial Num

2.6

23.0

43.5

63.9

84.4

Re
wa

rd
 S

co
re

InterCode Llama-7b

0 2 4 6 8
Trial Num

17.7

33.7

49.8

65.8

81.9

Re
wa

rd
 S

co
re

InterCode Llama-13b

Llama-ReAct
Llama-Reflexion

FireAct
RL

Our
ChatGPT-ReAct

ChatGPT-Reflexion

Figure 8: Experiments on Multi-Agent (Complete Results)

Figure 9, following (Shinn et al., 2024). The reasons can be summarized into two points: Hallucination:
The agent attempts to pick up non-existent items at a location and holds onto imaginary objects; Inefficient
planning: The agent formulates plans that lack common sense and fails to make accurate judgments
based on environmental feedback.

By analyzing the original trajectories, we find that fine-tuning and integrating prior knowledge ef-
fectively improves the rationality of the agent’s actions, allowing it to track the placement of objects
better. This underscores the crucial role of fine-tuning in enhancing the agent’s capabilities. Moreover, by
summarizing experiences, adjusting plans, and attempting multiple iterations, RetroAct completes most of
the previously failed tasks. This process highlights the essential role the self-reflection plays in improving
RetroAct’s planning.

D.4 Case Study

In this section, we conduct a detailed and in-depth case study of our model. We deliberately select complex
tasks from the original data that require multiple reflections to succeed. These cases comprehensively
verify that our method can simultaneously enhance the model’s planning and reflection capabilities.

HotpotQA In HotpotQA, we deliberately select a challenging task requiring multi-step complex
reasoning. The agent is tasked with answering the question: “When Copsi was made Earl of Northumbria,
he went back to reside in a town at the confluence of which two rivers?” To answer this task, the
agent needs to follow the correct reasoning process: (1) first, use a tool to search for Copsi and obtain
information about his life; (2) then, correctly extract the town where Copsi resided as Earl of Northumbria
from the returned information, avoiding other confusing details; (3) clearly understand that the question
asks for the rivers at the town’s location, not just the city itself; (4) correctly use a tool to search for the
rivers at the town’s location and answer the question accurately. We provide a specific case, comparing
our agent (D.4) with the baseline agent (D.4).

In RetroAct agent’s first attempt, it completes steps 1 and 2 but directly answers with the town. After
two reflections, our agent correctly understands step 3 and clarifies the question details. Finally, in a
post-reflection attempt, it completes the step 4. In contrast, the baseline agent correctly completes step 1
but repeatedly fails to extract the correct information in step 2. Even after nine subsequent reflections and

132

0 2 4 6 8
Trial Num

2

4

6

8

10

12

14

Th
e

nu
m

be
r o

f f
ai

le
d

tra
je

ct
or

ie
s

Classification of AlfWorld trajectories by reason of failure
inefficient planning
hallucination

Figure 9: Error Analysis in ALFWorld

attempts, it remains stuck at step 2, falling into a loop.
This case demonstrates that our planner is superior to the baseline, as it can complete step 2 on the first

attempt. Our reflector is also more effective, identifying the critical error during reflection and completing
step 3, and then helping the planner complete the 4.

AlfWorld In Alfworld, we select a challenging task that necessitates a clear and adaptive planning
approach in response to the environment. The agent is in the middle of a room, where a multitude of items
is arranged scattered across different spots, to look at the bowl under the desk lamp. To complete this
task, the agent needs to follow the correct planning and reasoning process: (1) The agent needs to devise
a strategy first to take the bowl, then use the desklamp to examine the bowl, as opposed to finding the
desklamp and mistakenly taking it away then carrying the desklamp to find the bowl. (2) The agent is
tasked with locating the bowl in accordance with a pre-established plan. (3) The agent, with the bowl in
possession, proceeds to find the desklamp, intending to utilize it to look at the bowl. We provide a specific
case, comparing our agent (D.4) with the baseline agent (D.4).

In the beginning, the RetroAct agent successfully formulates a plan that involves locating the bowl first
and then proceeds to find the desklamp with the bowl in possession in step 1. However, some hallucination
issues still arise in steps 2 and 3, such as attempting to take non-existent items or failing to act upon
seeing the targeted objects. After five reflections, the agent clearly recognized the sequence: first, to
locate the bowl, and then, to find the desklamp. It further leverages past trajectory experiences to discern
the positions of various objects within the environment. Upon discovering the desklamp, it adopts a
strategic approach by noting its location and only afterward proceeds to search for the bowl, intending
to utilize the desklamp effectively once the bowl is in hand. In contrast, the baseline agent is struggling
with devising an accurate path that initially finds the bowl and then takes it to find a desklamp, despite
multiple rounds of reflection, fails to identify and rectify its mistakes in step 1. It continues to experience
hallucinations more severe than RetroAct, leading to persistent inefficiencies in planning and execution
even after repeated introspection cycles in step 2 and 3.

This case demonstrates that our planner is superior to the baseline because it can complete step 1 on
the first attempt. It demonstrates an appropriate utilization of learned strategies and prior knowledge
integrated to avoid mistakenly taking the desklamp away. Meanwhile, our planner is designed to minimize
hallucinations in step 2 to the greatest extent possible, ensuring it executes actions in line with its
predefined plan. Given the extensive space to explore within the room, mistakes are inevitable, even with
a clear plan in place. Consequently, the agent must also possess the ability to accurately reflect upon
and correct errors arising from the current environmental conditions. Our reflector is also more effective,
identifying the critical error during reflection and helping the planner complete the target in step 3. This
highlights a need for substantial improvement in its reflector and the robustness of its planner to overcome
these challenges.

133

RetroAct Case D.1: Better Planning and Reflection in HotpotQA

Trial 1:

Question:
When Copsi was made earl of Northumbria, he went back to reside in a town at the confluence of
which two rivers?

Thought 1: I need to search Copsi and Northumbria, find the town where Copsi resided
as earl of Northumbria.

Action 1: Search[Copsi]

Observation 1: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he
joined Tostig at Sandwich in Kent with 17 ships. Copsi survived Tostig’s defeat at Stamford
Bridge. When William the Conqueror prevailed at Hastings, he traveled, in March 1067, to pay
William homage at Barking (where William was staying while his tower was being constructed in
London). In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s
rule lasted a mere five weeks. At that time, he was murdered by Osulf, son of Eadulf III of the
ancient Bernician family, which had historically governed the area from Bamburghproves at
Newburn-upon-Tyne. Osulf, however, only ruled as earl until that autumn, when an outlaw killed
him he was tracking.

#Agent successfully extracts the correct town information “York” from a large amount of text.

Thought 2: Copsi was made earl of Northumbria and resided in York.

#Agent correctly extracts the town name on the first trial, but the question asks, “Which two rivers
converge in that town?”.

Action 2: Finish[York]

Observation 2:Answer is INCORRECT.

...

Trial 3:

#Agent successfully reflects on the previous error, identifying the cause as not correctly responding
to the question. In its reflection, it explicitly states, “Then find the rivers it is located on”.

Reflections:
I searched Copsi and Northumbria, then found the town where Copsi was made earl of
Northumbria. I should have searched the town where Copsi was made earl of Northumbria and
found the rivers where it was located.

Question:
When Copsi was made earl of Northumbria, he went back to reside in a town at the confluence of
which two rivers?

Thought 1: I need to search Copsi and Northumbria, find the town where Copsi was made earl of

134

Northumbria, and then find the rivers where it was located.

Action 1: Search[Copsi and Northumbria]

Observation 1: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks, at which time he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when he was killed by an outlaw he was
tracking.

Thought 2: Copsi was made earl of Northumbria at York. I need to find the rivers where York is
located.

#Agent correctly responds to its own reflection by searching for the relevant rivers after identifying
the town information, and ultimately answers the question correctly.
Action 2: Search[York rivers]

Observation 2: York () is a historic walled city at the confluence of the rivers Ouse and Foss in
North Yorkshire, England. The municipality is the traditional county town of the historic county of
Yorkshire to which it gives its name. The city has a rich heritage and has provided the backdrop to
major political events in England throughout much of its two millennia of existence. The city
offers a wealth of historic attractions, of which York Minster is the most prominent, and a variety
of cultural and sporting activities making it a popular tourist destination for millions.

Thought 3: York is located at the confluence of the rivers Ouse and Foss.

Action 3: Finish[Ouse and Foss]

Observation 3: Answer is CORRECT.

Baseline Case D.1: Poor Planning and Reflection in HotpotQA

Trial 1:

Question:
When Copsi was made earl of Northumbria he went back to reside in a town at the confluence of
which two rivers?

Thought 1: I need to search Copsi and the two rivers, find the town.

Action 1: Search[Copsi]

Observation 1: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with

135

him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks, at which time he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when he was killed by an outlaw he was
tracking.

#Despite retrieving the correct information, the agent incorrectly extracts the town information
from the search results.
Thought 2: The town at the confluence of the two rivers is Newburn-upon-Tyne.

Action 2: Search[Newburn-upon-Tyne]

Observation 2: Two Rivers High School is a public high school for students in grades 7 through 12
located in Ola, Arkansas, United States. Two Rivers High School is administered by the Two
Rivers School District. The Two Rivers High School and school district serves 650 sqmi of rural
communities including Ola, Plainview, Rover, and Casa. Two Rivers High School is one of four
high schools within Yell County and the sole high school administered by the Two Rivers School
District.

Thought 3: Two Rivers High School is not the town at the confluence of the two rivers.

Action 3: Finish[Newburn-upon-Tyne]

Observation 3: Answer is INCORRECT

Trial 2:

#The agent never reflects on the useful information, leading it to remain stuck in a continuous loop.
Reflections:
I searched Copsi and the two rivers, but I did not find the town. I should have searched for the
name of the town in the observation.

Thought 1: I need to search for the town where Copsi resided.

Action 1: Search[town at the confluence of two rivers]

Observation 1: The Two Rivers is a 7.0 mi river in Kittson County, northwestern Minnesota, in the
United States. Formed by the North Branch of the Two Rivers and the South Branch of the Two
Rivers, it is a tributary of the Red River of the North, with its outflow traveling north through Lake
Winnipeg and the Nelson River to Hudson Bay.

Thought 2: The town where Copsi resided is not the Two Rivers. I need to search for the correct
town.

Action 2: Search[Copsi]

136

Observation 2: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks. At that time, he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when an outlaw killed him he was tracking.

Thought 3: The town where Copsi resided is Newburn-upon-Tyne. I need to search for the correct
answer.

Action 3: Search[Newburn-upon-Tyne]

Observation 3: Two Rivers High School is a public high school for students in grades 7 through 12
located in Ola, Arkansas, United States. The Two Rivers School District administers two Rivers
High School. The Two Rivers High School and school district serves 650 sqmi of rural commu-
nities, including Ola, Plainview, Rover, and Casa. Two Rivers High School is one of four high
schools within Yell County and the sole high school administered by the Two Rivers School District.

Thought 4: Two Rivers High School is not the town where Copsi resided. I need to search for the
correct answer.

Action 4: Search[Copsi]

Observation 4: Copsi (or Copsig; Old English: C̈0̆14dpsige)̈ [died 1067] was a Northumbrian
magnate in late Anglo-Saxon England. He was a supporter of Tostig, and was exiled along with
him in 1065. Copsi soon fled to Orkney (then a part of Norway). The next year (1066), he joined
Tostig at Sandwich, in Kent, with 17 ships. Copsi survived Tostig’s defeat at Stamford Bridge, and
when William the Conqueror prevailed at Hastings he travelled, in March 1067, to pay William
homage at Barking (where William was staying while his tower was being constructed in London).
In return, William made Copsi earl of Northumbria and sent him back to York. Copsi’s rule lasted
a mere five weeks, at which time he was murdered by Osulf, son of Eadulf III of the ancient
Bernician family which had historically governed the area from Bamburgh, at Newburn-upon-Tyne.
Osulf, however, only ruled as earl until that autumn, when he was killed by an outlaw he was
tracking.

Thought 5: The town where Copsi resided is Newburn-upon-Tyne. I need to search for the correct
answer.

Action 5: Search[Newburn-upon-Tyne]

Observation 5: Two Rivers High School is a public high school for students in grades 7 through 12
located in Ola, Arkansas, United States. Two Rivers High School is administered by the Two
Rivers School District. The Two Rivers High School and school district serves 650 sqmi of rural
communities including Ola, Plainview, Rover, and Casa. Two Rivers High School is one of four
high schools within Yell County and the sole high school administered by the Two Rivers School
District.

137

Trial 3-10:

Agent falls into a Trial2-like dead loop until the maximum number of attempts was reached.

RetroAct Case D.2: Better Planning and Reflection in AlfWorld

Here is the task: You are in the middle of a room. Looking quickly around you, you see a bed
1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a
shelf 1.
Your task is to: look at bowl under the desklamp.

Trial 1:
> think: To solve the task, I need to find and take a bowl, then find and use a desklamp.
First I need to find a bowl. A bowl is more likely to appear in drawer (1-6), shelf (1-6), bed (1),
garbagecan (1), laundryhamper (1), safe (1). I can check one by one, starting with drawer 1.
> go to drawer 1
The drawer 1 is closed.
...
> open drawer 6
You open the drawer 6. The drawer 6 is open. In it, you see a book 2, and a pen 2.
> go to shelf 1
On the shelf 1, you see a pencil 2.
...
> go to shelf 6
On the shelf 6, you see nothing.
> think: Now I find a bowl (1). Next, I need to take it.
> take bowl 1 from shelf 6
Nothing happens.
> think: I am stuck in a loop. I will try to execute a different action.
The agent experiences a hallucination, prompting it to make the motion of picking up a bowl
where none actually exists.

> go to bed 1
On the bed 1, you see a book 1, a laptop 1, a pillow 2, and a pillow 1.
> go to desk 2
On the desk 2, you see a bowl 2, a bowl 1, a cd 2, a cd 1, and a creditcard 3.
> think: Now I find a bowl (2). Next, I need to take it.
> take bowl 2 from desk 2
You pick up the bowl 2 from the desk 2.
> think: Now I take a bowl (2). Next, I need to find a desklamp. A desklamp is more likely to
appear in desk (1-2), bed (1), shelf (1-6), drawer (1-6), garbagecan (1), laundryhamper (1), safe
(1). I can check one by one, starting with desk 1.
> go to desk 1
On the desk 1, you see a alarmclock 1, a desklamp 1, a mug 1, and a pencil 1.
> go to desk 2
On the desk 2, you see a bowl 1, a cd 2, a cd 1, and a creditcard 3.
Despite the presence of a target object, a desklamp, the agent fails to devise a plan incorporating
the use of the desklamp to accomplish its task.

138

> use desklamp 1
Nothing happens.
> think: I am stuck in a loop. I will try to execute a different action.
> go to garbagecan 1
On the garbagecan 1, you see nothing.
...
> go to shelf 3
On the shelf 3, you see a desklamp 1, and a pencil 1.
> go to shelf 4
On the shelf 4, you see a alarmclock 2, and a pencil 3.
...
> go to shelf 6
On the shelf 6, you see nothing.
> think: Now I find a bowl (1). Next, I need to take it.
> take bowl 1 from shelf 6
Nothing happens.
> think: I am stuck in a loop. I will try to execute a different action.
> go to bed 1
...
The agent appears to have disregarded its prior planning, encountering a desklamp yet neglecting
to utilize it, proceeding instead to attempt fetching a bowl again, ultimately leading to task failure.

STATUS: FAIL

Trial 6:

Reflections:
I was stuck in a loop in which I continually tried to take a bowl from shelf 6. I should have found a
bowl first, then taken it. I will try to execute a different action if I am stuck in a loop again.
I was stuck in a loop in which I continually tried to use a desklamp. I should have found a bowl
first, then taken it, then used a desklamp to light the bowl. I will try to execute a different action if
I am stuck in a loop again.
...

> think: To solve the task, I need to find and take a bowl, then find and use a desklamp. First
I need to find a bowl. A bowl is more likely to appear in drawer (1-6), shelf (1-6), bed (1),
garbagecan (1), laundryhamper (1), safe (1). I can check one by one, starting with desk 1.
> go to desk 1
On the desk 1, you see a alarmclock 1, a desklamp 1, a mug 1, and a pencil 1.
> think: Now I find a desklamp (1).I will try to execute a different action.
> go to desk 2
On the desk 2, you see a bowl 2, a bowl 1, a cd 2, a cd 1, and a creditcard 3.
> think: Now I find a bowl (2). Next, I need to take it.
> take bowl 2 from desk 2
You pick up the bowl 2 from the desk 2.
> think: Now I take a bowl (2). Next, I need to find a desklamp. A desklamp is more likely to
appear in desk (1), shelf (1-6), bed (1), garbagecan (1), laundryhamper (1), safe (1). I can check
one by one, starting with desk 1.
> go to desk 1
On the desk 1, you see a alarmclock 1, a desklamp 1, a mug 1, and a pencil 1.
> think: Now I find a desklamp (1). Next, I need to use it.

139

> use desklamp 1
You turn on the desklamp 1.

STATUS: OK

Baseline Case D.2: Poor Planning and Reflection in ALfowrld

Here is the task: You are in the middle of a room. Looking quickly around you, you see a bed
1, a desk 2, a desk 1, a drawer 6, a drawer 5, a drawer 4, a drawer 3, a drawer 2, a drawer 1, a
garbagecan 1, a laundryhamper 1, a safe 1, a shelf 6, a shelf 5, a shelf 4, a shelf 3, a shelf 2, and a
shelf 1.
Your task is to: look at bowl under the desklamp.

Trial 1:
> think: To solve the task, I need to find and use a desklamp. A desklamp is more likely to
appear in desk (2), desk (1), drawer (6), drawer (5), drawer (4), drawer (3), drawer (2), drawer (1),
garbagecan (1), laundryhamper (1), safe (1), shelf (6), shelf (5), shelf (4),
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
> go to desk 2
On the desk 2, you see a alarmclock 1, a bowl 1, and a cd 3.
> go to drawer 6
The drawer 6 is closed.
...
> go to drawer 1
The drawer 1 is closed.
...
> go to shelf 6
On the shelf 6, you see nothing.
...
> go to shelf 3
On the shelf 3, you see a desklamp 1, a pen 1, and a pencil 2.
...
> go to bed 1
On the bed 1, you see a book 1, a cellphone 1, a laptop 2, a laptop 1, a pillow 2, and a pillow 1.
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
> think: Now I find a desklamp (1). Next, I need to use it.
> use desklamp 1
You turn on the desklamp 1.
> look at bowl under desklamp
Nothing happens.
> go back
Nothing happens.

STATUS: FAIL

Trial 3:

#The agent navigates the environment under flawed planning strategies.
Reflections:

140

In this environment, my past attempts were unsuccessful because I tried to execute the task in the
wrong order. I will try to execute the task in the correct order this time. I will go to desk 1, find the
desklamp, then look for the bowl under the desklamp.
In this environment, my plan was to find a bowl then find and use a desklamp. However, the task
says to look at bowl under the desklamp. I should have looked for the desklamp then looked for
the bowl. I noticed that the desklamp was found on desk 1. In the next trial, I will go to desk 1,
find the lamp, then look for the bowl under the desklamp.
...

> think: To solve the task, I need to find and use a desklamp. A desklamp is more likely to
appear in desk (2), desk (1), drawer (6), drawer (5), drawer (4), drawer (3), drawer (2), drawer (1),
garbagecan (1), laundryhamper (1), safe (1), shelf (6), shelf (5), shelf (4),
> go to desk 2
On the desk 2, you see a alarmclock 1, a bowl 1, and a cd 3.
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
...
> go to drawer 1
The drawer 1 is closed.
> open drawer 1
You open the drawer 1. The drawer 1 is open. In it, you see a creditcard 1.
> go to safe 1
...
The safe 1 is closed.
> open safe 1
You open the safe 1. The safe 1 is open. In it, you see a keychain 2, and a keychain 1.
> go to shelf 3
On the shelf 3, you see a desklamp 1, a pen 1, and a pencil 2.
...
#The agent never reflects on the useful information, leading it to remain stuck in a continuous loop.
> go to shelf 1
On the shelf 1, you see a cellphone 3, and a creditcard 2.
> go to desk 1
On the desk 1, you see a desklamp 1, a keychain 3, a mug 2, a pen 2, a pen 1, and a pencil 2.
> think: Now I find a desklamp (1). Next, I need to use it.
> use desklamp 1
You turn on the desklamp 1.
> look at bowl under desklamp

STATUS: FAIL

Trial 3-10:
Agent falls into a Trial3-like dead loop until the maximum number of attempts was reached.

141

