E-Gen: Leveraging E-Graphs to Improve Continuous Representations of
Symbolic Expressions

Hongbo Zheng® Suyuan Wang® Neeraj Gangwar Nickvash Kani
University of Illinois at Urbana-Champaign
{hongboz?2, suyuan2,gangwar2,kani}@illinois.edu

Abstract

Vector representations have been pivotal in ad-
vancing natural language processing (NLP),
with prior research focusing on embedding
techniques for mathematical expressions using
mathematically equivalent formulations. While
effective, these approaches are constrained by
the size and diversity of training data. In this
work, we address these limitations by intro-
ducing E-Gen, a novel e-graph-based dataset
generation scheme that synthesizes large and
diverse mathematical expression datasets, sur-
passing prior methods in size and operator va-
riety. Leveraging this dataset, we train embed-
ding models using two strategies: (1) gener-
ating mathematically equivalent expressions,
and (2) contrastive learning to explicitly group
equivalent expressions. We evaluate these em-
beddings on both in-distribution and out-of-
distribution mathematical language processing
tasks, comparing them against prior methods.
Finally, we demonstrate that our embedding-
based approach outperforms state-of-the-art
large language models (LLMs) on several tasks,
underscoring the necessity of optimizing em-
bedding methods for the mathematical data
modality. The source code and datasets are
available at https://github.com/MLPgroup/
E-Gen.

1 Introduction

While large language models (LLMs) (Jiang et al.,
2023; Dubey et al., 2024; Hurst et al., 2024; Jaech
et al., 2024) have demonstrated effectiveness in pro-
cessing natural language, these methods still per-
form suboptimally with math-based content which
plays an important role across numerous domains
(Zanibbi et al., 2024; Rohatgi et al., 2019). For
instance, even a state-of-the-art LLM like GPT-4V
only reaches 49% accuracy in MathVista (Lu et al.,
2023), a comprehensive benchmark to evaluate the
mathematical reasoning capabilities of LLMs. In

“Equal Contribution.

another instance, as tested in Frieder et al. (2024),
GPT-4’s performance in computing integration is
dominated by specialized embedding-based models
(Lample and Charton, 2019; Lample et al., 2022).
Therefore, effective approaches to process semanti-
cally rich mathematical notation are necessary.

One approach is to compute a semantic repre-
sentation of mathematical content based on textual
context and treat mathematical expressions as a
sentence without learning mathematical semantics
(Krstovski and Blei, 2018). This has been used in
various mathematical language processing (MLP)
tasks, such as mathematical information retrieval
(Topi¢ et al., 2013; Mansouri et al., 2022a), iden-
tifier definition extraction (Pagael and Schubotz,
2014; Hamel et al., 2022; Zou et al., 2024), math-
ematical reasoning (Geva et al., 2020; Nye et al.,
2021) and theorem proving (Wang et al., 2020; Wu
et al., 2022). But this approach has two limitations:
(1) textual descriptions are lacking in some math
content like textbooks or mathematical derivations
in academic publications, and (2) don’t really ex-
plore relations between symbolic operators from a
mathematical perspective.

To address these problems, recent studies have
focused on equivalence and mathematical manipu-
lation between expressions to derive the meaning
of mathematical expressions independent of con-
text. However, these approaches remain limited,
primarily due to the quality of available data. Alla-
manis et al. (2017) introduces EQNET, a TreeNN-
based (Socher et al., 2013) model to group equiv-
alent expressions together, but their datasets are
limited to arithmetic and boolean expressions. SE-
MEMB (Gangwar and Kani, 2023) computes vector-
based semantic representations by learning to gen-
erate mathematically equivalent expressions but
is significantly limited by the SymPy-generated
dataset (Meurer et al., 2017). SymPy functions
are designed for simplification and directly derive
the most simplified expression without intermedi-

11772

Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies

(Volume 1: Long Papers), pages 11772-11788
April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

https://github.com/MLPgroup/E-Gen
https://github.com/MLPgroup/E-Gen

ate steps, leading to a dataset that lacks enough
rewrites per expression. Hence, a more efficient
mathematical data generation scheme is required.
In this work, we propose E-Gen, a highly scal-
able and efficient corpus generation scheme based
on e-graphs (Willsey et al., 2021). Leveraging a
collection of mathematical transformations, E-Gen
facilitates the creation of synthetic datasets with
large clusters of semantically equivalent expres-
sions. This approach significantly improves upon
prior SymPy-based methods, overcoming limita-
tions in the number of rewrites per expression while
improving flexibility and scalability. In summary,
we highlight the following contributions of E-Gen:

1) We introduce E-Gen, a novel scheme for gen-
erating a cluster-based mathematical expres-
sion dataset, along with a high-diversity math-
ematical corpus.

2) We evaluate two types of embedding mod-
els based on seq2seq and contrastive learning
respectively, showing improved semantic rep-
resentation performance over prior works in
quantitative and qualitative tests.

3) The embedding models are evaluated on
two out-of-distribution downstream tasks, to
demonstrate models’ generalizability and ro-
bustness.

4) Finally, we compare our models with GPT-
40 across multiple tasks, demonstrating the
effectiveness of embedding-based approaches.

2 Related Work

In MLP (Meadows and Freitas, 2022), semantic
representation shows strong potential across var-
ious problems. A representative application is
mathematical information retrieval (MIR) (Kris-
tianto et al., 2016; Zanibbi et al., 2016a; Mansouri
et al., 2022c), where expressions or keywords are
ranked based on their relevance to a query. Gao
et al. (2017) proposes SYMBOL2VEC, a mathemat-
ical symbol representation generation scheme to
group LaTeX symbols having similar contexts to-
gether. They further extend this approach to a MIR
scheme (FORMULA2VEC) to prove its effective-
ness. Krstovski and Blei (2018) converts symbolic
layout trees (Zanibbi et al., 2016b) of mathemati-
cal expressions into token sequences and generates
representation based on word2vec. Mansouri et al.
(2019) further improves this approach by combin-
ing the symbol layout tree and operator tree rep-
resentations of an expression. Peng et al. (2021)

proposes MathBERT, a pretrained model based on
MIR and formula headline generation task (Yuan
et al., 2020).

Identifier definition extraction (Kristianto et al.,
2014) is another promising application, which aims
to align identifiers found in scientific text with
their definitions. Popovic et al. (2022) utilizes a
transformer-based method to develop an end-to-end
joint math entity and relation extraction approach.
Jo et al. (2021) provides a mathematical under-
standing pretrained model by fine-tuning BERT on
masked mathematical identifier prediction task. In
the theorem proving field, Welleck et al. (2021b,a)
generate theorem proof by retrieving relevant ref-
erences to a given query theorem. However, as
discussed in Section 1, MLP studies rely on seman-
tic representation but mostly focus on establishing
homomorphism between context and mathematical
expressions to construct semantic representation,
which is limited by the incapacity to process pure
math content and can not really understand math-
ematical transformations. Even though some re-
cent studies (Allamanis et al., 2017; Meidani et al.,
2023) have focused on generating semantic repre-
sentation based on intrinsic features of mathemati-
cal expressions to address this problem, their per-
formance and scope of application are still limited
by existing dataset, motivating this work’s demon-
stration of a more effective mathematical corpus
generation scheme.

3 Corpus of Equivalent Expressions

3.1 Corpus Generation

To generate a diverse set of mathematical expres-
sions, we manually design templates containing
placeholders for arithmetic operators, functional
operators, and numerical values. Expressions are
systematically instantiated by replacing the place-
holders in templates with all possible operators
and values, resulting in approximately 5,000 ini-
tial expressions in prefix notation. The templates
are carefully designed to cover fundamental arith-
metic and functional operators in various formats
while maximizing the potential for mathematical
transformations. Each of the resulting initial ex-
pressions is processed by E-Gen, which applies
around 800 mathematical rules to generate clusters
of semantically equivalent expressions.

The core of our E-Gen is e-graph, an advanced
data structure designed to efficiently manipulate
collections of terms under a congruence relation.

11773

(a) Initial e-graph (b) After applying rule
(z+8)—38 (z+y)—z—>z+(@y—2) z—x—0

€0 — [+ e0 e4, — e2 el, z]
: el — [8]

e €2 — [+ €0 el]

' ed — [~ el el, 0]

(c) After applying rule (d) After applying rule (e) Grammar created from

x+0—z saturated e-graph

Figure 1: Illustration of e-graph saturation (la to 1d) and grammar creation (le). An e-graph consists of e-classes
(dashed boxes) containing equivalent e-nodes (solid boxes). Edges connect e-nodes to their child e-classes. Applying
mathematical rules to an e-graph adds new e-nodes and edges (1b and 1c), or merges e-classes (1d). Additions and
modifications are emphasized in black. In le, the saturated e-graph is converted into a context-free grammar, where
each grammar is defined using e-class id and the e-nodes with their child e-classes.

An e-graph is composed of e-classes, each contain-
ing a set of equivalent e-nodes. An e-node can be
linked to one or more child e-classes, depending
on the operator’s arity. From a mathematical per-
spective, child e-classes represent the arguments of
their associated e-node, typically corresponding to
a mathematical operator. Consequently, any sub-
graph originating from an e-node within the same
e-class represents equivalent expressions.

Figures 1a to 1d show the e-graph saturation
process. In the initial e-graph (Figure 1a), the e-
node “+” is linked to two child e-classes “z” and
“8”, respectively, and the e-node “—" is linked to
a subgraph “(z + 8)” and a child e-class “8”, to-
gether forming the initial expression “(z + 8) — 8”.
In Figure 1b, a new e-node “4-” is added to the
top e-class after the associative law is introduced.
The two e-nodes, “— and “4” in the top e-class
represent subgraphs for expressions “(x 4 8) — 8”
and “z + (8 — 8)” which are equivalent rewrites
generated by the associative law. Similarly, trans-
formations such as “(z —z) — 0” and “z 40 — z”
are embedded into the e-graph in the steps shown
in Figures 1c and 1d. The e-graph is iteratively
expanded by applying each applicable rule, thereby
capturing all possible equivalent expressions.

A context-free grammar is created after e-graph
saturation in prefix notation, based on e-classes
and the connections of e-nodes in it, as shown in
Figure le. E-classes will be represented as vari-
able symbols denoted by "e0", "el", "e2", "e4" in
Figure 1d. Variables and numbers comprise the
terminal set in the grammar. The production rules
are determined by the edges and take the form:

e(index) — [var/num]

e(index) — [op e(index) e(index), ...]

where e(index) denotes eclass with corresponding

index, op and var /num denote enodes represent-
ing operators and variables/numbers.

Equivalent expressions are extracted from this
grammar using a recursive rewrite algorithm. The
process begins at a designated root e-class (e.g.,
“e(0”) and traverses the grammar, replacing e-classes
with their corresponding expansions until no e-
classes remain. For instance, “e2”, in the second
grammar “— e2 el” of “e0”, can be expanded to
“+ €0 el” and generate “— + €0 el el”. To avoid
excessively long rewrites, a token length limit of 25
and a time limit of 600s are imposed. Eventually,
clusters of semantically equivalent expressions for
all initial expressions are generated by E-Gen and
form a new corpus.

3.2 Corpus Analysis

Category

Operators

Arithmetic

Logarithmic/Exponential
Trigonometric

+, —, X, +

pow, abs, sqrt, %
In, exp (as pow e)
sin, cos, tan

csc, sec, cot
sin™?!, cos™!, tan
cscfl, secfl, cot™?
sinh, cosh, tanh

csch, sech, coth
sinh™', cosh™, tanh™!
csch™!, sech™!, coth™?

Inverse Trigonometric -t

Hyperbolic

Inverse Hyperbolic

Table 1: Operator coverage of E-Gen Corpus.

The new corpus encompasses a comprehensive
set of arithmetic and functional operators as de-
tailed in Table 1. Table 2 presents examples from
three clusters of equivalent expressions generated
by E-Gen. The corpus is structured into clusters,
each containing numerous mathematically equiv-
alent expressions derived through a series of flex-
ible transformations. These transformations span

11774

Initial Expressions Equivalent Expression Generation

T

(92° +6)> + 8z

cos(sin!(z)) = V1 —a?

%coth(&:}EI + 6z)
%sin’l(ﬁz) + 8z
L (3z+5)°+6z

£ 1(s@) = Fe@)d @]

d“—ﬂ_tanh(z) = sech®(z)

=G Initial E-graph Apply Rules Saturated E-graph
z
@) z = cos(cos !(z))

cos(z

= In(a) +In(b) = In(a + b)
sech™!(z)

m csc(z) = —esc(—z)
% sin(z) = cos(z) tan(z)
| Sz +82 45 sec(z) = csc(x + 0.5m)

Cluster Expressions Expression Pairs seq2seq]
T z cos(cos ! (z)) 7 o o >
— cos(m + cos}(z)) In(z) In(z) + sinh~!(0) E Gl E Gl
: — %cscz(m) - 2cot(z)cscz(z) %—» ‘% g < g
cos(cos " (z)) | = é ;5 E a
In(z) | d’—’[(—%z) — tan(cot ~*(8)) | N— D—

Expression Triplets Contrastive Learning

In(a) & sinh-i(0) |

=i

L1, g & cos(cos '(z)) In(z) | 5 . (@

& i cos(z) sin(z +0.57) tan(z)” _ g 87 B
-9 T 9|z 2
! —{sine) cos(e) escla) ——§ T £ &

: : «~ B4 E

: Mk N
V80 -1 | d, -9 —10 = °
- tan(cse ™ (—9)) | &= — 9z sec(z)

Figure 2: Overview of E-Gen and the cluster-based training framework. Equivalent expressions of each initial
expression are generated using an e-graph-based approach, forming clusters of equivalent expressions. The seq2seq
model is trained on equivalent expression pairs, while the contrastive learning model is trained on triplets, with each
triplet containing a reference expression x, an equivalent positive sample &, and a non-equivalent negative sample
x~. z is the latent space representation of the corresponding input .

both simple and complex mathematical relation-
ships, significantly enhancing expression diversity
and enabling models to efficiently learn underlying
mathematical rules with fewer initial expressions.

Initial expression: (£ + 2)° + 3z

—(=2 = %) + (=3(—x))
3z — (—2— $2)°
(—1)(=3z - (2+§)°)
1/(£42)7°+3z

(=24 (=1)z/6)° + 3=

Initial expression: tanh(3z — (—4)) — 6

tanh(3z +4) — 6

1/ coth(3z +4) — 6

sinh(3z + 4) sech(3z +4) — 6

tanh(3/ csc(sin™'(x)) 4 4) — 6

sinh(3 cos(cos™(z)) + 4)/ cosh(3z + 4) — 6

Initial expression: -L — 2(Inz/7) >

1 (@(n@/7)?)

=2/ (z/(In(z) —In(7)) %) x (~2)
—4z7H/In(7 x 271)3

—4/(x(In(7) — In(x))3

4 cot(tan™" (z))(In(x/7)) 3

Table 2: Examples of equivalent expressions generated
with E-Gen. Expressions listed below each initial ex-
pression are part of the equivalent rewrites. Additional
examples are in Appendix A.1.

As detailed in Table 3, the E-Gen corpus sup-
ports a wider range of operators and achieves a sig-
nificantly higher average cluster size of 102, com-
pared to the Equivalent Expressions Dataset (EED)
(Gangwar and Kani, 2023) that is generated using
SymPy and limited to a cluster size of 2 (pairs).
This substantial increase in cluster size enables
models to develop a deeper semantic understanding
of the diversity of mathematical transformations.

Statistic E-Gen EED
Operators 34 24
Average Cluster Size 102 2
Average Sequence Length 15 16
Train Set Size (Pair) ~55M ~4.66M
Train Set Size (Triplet) ~ 50M -
Test Set Size 8,077 5,000

Table 3: Dataset Statistics. Corpus comparison between
E-Gen and EED which denotes Equivalent Expressions
Dataset from prior work (Gangwar and Kani, 2023).

Training Data. The training dataset is provided
in two formats: expression pairs and triplets, cor-
responding to the two training methodologies de-
scribed in Section 4. For the seq2seq model, equiva-
lent expression pairs are generated by permuting ex-
pressions within each cluster. For contrastive learn-
ing, expression triplets are constructed by treat-
ing expressions within the same cluster as positive
pairs, while randomly sampling expressions from
different clusters to serve as negative examples.
This process results in a training set comprising
55 million equivalent expression pairs and 50 mil-
lion expression triplets as shown in Table 3. For
the validation set, a subset of clusters is randomly
sampled from the corpus, yielding a total of 8,077
expressions. Following Lample and Charton (2019)
and Gangwar and Kani (2023) , we use the prefix
notation to encode the expressions.

4 Methodology

As illustrated in Figure 2, we employ two well-
established approaches for learning representa-
tions of mathematical expressions: sequence-to-
sequence (seq2seq) (Sutskever, 2014; Cho, 2014)
equivalent expression generation and contrastive
learning (CL) (Wu et al., 2018; Chen et al.,

11775

2020), both leveraging the transformer architec-
ture (Vaswani, 2017). These methods aim to cap-
ture the underlying semantic relationships between
mathematical expressions by generating meaning-
ful embeddings in a high-dimensional latent space.

4.1 seq2seq Expressions Generation

Following prior work (Gangwar and Kani, 2023),
we employ the seq2seq framework to learn repre-
sentations of mathematical expressions by training
the model to generate mathematically equivalent
expressions. Specifically, given a pair of equivalent
expressions, the model takes one as input and is
tasked with predicting the other as output. The en-
coder, during this process, learns to map the input
expressions into a latent space where semantically
equivalent expressions are clustered together.

4.2 Contrastive Learning

The other promising approach to learning mathe-
matical expression representations is contrastive
learning, a technique that has gained significant
traction in the domain of representation learn-
ing. The primary objective is to learn a latent
space where semantically equivalent expressions
are embedded closer together, while semantically
distinct expressions are pushed apart. This is
achieved using a contrastive loss function, such
as InfoNCE (Oord et al., 2018) or SImCSE (Gao
et al., 2021).

In this manuscript, we use a variation of the
InfoNCE loss formulated as:

I T@IE)

L(f)=E|-In efST@f@F) /1 4 efT(@)f(=7) /7 M

where f is a transformer encoder f : X — Z that
maps an tokenized input expression x € X to its
latent representation z € Z. The terms z+ and 2~
correspond to positive (equivalent) and negative
(non-equivalent) samples respectively, with 7 as a
temperature hyperparameter.

4.3 Representation Vector

To derive the representation vector from the trans-
former encoder, an additional step is required to
convert the output matrix from the encoder’s last
layer X € R¥*Pmoal t0 a one-dimensional embed-
ding vector & € RPmwel for each expression. Here,
S and Dpogel represent the sequence length of the
input and the model dimension. We experiment
with two common pooling strategies: average pool-
ing and max pooling over the hidden states of the

last encoder layer. Our empirical analysis and prior
work (Gangwar and Kani, 2023) indicate that max
pooling consistently outperforms average pooling
for the seq2seq model. In the case of contrastive
learning, we train two separate models—one with
average pooling (CL Mean) and one with max pool-
ing (CL Max)—to evaluate the impact of these
strategies on embedding quality. In all models,
special tokens, such as the start-of-expression and
end-of-expression tokens, are excluded from the
pooling process.

5 Experiments

5.1 Evaluation Tasks

The models trained on the E-Gen synthetic
dataset, are compared against the prior SEMEMB
model (Gangwar and Kani, 2023) trained on
SymPy-generated corpus, on both in-distribution
and out-of-distribution tasks, demonstrating the ef-
ficacy of the newly presented methods.

K-Means Clustering. K-Means clustering (Mac-
queen, 1967) is employed to evaluate the perfor-
mance of both seq2seq and CL models. The test set
comprises 8,077 expressions in 279 clusters, with
cluster sizes ranging from 20 to 40 expressions.
The K-Means algorithm is applied to group the ex-
pressions into clusters. Clustering performance is
evaluated by mapping the predicted cluster labels
to the corresponding ground truth labels. Accu-
racy is computed as the proportion of expressions
correctly assigned to their respective clusters. A
visualization of clusters is shown in Figure 3.

Model Accuracy (%)
seq2seq 96.72
CL Mean 97.61
CL Max 97.30
SEMEMB 37.70

Table 4: K-Means clustering accuracy (%) of seq2seq,
CL Mean, and CL Max, compared against prior SE-
MEMB model.

As shown in Table 4, both the seq2seq and CL
models trained on the E-Gen cluster-based dataset
exhibit strong performance in clustering semanti-
cally equivalent expressions while effectively sepa-
rating non-equivalent ones. The CL models slightly
outperform the seq2seq model due to their explicit
training objective of grouping semantically equiv-
alent expressions in the latent space. In contrast,
SEMEMB, trained on a SymPy-generated corpus,

11776

Component 2
(=]

Component 2

A

- —60
Py
—75 '3‘)

—80

—75 —50 —25 0 25 50 5 —75 —50 —25 0 25 50 i)
Component 1 Component 1
Bz cosz M cscz M cotz B ocos!'z M sinhz tanhz M sinh~'z tanh™'z
sinx tanx sec sin~'z tan~! x coshx cothz cosh™ 'z

Figure 3: Visualization of representation vectors for 17 different single-operator mathematical expressions and their
equivalent forms using our method (left) and SEMEMB (right). t-SNE (Van der Maaten and Hinton, 2008) is applied
to reduce the dimensionality of the embeddings from 512 to 2.

achieves only 37.70% accuracy. This significant
performance gap underscores the limitation of the
SymPy-generated dataset, which lacks the diversity
of mathematical transformations present in the E-
Gen corpus. Consequently, SEMEMB struggles to
accurately capture and differentiate both subtle and
substantial syntactic variations among equivalent
expressions.

Semantic Understanding Beyond Syntactic Simi-
larity. To assess whether models trained on the E-
Gen corpus capture mathematical semantics rather
than relying on syntactic similarity, we design an
experiment where the model must identify the sin-
gle semantically equivalent expression among syn-
tactically similar candidates. Specifically, we sam-
ple 1,000 query expressions from the test set. For
each query, one correct answer is introduced, which
is semantically equivalent but structurally distinct
from the query. Additionally, six distractors are
generated by making minor syntactic modifications
to both the query and the correct answer (e.g., alter-
ing a single operator or numerical value). These dis-
tractors are divided into two groups: three closely
resembling the query and three closely resembling
the correct answer. The model is tasked with select-
ing the correct equivalent expression from seven
candidates.

As illustrated in Table 5, the correct answer
(bolded) is syntactically distinct from the query.
Candidate 2, 4, 7 exhibit structural similarity to
the correct answer, while candidate 1, 3, 6 closely
resemble the query. As shown in Table 6, models
trained on the E-Gen corpus significantly outper-
form SEMEMB, demonstrating their ability to dif-

ferentiate semantically equivalent expressions de-
spite structural variations, as well as to distinguish
between syntactically similar yet semantically non-
equivalent expressions.

| Query expression: 2z + sin(z — 4)/6

43z 4 sin(z — 4)/6
2+ tan(z —4)/8
%Qx + sin(z + 4)/6
2+ cos(z/4)/6

2+ cos(xz —4)/6
L2z + cos(z — 4)/6
9+ cos(x —4)/6

N O U W N

Table 5: Examples of semantic understanding beyond
syntactic similarity. The correct answer is highlighted
in bold. Six distractors are generated by introducing
minor modifications to the query and the correct answer
to assess the model’s ability to distinguish between syn-
tactically similar but semantically different expressions.

Model Accuracy (%)
seq2seq 76.41
CL Mean 50.36
CL Max 48.19
SemEmb 28.62

Table 6: Semantic understanding beyond syntactic simi-
larity accuracy (%) of seq2seq, CL Mean, and CL Max,
compared against prior SEMEMB model.

Mistake Detection. Mistake detection in mathe-
matical derivations is an out-of-distribution down-
stream task, with the test set generated using
SymPy to assess the robustness and generalizability
of the models.

11777

Algorithm 1 Threshold Calculation for Mistake Detection

1: input: set of derivations {D;}{_,, each containing a
sequence of derivation steps D; = {dx } 2L,

2: output: threshold value ¢

3: f: transformer encoder

4: g: cosine similarity function
5 x <+ [1]
6
7
8

s forall D; € {D,...,Dn} do
: ceg(ZZ-[1:],Zi[:-1],dim=-1)
9: C < C\ {Cmislake}
10: Cmin < min(c)
11: T < x U Cmin
12: end for
13: ¢t + ﬁ Ziill T
14: Returnt

For this task, step-by-step mathematical deriva-
tions are generated for each expression in the E-
Gen corpus, and mistakes are introduced into ran-
domly selected steps within these derivations. The
goal is to ask the models to identify erroneous steps
by classifying transformations between consecu-
tive steps as either “mistake” or “no mistake”. To
achieve this, a semantic similarity threshold for
binary classification is calculated using only deriva-
tions generated from expressions in the training set
of the E-Gen corpus, as described in Algorithm 1.
Specifically, cosine similarities are computed be-
tween consecutive steps in each derivation, exclud-
ing steps with mistakes. The minimum cosine sim-
ilarity among the correct steps is recorded for each
derivation, and the average of these minimum val-
ues is used as the threshold. A step is flagged as a
mistake if its cosine similarity with the preceding
step falls below this threshold.

Derivation seq2seq GPT-4o
fé(sinh(cosh Y7 — %8)))71

— L (sinh(cosh™ (7 + £)))~*
_é(mm)ii *
—5(6+§)72@+5)2
—5(6+§)72(8+(1-8)z)"? * *
—L6+2) 3’ —Tx) 2

5/ csc(ese™(1/In(%)))

5/ csc(csc™t

cse ' (1/In(ZL:2)))

5,/1— (ln(7i5‘7c))2

Table 7: Example comparison of mistake detection in
mathematical derivations between seq2seq and GPT-4o.
Errors in the derivations are in red. The % symbol
indicates that the respective model has predicted the
step to contain a mistake.

Examples of mistake detection are shown in Ta-
ble 7. Some mistakes are particularly challenging
to identify, as they may closely resemble the struc-
ture of the preceding step and appear deceptively
correct. Conversely, steps with significant syntactic
changes that are mathematically equivalent can be
misclassified as errors. These challenges highlight
the importance of robust semantic understanding
to ensure accurate mistake detection.

Model Precision Recall F1
seq2seq 96.40 94.69 9554
no CL Mean 97.59 92.52 94.99
mistake CL Max 97.78 9193 89.14
SEMEMB 92.92 83.49 8795
seq2seq 74.68 81.61 77.99
mistake CL Mean 69.33 88.10 77.60
CL Max 67.96 89.14 77.12
SEMEMB 44.46 67.50 53.61

Table 8: Mistake detection evaluation results precision,
recall, and F1 (%) scores of seq2seq, CL Mean, and CL
Max, compared against prior SEMEMB model.

The test set comprises 18,462 derivation steps,
of which 2,974 steps contain mistakes, with the
remainder being error-free. As shown in Table 8§,
precision, recall, and F1-score are used to evalu-
ate model performance. Models trained on E-Gen
corpus demonstrate strong effectiveness in identi-
fying potential mistakes and better generalizability
on this OOD task, significantly outperforming the
SEMEMB approach.

Embedding Algebra. Embedding algebra is a
classic task to evaluate if embeddings capture se-
mantic information of a word/token. Techniques
such as word2vec (Mikolov, 2013) and GloVe (Pen-
nington et al., 2014) exhibit the ability to perform
analogy-based reasoning through algebraic opera-
tions on their representation vectors, enabling so-
lutions to analogies like “Berlin is to Germany as
Paris is to France”. Extending this task to math-
ematical expressions allow us to assess whether
models truly understand mathematical transforma-
tions or merely rely on surface-level structural sim-
ilarity. For a given triplet of expressions x1, ¥1,
and x9, we compute:

f(@2) = =f(@) + flyr) + fz2) ()

where f denotes a function f : X — Z, which
maps an expression z to its representation vector
z in the latent space. The expression whose em-
bedding vector has the highest cosine similarity to

11778

Y, i) 7, (seq2seq) Y, (SEMEMB) g, (GPT-40) Yot

1 | sin(z) —sin(—x) cos(z) cos(—x) —tan(—x) cos(—x) cos(—x)

2 | cos(z) sec(z) tanh(x) coth(z) coth(zx) sech(x) coth(z)

3 | sinh™'(z) csch™'(1/z) tanh™'(xz) coth™'(1/x) - coth™ () coth™(1/x)

4 | tan(x) tan(x +) cse(x) csc(z + 2m) cot(z +) csc(x + 2m) csc(z + 2m)

5 | sin(z) cos(z —mw/2) sec(x) csc(x+7/2) sec(x —7w/2) csc(x —w/2) csc(x+7/2)

6| x Inz coth(z) In coth(z) cothIn(z) coth™ (x) In coth(z)

7| x Inx cos™ ' (x) cos '(Inx) cos !(Inz) Incos™ ! (x) Incos™ ! (x)

8| = csc () csch(z) csc H(ese(z)) - csch ™ (z) csc ™ (ese(x))

9| x z+1 tan™!(x) tan '(z) x 1 tan"'(z)+1 tan"'(x) +1 tan"(z)+1
10 | = z3 sinh™!(z) sinh™3(z) sinh ™3 () sinh () sinh~3(x)

Table 9: Example comparison of embedding algebra predictions between the seq2seq, SEMEMB, and GPT-4o.
The model’s prediction is denoted as y,, while y, represents the ground truth. Incorrect predictions are in red.
Additional experimental results are provided in Appendix C.3.

f(72) is selected as the predicted answer, exclud-
ing the original expressions x1, y1, and x2 from
consideration.

For this experiment, 584 analogy examples are
manually constructed. The entire E-Gen corpus
serves as the search pool, with expressions equiva-
lent to x2 and y» removed to ensure uniqueness of
the correct answer. Any necessary expressions are
added to complete the analogy.

Model Accuracy (%)
seq2seq 70.38
CL Mean 64.73
CL Max 50.34
SEMEMB 54.85
GPT-40 39.60

Table 10: Embedding algebra accuracy (%) of seq2seq,
CL Mean, and CL Max, compared against prior SE-
MEMB model and GPT-4o.

As shown in Table 10, the seq2seq model
achieves the highest accuracy, indicating its ability
to learn underlying mathematical rules and han-
dle basic substitutions effectively. In contrast, SE-
MEMB exhibit low accuracy on this task and have a
tendency to imitate the transformation between z;
and y1, leading to “look-alike” predictions rather
than true understanding of the mathematical rules,
as seen in Test 1, 4, 5 in Table 9.

5.2 Comparison with GPT-40

To further assess the quality of vector represen-
tations of symbolic expressions, a comparative
analysis is conducted between the seq2seq model,
trained on the E-Gen corpus, and the state-of-the-
art large language model GPT-40 (Achiam et al.,
2023) on two tasks.

Mistake Detection. For mistake detection, a
small test set is randomly sampled from the mistake
detection test set described earlier. This subset con-
sists of 322 derivation steps, including 50 steps con-
taining mistakes, while the remainder are error-free.
GPT-4o is first provided with an example deriva-
tion in the prompt and asked to identify potential
mistakes. If it fails to detect the mistake, explicit
feedback indicating the erroneous step is provided
until it correctly understands the task. Once veri-
fied, GPT-4o is tested on queries from the sampled
test set.

Model Precision Recall F1
seq2seq 96.98 9449 9572
no CL Mean 97.64 91.18 94.30
mistake CL Max 97.78 9193 94.77
GPT-40 93.58 90.84 92.19
seq2seq 73.68 84.00 78.50
mistake CL Mean 64.71 88.00 74.58
CL Max 67.96 89.14 77.12
GPT-40 56.90 66.00 61.11

Table 11: Mistake detection evaluation results precision,
recall, and F1 (%) scores of seq2seq, CL Mean, and CL
Max compared with GPT-4o.

As shown in Table 11, our approach outperforms
GPT-40 across all evaluation metrics. While GPT-
40 demonstrates a recall of 66%, suggesting its
capability of detecting a notable portion of errors,
its low precision indicates a tendency to misclassify
correct transformations as mistakes, leading to a
high rate of false positives.

Table 7 illustrates examples of GPT-40’s mis-
judgments, which commonly occur in complex
transformations, particularly those involving func-
tion operators or relatively intricate arithmetic com-
putations. For instance, in Example 1, GPT-4o fails

11779

to recognize the equivalence between syntactically
different expressions (e.g., sinh(cosh™'(z)) =
vz + 1y/x — 1). In Example 2, it incorrectly clas-
sifies an operator substitution in step 3 as a valid
derivation, failing to detect the mistake.

Embedding Algebra. We also conduct the em-
bedding algebra task on GPT-40, which performs
worse than both the seq2seq and CL models, achiev-
ing only 39.60% accuracy on the test set as shown
in Table 10. Table 9 provides examples comparing
the performance of the seq2seq model and GPT-40
on embedding algebra tests. Similar to the mis-
take detection test, an example query is provided
to GPT-4o to verify its understanding before pro-
ceeding with the test.

While the seq2seq model consistently makes
accurate predictions by adhering to mathematical
rules, GPT-40 demonstrates only a partial under-
standing of certain mathematical properties. For
instance, it correctly predicts the periodicity of
“csc(z)” but often mimics the structure of “y;”
rather than applying the underlying mathematical
transformations. In Test 5, GPT-40 incorrectly sub-
tracts “7r/2” from “z” in “csc(x)”, imitating the
structure of “y;”, while the correct answer should
be “csc(x + m/2)”, which is mathematically equiv-
alent to “csc(z)”. A similar error occurs in Test
8, where GPT-4o0 predicts “y»” as “csch™!(z)” by
replicating “y; : csc~!(x)” instead of applying the
correct mathematical transformation. This compar-
ison highlights the effectiveness of E-Gen corpus
in helping models to build up understanding in
mathematical rules and transformations.

6 Conclusion

In this work, we enhance semantic representations
of symbolic expressions by developing E-Gen, a
novel mathematical corpus generation framework
based on the e-graph data structure. E-Gen shows
strong capability in the generation of a scalable,
cluster-based corpus with high diversity in math-
ematical transformation. To evaluate its effective-
ness, two training approaches based on seq2seq
and contrastive learning respectively are imple-
mented to capture equivalence relation between
expressions. Our experimental results demonstrate
the efficacy of these embedding models across a
variety of downstream tasks, including clustering,
semantic understanding beyond syntactic similarity,
mistake detection, and mathematical analogies. No-
tably, these semantic representations outperform

prior approach and GPT-40 in both quantitative
and qualitative tests. This work provides an algo-
rithmic foundation for processing symbolic math-
ematics, and the vector-based representations can
easily integrate with vector embeddings of other
data modalities.

Limitations

This work introduces and evaluates the potential of
a novel mathematical corpus generation framework
to augment mathematical semantic understanding.
While the results are promising, there are several
areas for improvement.

First, extending the dataset to include a wider
range of mathematical operators used in published
datasets, such as ArXMLiv (Kohlhase et al., 2024)
and ARQMath (Mansouri et al., 2022b), would im-
prove the applicability of the learned embeddings
to real-world mathematical data.

Following that, more efficient grammar enumer-
ation techniques, such as those based on the Earley
algorithm (Earley, 1970), could facilitate the ex-
tension of the E-Gen corpus to support more com-
plex operators and higher-arity expressions. In this
manuscript, equivalent expressions are generated
by enumerating the grammar obtained from the e-
graph using a simple recursive function. Addition-
ally, incorporating variable characteristics, such
as dimensionality, phase, and/or bounds, into the
embeddings remains an unexplored but promising
direction for improving their expressiveness.

Another limitation is the scarcity of real-world
datasets that focus on symbolic mathematics.
While tasks like mathematical information retrieval
have been explored in competitions such as NT-
CIR (Zanibbi et al., 2016a) and ARQMath (Man-
souri et al., 2022b), these typically involve a mix-
ture of symbolic mathematics and natural language
in queries and results. Integration of our embedding
methods with natural language vectors remains an
open research challenge with significant potential
for advancing mathematical information retrieval
and reasoning.

Acknowledgments

We would like to thank the University of Illinois for
its support in facilitating this research. We would
also like to extend our gratitude to the National
Center for Supercomputing Applications (NCSA)
for providing access to high-performance comput-
ing resources.

11780

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Miltiadis Allamanis, Pankajan Chanthirasegaran, Push-
meet Kohli, and Charles Sutton. 2017. Learning
continuous semantic representations of symbolic ex-
pressions. In International Conference on Machine
Learning, pages 80—-88. PMLR.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In /n-

ternational conference on machine learning, pages
1597-1607. PMLR.

Kyunghyun Cho. 2014. Learning phrase representations
using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The Llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94-102.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths,
Tommaso Salvatori, Thomas Lukasiewicz, Philipp
Petersen, and Julius Berner. 2024. Mathematical
capabilities of ChatGPT. Advances in neural infor-
mation processing systems, 36.

Neeraj Gangwar and Nickvash Kani. 2023. Seman-
tic representations of mathematical expressions in a
continuous vector space. Transactions on Machine
Learning Research.

Liangcai Gao, Zhuoren Jiang, Yue Yin, Ke Yuan, Zuoyu
Yan, and Zhi Tang. 2017. Preliminary exploration
of formula embedding for mathematical informa-
tion retrieval: can mathematical formulae be em-
bedded like a natural language? arXiv preprint
arXiv:1707.05154.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. arXiv preprint arXiv:2004.04487.

Emma Hamel, Hongbo Zheng, and Nickvash Kani.
2022. An evaluation of NLP methods to extract math-
ematical token descriptors. In International Confer-
ence on Intelligent Computer Mathematics, pages
329-343. Springer, Springer.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. GPT-40 system card. arXiv preprint
arXiv:2410.21276.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. OpenAl ol system card. arXiv preprint
arXiv:2412.16720.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Hwiyeol Jo, Dongyeop Kang, Andrew Head, and
Marti A Hearst. 2021. Modeling mathematical nota-
tion semantics in academic papers. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 3102-3115.

Michael Kohlhase et al. 2024. arxmliv project.
https://kwarc.info/projects/arxMLiv/. Ac-
cessed: 2024-09-17.

Giovanni Yoko Kristianto, Akiko Aizawa, et al. 2014.
Extracting textual descriptions of mathematical ex-
pressions in scientific papers. D-Lib Magazine,
20(11):9.

Giovanni Yoko Kristianto, Goran Topic, and Akiko
Aizawa. 2016. MCAT math retrieval system for
NTCIR-12 MathlR task. In NTCIR.

Kriste Krstovski and David M Blei. 2018. Equation
embeddings. arXiv preprint arXiv:1803.09123.

Guillaume Lample and Frangois Charton. 2019. Deep
learning for symbolic mathematics. arXiv preprint
arXiv:1912.01412.

Guillaume Lample, Timothee Lacroix, Marie-Anne
Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. Advances in neural information processing
systems, 35:26337-26349.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Ilya Loshchilov and Frank Hutter. 2016. SGDR:
Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
MathVista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

11781

https://kwarc.info/projects/arXMLiv/

J Macqueen. 1967. Some methods for classification and
analysis of multivariate observations. In Proceed-
ings of 5-th Berkeley Symposium on Mathematical
Statistics and Probability/University of California
Press.

Behrooz Mansouri, Anurag Agarwal, Douglas W Oard,
and Richard Zanibbi. 2022a. Advancing math-aware
search: the ARQMath-3 lab at CLEF 2022. In Eu-
ropean Conference on Information Retrieval, pages
408—415. Springer.

Behrooz Mansouri, Vit Novotny, Anurag Agarwal, Dou-
glas W Oard, and Richard Zanibbi. 2022b. Overview
of ARQMath-3 (2022): Third CLEF lab on answer
retrieval for questions on math. In International Con-
ference of the Cross-Language Evaluation Forum for
European Languages, pages 286-310. Springer.

Behrooz Mansouri, Vit Novotny, Anurag Agarwal, Dou-
glas W Oard, and Richard Zanibbi. 2022¢. Third
CLEF lab on answer retrieval for questions on math
(working notes version. Proc. CLEF 2022 (CEUR
Working Notes).

Behrooz Mansouri, Shaurya Rohatgi, Douglas W Oard,
Jian Wu, C Lee Giles, and Richard Zanibbi. 2019.
Tangent-CFT: An embedding model for mathemati-
cal formulas. In Proceedings of the 2019 ACM SIGIR
international conference on theory of information re-
trieval, pages 11-18.

Jordan Meadows and Andre Freitas. 2022. A survey in
mathematical language processing. arXiv preprint
arXiv:2205.15231.

Kazem Meidani, Parshin Shojaee, Chandan K Reddy,
and Amir Barati Farimani. 2023. SNIP: Bridging
mathematical symbolic and numeric realms with uni-
fied pre-training. arXiv preprint arXiv:2310.02227.

Aaron Meurer, Christopher P. Smith, Mateusz Pa-
procki, Ondrej Certik, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K.
Moore, Sartaj Singh, Thilina Rathnayake, Sean Vig,
Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johans-
son, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, §tépe’1n Roucka, Ashutosh Saboo, Isuru Fer-
nando, Sumith Kulal, Robert Cimrman, and Anthony
Scopatz. 2017. SymPy: symbolic computing in
python. PeerJ Computer Science, 3:¢103.

Tomas Mikolov. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Auri,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Robert Pagael and Moritz Schubotz. 2014. Mathe-
matical language processing project. arXiv preprint
arXiv:1407.0167.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang.
2021. MathBERT: A pre-trained model for math-
ematical formula understanding. arXiv preprint
arXiv:2105.00377.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532—1543.

Nicholas Popovic, Walter Laurito, and Michael Firber.
2022. AIFB-WebScience at SemEval-2022 task 12:
Relation extraction first—using relation extraction to
identify entities. arXiv preprint arXiv:2203.05325.

Shaurya Rohatgi, Wei Zhong, Richard Zanibbi, Jian
Wu, and C Lee Giles. 2019. Query auto com-
pletion for math formula search. arXiv preprint
arXiv:1912.04115.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

I Sutskever. 2014. Sequence to sequence learning with
neural networks. arXiv preprint arXiv:1409.3215.

Goran Topi¢, Giovanni Yoko Kristianto, Minh-Quoc
Nghiem, and Akiko Aizawa. 2013. The MCAT math
retrieval system for NTCIR-10 math track. In Pro-
ceedings of 10th NTCIR Conference, Tokyo, Japan,
pages 680-685.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of machine
learning research, 9(11).

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Qingxiang Wang, Chad Brown, Cezary Kaliszyk, and
Josef Urban. 2020. Exploration of neural machine
translation in autoformalization of mathematics in
mizar. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, pages 85-98.

Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh
Hajishirzi, Yejin Choi, and Kyunghyun Cho. 2021a.
NaturalProofs: Mathematical theorem proving in nat-
ural language. arXiv preprint arXiv:2104.01112.

Sean Welleck, Jiacheng Liu, Jesse Michael Han, and
Yejin Choi. 2021b. Towards grounded natural lan-
guage proof generation. In MathAI4Ed Workshop at
NeurIPS.

11782

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103

Max Willsey, Chandrakana Nandi, Yisu Remy Wang,
Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
2021. Egg: Fast and extensible equality saturation.
Proceedings of the ACM on Programming Languages,
5(POPL):1-29.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 35:32353-32368.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 3733-3742.

Ke Yuan, Dafang He, Zhuoren Jiang, Liangcai Gao, Zhi
Tang, and C Lee Giles. 2020. Automatic generation
of headlines for online math questions. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 9490-9497.

Richard Zanibbi, Akiko Aizawa, Michael Kohlhase,
Iadh Ounis, Goran Topic, and Kenny Davila. 2016a.
NTCIR-12 MathlR task overview. In NTCIR.

Richard Zanibbi, Kenny Davila, Andrew Kane, and
Frank Wm Tompa. 2016b. Multi-stage math formula
search: Using appearance-based similarity metrics at
scale. In Proceedings of the 39th International ACM
SIGIR conference on Research and Development in
Information Retrieval, pages 145-154.

Richard Zanibbi, Behrooz Mansouri, and Anurag Agar-
wal. 2024. Mathematical information retrieval:
Search and question answering. arXiv preprint
arXiv:2408.11646.

Jiaru Zou, Qing Wang, Pratyush Thakur, and Nickvash
Kani. 2024. STEM-PoM: Evaluating language mod-
els math-symbol reasoning in document parsing. In
The 4th Workshop on Mathematical Reasoning and
Al at NeurIPS’24.

11783

A Cluster-Based Corpus

A.1 Cluster Example

Initial expression: (sin(2z + 5)) 78

(sin(5 — (—2) sin(sin~ ' (2)))) ~®
(cse(m + (=5 — 2x)))°
(cos(r/2 — 2z — 5)))~®

cot(2x+45))
cos(2z+5)

(sin(2(z +) +5))°°8

Initial expression: sec™'(7x + 6)/(—7)

cos™ (g=rtay)/ (= 7)

(sec ' (=Tz —6) — 7)) x &

(3 - cscfl(7x +6))/(=7)
(—1)(sec™'(7/ sec(cos ™' (x)) + 6))/7
(cos™*(cot(tan™ ! (7z + 6))))/(=7)

- (-3)

Initial expression: (csc(z/7))

1/ (CSC (7““1(“1; 19;))) +3

(tan(cot ™' (sin(£))))"* + 3

3+ (1/ cos(sec ™ (sin(2))))*
—1(= 3—(086()%

(sin(£))* +3

(sin(cse ™! (sin(77 1)) 7 — (=3)

Initial expression: - (—4z —8)™*

(1) x (8 —(—4)) x 16 +7
—16 x (4o + 8)7°

7+ (—16) x (—1/(—4m —8)°)

7 —(—16) x (1) x (8 — (—4x))~?
0—(—16(—42 —8)"% =7

+ Tx

Initial expression: - (—9sinh(—7z + 2))

63/ sech(—Tx + 2)

—9/(=1/7 cosh(7z — 2))

63 cosh(2 — Tx)

8 (exp(2 — Tz) + exp(Tz — 2))
7 x 9/sech(7x — 2)

Table 12: Additional examples of equivalent expressions
clusters generated with E-Gen. Expressions listed below
each initial expression are all equivalent to it.

As discussed in Section 3.2, the key distinc-
tion of the E-Gen corpus from prior datasets is
its cluster-based organization of equivalent expres-
sions, rather than equivalent expression pairs. Ta-
ble 12 presents additional examples of these clus-
ters. Each cluster consists of an initial expression
along with numerous equivalent rewrites. This di-
verse set of transformations significantly enhances
pretrained models’ ability to understand and gener-
alize mathematical semantics, leading to improved
performance in downstream tasks.

A.2 Generation Efficiency

Efficiency is a key property of any corpus genera-
tion scheme. To assess the computational perfor-
mance of E-Gen, we measure the average time re-
quired for e-graph saturation and expression rewrite
extraction. On an Intel Xeon E5-2666 CPU, the
e-graph saturation process takes 36.83ms on aver-
age, and the extraction takes an average of 1.46s
per expression. These evaluations are conducted
with a 25-token length limit and a 600s timeout per
initial expression.

B Training Details

Configuration Value

Transformer Architecture

Model Dimension 512
Attention Heads 6
Feedforward Dimension 2048
Encoder Layers 6
Decoder Layers 6
Dropout -
Optimizer
Optimizer AdamW
Learning Rate 1x107*
Weight Decay 1x1072
Scheduler
Scheduler CosineAnneal WarmRestarts
To 10
Tmult 2
TImin 1x 1078
Training Parameters
Label Smoothing 0.1
Batch Size 256
Epochs 20
Gradient Clipping 4.0

Hardware Configuration

AMD EPYC 7763 (64-Core)
NVIDIA L40S (46GB)

CPU
GPU

Table 13: Hyperparameters and hardware specifications
for training the seq2seq, CL Mean, and CL Max mod-
els. The transformer-based models are optimized using
AdamW with a cosine annealing warm restart scheduler.
Training was conducted on an AMD EPYC 7763 CPU
and a Nvidia L40S GPU.

Both the seq2seq and contrastive learning mod-
els are trained using a transformer architecture, op-
timized with the AdamW optimizer (Loshchilov,
2017), and scheduled with CosineAnnealingWarm-
Restarts scheduler (Loshchilov and Hutter, 2016).
The specific training parameters and time are de-
tailed in Table 13 and Table 14 respectively.

11784

Model Training Time (h:min)
seq2seq 38:04
CL Mean 31:56
CL Max 29:59

Table 14: Training time of seq2seq, CL. Mean, and CL
Max models.

C Experiments

C.1 K-Means Clustering

Accuracy Calculation. Since all expressions
from the same cluster are labeled in the same class,
the accuracy for K-Means clustering in Section 5.1
is calculated as follow.

1
acc = — Z acc; 3)

where acc; denotes the accuracy of cluster ¢, which
is computed as follow.

1
acei = 1 > Lgley)=cn))

TiEC

where g(z;) denotes the cluster predicted by K-
Means algorithm, and ¢; is the ground truth cluster
of expression ;.

C.2 Formula Retrieval

Formula retrieval is implemented as an additional
task to assess the models’ semantic understand-
ing of mathematical expressions. As discussed in
Section 1, prior MIR studies heavily rely on con-
textual cues for semantic representation (Gao et al.,
2017; Krstovski and Blei, 2018) rather than directly
capturing the intrinsic mathematical property of ex-
pressions. This limitation results in suboptimal
performance, particularly in scenarios with limited
surrounding text, such as textbook or mathematical
derivations. To evaluate the models’ performance
in this scenario, we design a pure formula retrieval
task using the E-Gen corpus. Given a query ex-
pression, the top-k most similar expressions are
retrieved based on cosine similarity in the latent
space.

We evaluate formula retrieval using the E-Gen
test set, which contains 8,077 expressions. Each
expression serves as a query, while the remaining
expressions act as retrieval candidates. Figure 4
illustrates an example where the top-4 most similar
candidates to cos x are retrieved in the latent space.
As shown in Table 15, both seq2seq and CL models

trained on E-Gen corpus effectively retrieve seman-
tically relevant expressions from the candidate pool
as k increases. Conversely, SEMEMB, which is con-
strained by a limited number of equivalent rewrites
per expression, struggles to identify semantically
equivalent expressions when k exceeds 10.

tanh(z)*

* S1n 1

Component 2

—-40 =30 —-20 -—10 0 10 20
Component 1

Figure 4: Example of the formula retrieval with seq2seq
model. The query expression is cos(z) in darker blue,
and the rest are candidates. Top-4 expressions are re-
trieved. t-SNE is applied to reduce the dimensionality
of the embeddings from 512 to 2.

Model k=5 k=10 k=15 k=20
seq2seq 99.93 99.82 99.76 99.41
CL Mean 99.85 99.73 99.50 98.94
CLMax 99.78 99.52 99.32 98.82
SemEmb 7347 60.57 5195 4556

Table 15: Formula retrieval accuracy (%) of seq2seq, CL
Mean, and CL. Max, compared against prior SEMEMB
model at different top-k values. Accuracy denotes the
proportion of top-k ranked candidates that are semanti-
cally equivalent to the query expression.

C.3 Embedding Algebra

Table 16 and 17 provide additional examples from
embedding algebra task. The seq2seq model cor-
rectly predicts most of the answers, outperforming
other models. CL. Mean slightly outperforms, CL
Max, SEMEMB, and GPT-40. Notably, SEMEMB
and GPT-4o use a similar strategy to predict “y5”.
For instance, Tests 6 to 11 specifically evaluate
the models’ understanding of function periodicity,
where the seq2seq model trained on the E-Gen cor-
pus accurately predicts “y,” in most cases. In con-
trast, as discussed in Section 5.2, SEMEMB, similar
to GPT-40, tends to imitate the transformation be-
tween “x,” and “y,” rather than correctly applying
the periodicity of the function. For instance, in Test

11785

6, “x; : sin(x)” and “y, : sin(z + 27)” are equiv-
alent due to the 27 period of “sin(x)”. However,
since “@x9 : cot(z)” has a period of 7, the cor-
rect “y,” should be “cot(x + 7)”. The SEMEMB
model just simply imitates the transformation from

“x1” to “y,” by adding “27” to “z” in “cot(x)”,

”»

and incorrectly converts “cot(...)” into “csc(...)".

This comparison highlights that the models trained
with E-Gen corpus shows a better understanding
of mathematical rules and transformations, rather

than relying on superficial "looks-like" predictions.

11786

S E— T D)

(_ Queston)

N\
I will give you mathematical derivation steps, try to find out all possible I will give you mathematical derivation steps, try to find out all possible
mistakes in it mistakes in it
. 1/, 1 T -1 5
Step 1: -3 (smh (cosh (7 - _—8))) Step 1: ese(ese—1(m(lL))
%
Step2: 1 (sinh (costr1 (7 - zi))) h 5
’ 8 Step 2: csc(ese(ln(zlL))
1 1 -
Step 3: ——(sinh (cosh’1 (7— —:c))) 5
8 -8 Step 3: csc(csc*‘(ln(ll z)))
1 -1 =5
Step4: —— (smh (cosh’1 (7 + 2))) 5
8 8 Step 4: T Loy
1 = = ~1 sec(csc ((m(jz)))
Step5: ——(4/6+—4/8+ = 5
8 1 8 . 8) Step 5: 1— (n(2 z))z),%
T\ "7 T\ "2 - =3
Step 6: — = = =
p 1x5(6+5) (8+%) —
1 2y . $1p 6 5/1— (In(2))?
Step7: —— (- - ~7
p . 6+8) 8+ (1—8)z)~
-1 T\"% L
Step 8: — — — -7
p 8(6+8) 8+ (1—8)z)?
-1 z ’% 1
Step9: — = = 2
P9 —(6+%) B+1+(-8)a)
-1 T *% 1
Step 10: — - - 2
p10: —(6+5) "B+ (-Na)
-1 -1
Step 11: —(6+£) *(8—Tz) T
8 8
G J \C J
GPT-40 Response GPT-40 Response
Here's a brief summary of the mistakes: This derivation is correct. Here's a breakdown of why:
Step 5: The transition from sinh(cosh ™. ...) to /6 + Z and /8 + Zis Steps 1 to 3: You simplified m correctly, transitioning into the
incorrect. logarithmic form involving In(-%-). The transformation from division into
The substitution does not properly follow the hyperbolic identity. It seems multiplication by < is also accurate.
like you're Step 4: The transition from csc(csc (...)) to sec(csc (. ..)) is valid
jumping from hyperbolic to standard square root expressions without because csc ! (y) = m , and switching to sec correctly follows
justification. trigonometric identities here.
Step 7: There's a mistake in the expression (8) + (1 — 8), which simplifies Step 5: The step sec(csc!(...)) = /1 — (In(...))? is a valid
to (8) - (t?)z,.but tt'le transition introduced incorrect operations leading to simplification using the Pythagorean identity, sec(z) = 1/1 — sin%(x).
errors in simplification. R) 5 .
Step 9: Same issue persists with (8) + (1 + (—8))a, simplifying this should Step 6: Finally, the expression /1 — (In(...))?* is accurate, representing the
have led to (—7z), but it’s repeated without any changes. correct §1m]?llﬂed form of the secant expression.
The primary issue occurs when transitioning from hyperbolic trigonometric The derivation logically follows through to the final result:
functions in steps 4-5. The correct path should have kept the form involving 54/1 — (111(*?1;,;))2
. -1 . R X
sinh(cosh ™) or transformed more systematically into algebraic terms. This matches the correct sequence of operations and transformations.

Figure 5: Two examples of mistake detection conversations in the GPT-4o0 prompt. Errors in the derivation are
highlighted in red. In the left example, GPT-40 correctly identifies the erroneous step but also incorrectly flags a
false positive. In the right example, GPT-4o fails to detect the mistake entirely.

11787

‘ T Y, T2 T, (seq2seq) 95 (CL Mean) Yo

1 | sin(x) —sin(—x) cos(x) cos(—zx) cos(—x) cos(—x)

2 | sin(z) —sin(—z) tan(x) —tan(—x) —tan(—x) —tan(—zx)

3 | cos(z) sec() tanh(z) coth(z) coth(z) coth(z)

4 | sin™(z) H1/x) cos™(x) ec™(1/x) ec™(1/x) ec™(1/x)

5 | sinh™*(z) csch_l(l/a:) tanh™'(x) coth™(1/x) coth™'(1/x) coth™(1/x)

6 | sin(zx) sin(x + 2m) cot(z) cot(z +) cot(z +) cot(z +)

7 | tan(z) tan(z +) csc(x) csc(z + 27r) csc(x + 27) cse(x + 2m)

8 | —cos(x) cos(z +) — cot(x) cot(x) x cos(z)(1/sin(x)) tan(x 4+ 7/2)

9 | sin(z) cos(x —m/2) sec(x) csc(x + 71'/2) csc(x + 7/2) csc(x + 7/2)
10 | —csc(x) csc(z +) —sec(x) sec(z +) cot(x) Csc(7r/2 +) sec(z +)
11 | —cos(z) cos(z +) —tan(z) tan(m +) sin(—csc™ ! (cot(x)) +) cot(x 4+ 7/2)
12 | z Inz sin(x) In sin(zx) sin(In(x)) In sin(z)
13 | z Inz coth(z) In coth(x) In coth(x) In coth(z)
14 | z Inz cos™(x) cos ' (Inx) Insec™'(z) Incos™* (x)
15 | = sin™!(x) cos(z) 1(cos() sin™!(cos(z)) sin™*(cos(z))
16 | = csc () csch(x) “Yese(x)) csc (sinh(z)) csc (ese(x))
17 | z z+1 tan™!(z) tan™ 1(1) tan™!(z) + 1 tan™'(x) + 1
18 | z x—1 sin(z) sin(z) — 1 sin(z) — 1 sin(z) — 1
19 | z z/1 tan(z) tan(z)/1 (£ In(z))" tan(x)/1
20 | x z? csch(z) csch®(x) csch®(z) . csch®(z)
21 | x z3 sinh™'(z) sinh™3(x) 54 (1/tan(cot ™ (z)))® sinh™3(x)

Table 16:
both trained on the E-Gen corpus.

Additional examples from the embedding algebra evaluation comparing the seq2seq and CL Mean models,
Y, represents model’s prediction, while y, denotes the ground truth. Incorrect

predictions are highlighted in red. The seq2seq model offers superior performance over the CL Mean model.

| U 2 9, (CL Max) 9, (SEMEMB) g, (GPT-40) 1y,

1 | sin(x) —sin(—x) cos(z) cos(—x) — tan(—x) cos(—x) cos(—x)

2 | sin(z) —sin(—=x) tan(x) —tan(—x) —tan(—x) —tan(—x) —tan(—x)

3 | cos(z) sec() tanh(x) coth(z) coth(z) sech(z) coth(z)

4 | sin™'(x) Y1/z) cosTH(x) ec™(1/x) - ec™(1/x) ec™(1/x)

5 | sinh™!(z) cschfl(l/m) tanh™'(x) coth™*(1/x) - coth™ () coth™(1/x)

6 | sin(z) sin(z 4+ 2w) cot(x) cot(z +) csc(z + 2m) cot(z +) cot(x +)

7 | tan(z) tan(x 4) csc(x) cse(x + 27r) cot(x +) csc(z +2m) csc(x + 2m)

8 | —cos(z) cos(z+m) — cot(x) sec(cos ! (cot(x))) sec(x +) cot(z +) tan(x +m/2)

9 | sin(z) cos(z—m/2) sec(z) cos(z) sec(x —7/2) csc(x —7/2) csc(x +7/2)
10 | —csc(x) csc(x +) —sec(x) csc(m/2 + x) sec(x +) sec(x +) sec(x +)
11 | —cos(z) cos(z+) —tan(z) sin(csc™(cot(z))) tan(z + 7) tan(x +) cot(z +m/2)
12 | = Inz sin(z) In(csc(x)) In sin(z) sin_l(x) Insin(z)
13 | = Inz coth(z) In coth(x) coth ln() coth™!(x) In coth(z)
14 | z Inz cos™(x) sec *(Inx) “n(z)) Incos™(x) In cosfl(:v)
15 | z sin™!(x) cos(z) ~(cos(z)) cos(sm Yx)) cos™(x) sin™! (cos(x))
16 | = csc™ () csch(x) sin™ ! (csch(z)) - csch™! () cs (sc(z))
17 | = z+1 tan™! (x) tan™'(x)/1 tan"'(z) +1 tan"'(z)+1 “z)+1
18 | = x—1 sin(z) sin(z) — 1 sin(z) + 1 sin(z — 1) sm()—1
19 | z z/1 tan(z) 4 Ing tan(z)/1 tan(x)/1 tan(x)/1
20 | x z3 csch(x) csch®(x) - csch®(z) csch®(z)
21 | = z3 sinh™'(z) csch™!(x) sinh™3 () sinh™3 () sinh™3(x)

Table 17: Additional examples from the embedding algebra evaluation comparing the CL Max model trained on
the E-Gen corpus with prior work SEMEMB and GPT-4o. ¢, represents model’s prediction, while y , denotes the
ground truth. Incorrect predictions are highlighted in red. All three models have comparable performance.

11788

