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Abstract

Large language models (LLMs) have demon-
strated significant progress in various natural
language generation and understanding tasks.
However, their linguistic generalization capabil-
ities remain questionable, raising doubts about
whether these models learn language similarly
to humans. While humans exhibit composi-
tional generalization and linguistic creativity in
language use, the extent to which LLMs repli-
cate these abilities, particularly in morphology,
is under-explored. In this work, we system-
atically investigate the morphological gener-
alization abilities of LLMs through the lens
of compositionality. We define morphemes as
compositional primitives and design a novel
suite of generative and discriminative tasks to
assess morphological productivity and system-
aticity. Focusing on agglutinative languages
such as Turkish and Finnish, we evaluate sev-
eral state-of-the-art instruction-finetuned mul-
tilingual models, including GPT-4 and Gem-
ini. Our analysis shows that LLMs struggle
with morphological compositional generaliza-
tion particularly when applied to novel word
roots, with performance declining sharply as
morphological complexity increases. While
models can identify individual morphological
combinations better than chance, their perfor-
mance lacks systematicity, leading to signifi-
cant accuracy gaps compared to humans.

1 Introduction

Large language models (LLMs) have recently
achieved remarkable advances in the broad do-
main of natural language generation and under-
standing tasks (Gemini, 2024; Zhao et al., 2023;
Bubeck et al., 2023; Wei et al., 2022; Brown et al.,
2020). However, these models have also been
shown to lack strong linguistic generalization ca-
pabilities (Weissweiler et al., 2023; McCoy et al.,
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Figure 1: Our morphological generalization tasks
illustrated with an example in Turkish. ID and OOD
refer to in-distribution and out-of-distribution respec-
tively. English translations are not part of the task and
only shown here for illustrative purposes.

2023; Goldman et al., 2022; Wilson et al., 2023;
Linzen, 2020; Baroni, 2019). This discrepancy
casts doubt on whether language models learn a
language the same way as humans do. When learn-
ing a language which is essentially a finite set of
words and rules, humans exhibit linguistic creativ-
ity (Chomsky, 1965; Bergs, 2019) and composi-
tional generalization through productivity and sys-
tematicity (Fodor and Pylyshyn, 1988a; Chomsky,
1957). These abilities allow humans respectively to
produce and understand novel combinations of fa-
miliar grammar units. While compositional gener-
alization abilities of language models have been ex-
tensively studied (Lake and Baroni, 2018; Keysers
et al., 2019; Kim and Linzen, 2020), the extent to
which language models employ this ability in mor-
phology however remains largely under-explored.
Recent works evaluating morphological general-
ization in language models have only focused on
the productivity aspect with a limited coverage of
inflectional forms (Weissweiler et al., 2023; Anh
et al., 2024).
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In this work, we address this gap by systemat-
ically investigating the morphological generaliza-
tion abilities of LLMs through the lens of composi-
tionality. Following Keysers et al. (2019), we de-
fine the morphemes (smallest meaningful units in a
language)1 as the compositional primitives and de-
sign a novel suite of generative and discriminative
language tasks based on the morphological combi-
nations of these primitives. These tasks aim to test
morphological productivity (ability to produce
novel well-formed combinations of morphemes)
and systematicity (ability to systematically under-
stand novel combinations) respectively. Figure 1
illustrates an example of both tasks.

We evaluate several state-of-the-art instruction-
finetuned large multilingual models on these tasks:
GPT-4, Gemini-1.5, Aya-23 and Qwen-2.5. To en-
sure our findings are not language-specific, we ex-
periment with two morphologically rich (i.e. char-
acterized by a large number of inflectional and
derivational forms) languages: Turkish and Finnish.
Both languages share typological features (e.g. ag-
glutination) despite being unrelated.

We find that LLMs lack human-like morpholog-
ical compositional generalization ability in agglu-
tinative languages despite their high performance
on various tasks in these languages. Our analysis
shows that morphological productivity, especially
when applied to novel word roots is highly chal-
lenging for LLMs. Moreover, as the morphological
complexity of words increases the model perfor-
mance sharply decreases (to nearly zero) while
human performance is not consistently affected.
On the systematicity task, while models perform
much better than chance in identifying the validity
of individual morphological combinations, how-
ever, this behaviour is not robust or systematic i.e.
models fail to consistently determine validity of
several compositions made up of the same set of
morphemes.

In summary, our contributions are as follows:
1) We design novel morphological generalization
tasks that require compositional processing. 2)
We prepare specific test suites in both Turkish and
Finnish to measure morphological generalization
and make these available for future research2. 3)

1In linguistics, a distinction is made between free mor-
phemes that can stand alone such as words "cat" and "come"
and bound morphemes that can only appear as part of a larger
expression (e.g. "cats", "coming") such as affixes "s" and
"ing".

2https://github.com/mismayil/morph-gen

Using our novel tasks and test suites, we conduct
a systematic analysis of morphological composi-
tional generalization abilities of LLMs. 4) Our
findings reveal a systematic gap in LLM’s ability
compared to humans concerning morphological
generalization in agglutinative languages that also
requires compositionality.

2 Related Work

2.1 Compositional Generalization

Compositional generalization is the capacity to un-
derstand and produce novel compositions of seen
primitives and is typically characterized by sys-
tematicity and productivity (Fodor and Pylyshyn,
1988a; Keysers et al., 2019). Systematicity refers
to the ability to understand different combinations
that are made up of the same known components
such as John loves Mary and Mary loves John. Pro-
ductivity, on the other hand, is the ability to pro-
duce potentially infinite novel combinations of a
finite number of known building blocks such as
using conjunctions to construct sentences Mary
knows that John loves Mary and John heard that
Mary knows that John loves Mary. Past work has
developed several benchmarks to measure compo-
sitional generalization abilities of neural models
both in fine-tuning and in-context learning settings
and has shown this task to be highly challenging
(Yang et al., 2024; Lake and Baroni, 2018; Keysers
et al., 2019; Kim and Linzen, 2020; An et al., 2023;
Dziri et al., 2023). These benchmarks have mainly
focused on synthetic sequence matching, semantic
parsing, question-answering and problem-solving
tasks. Our work however, investigates composi-
tional generalization in the context of morphology.

2.2 Morphological Generalization

Morphological generalization is the ability to un-
derstand words based on their constituent parts
known as morphemes and combine them to derive
new words (Wysocki and Jenkins, 1987). Mor-
phemes are the smallest meaningful units of lan-
guage that typically correspond to word roots and
affixes (i.e. prefixes, infixes and suffixes). Com-
posing these units to construct new words can be
done through inflection and derivation tasks in mor-
phology where derivation often changes the syn-
tactic category of the words and inflection does
not. These tasks have gained considerable attention
as part of the SIGMORPHON’s shared tasks (Cot-
terell et al., 2016, 2018a; Vylomova et al., 2020;
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Kodner and Khalifa, 2022; Goldman et al., 2023)
and efforts to create a universal morphology (Mc-
Carthy et al., 2020). While transformer-based mod-
els have been shown to achieve near-perfect ac-
curacy on these tasks (Canby et al., 2020), recent
work has also found that these results are inflated
due to lemma overlap pointing to a lack of gen-
eralization (Goldman et al., 2022). Other works
have recently investigated the morphological ca-
pabilities of LLMs using inflection tasks and re-
ported similarly weak performance results (Anh
et al., 2024; Weissweiler et al., 2023). Similar to
our study, both of these works use the popular Wug
test (Berko Gleason, 1958) to evaluate the morpho-
logical generalization, however, they only focus
on the productivity aspect, and their coverage of
inflectional and derivational forms is limited. For
example, Weissweiler et al. (2023) considers only
a handful of specific inflectional forms (e.g. first
person singular agreement and past tense, second
person plural agreement etc.) for each language
and Anh et al. (2024) translates the original Wug
test suite which is very small in size (23 samples)
into different languages. On the other hand, we
cast the inflection and derivation tasks into the form
of a compositional generalization task and evalu-
ate models on both productivity and systematicity
aspects. While focus of other works is breadth
(languages from different families), we instead con-
duct an in-depth analysis of morphological gen-
eralization in typologically similar but unrelated
languages with a large test suite covering a wide
and diverse range of inflectional and derivational
combinations.

3 Methodology

3.1 Background

The important role of compositional processing
in language understanding and generation has
been extensively studied (Carnap, 1947; Chom-
sky, 1965; Fodor and Pylyshyn, 1988b; Zadrozny,
1994; Bauer, 2001; Aronoff and Lindsay, 2014).
Past works have shown that new word formation
is often a multi-level process that requires identi-
fying the correct order of primary and secondary
morphemes (Kiparsky, 1982a,b; Hockett, 1954),
and while humans might memorize some frequent
words and phrases as a whole, most of the expres-
sive language generation relies on productive rules
of grammar (O’Donnell, 2015). However, not all
languages are equally productive, and more pro-

ductive languages (e.g. agglutinative) tend to have
complex inflectional morphology (Cotterell et al.,
2019; Ackerman and Malouf, 2013). Moreover,
these languages have been shown to be harder to
model for n-gram and recurrent language models
(Cotterell et al., 2018b; Czarnowska et al., 2019).
Inspired by these works, we focus our study on two
highly agglutinative languages and compositional
tasks which we describe in detail below.

3.2 Tasks

Similar to works studying compositional abilities
of neural networks (Goodwin et al., 2020; Lake and
Baroni, 2018; Keysers et al., 2019), we design two
novel and simple compositional probing tasks to
test morphological abilities of models. First, a mor-
phological productivity task which we define as
a generative task where the model is given a word
root, a list of affixes (not necessarily in the correct
order) and is asked to derive a meaningful word
by composing the root with the affixes in the cor-
rect order. Second, a morphological systematicity
task which we define as a binary discriminative
task where the model is again given a word root, a
list of affixes and a word derived from the root us-
ing the given affixes (not necessarily a meaningful
word) and is asked to determine the grammatical
validity of the derived word. Figure 1 illustrates
these tasks with an example in Turkish.

Additionally, to measure the morphological gen-
eralization capabilities of LLMs, we take inspira-
tion from Berko’s Wug test (Berko Gleason, 1958)
that is typically used to probe the inflectional and
derivational morphological knowledge of children
and design out-of-distribution (OOD) versions of
our tasks using nonce word roots. More specif-
ically, for each in-distribution (ID) word root in
our test suite, we automatically generate a nonce
word (i.e. word that does not exist in the given
language) and use it in both tasks as the word root
in place of the original one. However, since the
model has never seen these words, to make sure
the model understands the meaning of this new
word, we provide the model with the original word
root as a definition of the novel word root. Our
generation of nonce words relies on the underlying
morphophonological features and the frequency of
each letter in a given language to make sure these
words are plausible and inflected in the same way
as the original root. Further details on nonce word
generation can be found in Appendix B.
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3.3 Data

We focus our study on two highly agglutinative
languages, Turkish and Finnish, and prepare test
suites specific for our tasks in these languages. We
particularly choose these languages because they
are characterized by a large number of morphemes
and hence require a high degree of compositional
generalization ability.

Turkish Turkic languages are well-known to be
highly agglutinative where the word is composed
of several morphemes in addition to a root. We
select Turkish as a representative of this language
family in our study. To prepare our test suite we use
the Bilkent Turkish Writings Dataset3 as our base
corpus which contains 6, 844 creative writings of
Turkish 101 and Turkish 102 courses between 2014-
2018 and hence, is full of morphologically complex
words. Data statistics can be found in Appendix
Table 1. We preprocess this dataset to extract words
and the sentences they are found in. Then we em-
ploy a morphological analyzer for Turkish (Ozturel
et al., 2019) to segment these words into a root
and surface-level morphemes. To create a diverse
and balanced test suite, we sample ≈ 150 exam-
ples per morpheme length 1 to 7 while maximizing
the number of unique roots and morphemes (in
total 1, 049 samples). Finally, we automatically
generate a nonce word for each word in our test
suite by relying on the fact that surface realizations
of morphemes in Turkish are characterized by de-
terministic morphophonological processes such as
vowel harmony, consonant assimilation and elision.
Final data statistics and examples can be found in
Appendix Tables 2 and 5 respectively. Further de-
tails on data collection can be found in Appendix
D.

Finnish We first collect a ∼1,000,000 sentence
subsample of the Finnish mC4 corpus (Xue et al.,
2021). We then extract unique words from the text
and morphologically segment them using omorfi
(Pirinen, 2015) and UralicNLP (Hämäläinen, 2019).
After excluding words that analyzers did not cover,
we manually annotate the segmentations to identify
prefixes, lemmas, and affixes among the segments.
We then perform stratified sampling based on the
number of affixes to ensure an even range of mor-
phological complexity in our data set. Finally, we
extract sentences corresponding to each analyzed

3https://github.com/selimfirat/
bilkent-turkish-writings-dataset

word from mC4 and validate whether they make
sense. In a significant portion of cases, we notice
that the raw sentences are noisy; in these cases, we
opt to generate synthetic sentences using ChatGPT,
which we (authors) then manually validate to be
grammatical. Final data statistics and examples can
be found in Appendix Tables 6 and 7.

4 Experiments

Setup We treat the productivity task as an open-
ended task in which the model is asked to derive a
word from the given root and affixes and the sys-
tematicity task as a binary classification task in
which the model is asked to determine whether the
given derivation is grammatically correct. For the
systematicity task, we generate negative examples
by producing all the combinations of morphemes
attached to the same root and choosing the top four
compositions (two for morpheme lengths of 1 and
2)4 that are closest to the original valid combina-
tion measured by the Levenshtein distance. We
do this to ensure our incorrect combinations are
challenging enough for the model as they will be
deceptively close to a plausible derivation. We also
experiment with other negative example selection
strategies such as random selection and a heuristic
selection based on the linguistic characteristics of
the given language. We describe these settings in
more detail and compare the results in Section 5.5.
Finally, we (authors) manually verify all the gen-
erated negative examples and fix the label of false
negatives.

Models We evaluate several state-of-the-art mul-
tilingual instruction-finetuned LLMs, namely, two
open-weights models, Aya-23 (Aryabumi et al.,
2024) and Qwen-2.5 (Team, 2024), and two closed-
source models, Gemini-1.5 (Gemini, 2024) and
GPT-4 (OpenAI, 2024). We evaluate all models
on all languages except for Aya-23 which officially
supports Turkish, but not Finnish.5. We also report
the performance of a random baseline that gener-
ates a derivation with a random combination of
given morphemes (productivity task) and randomly
decides whether the derivation is grammatically

4For 1-morpheme words, we manually annotate a negative
morpheme to generate one negative option.

5We also experimented with recent LLMs that are
instruction-finetuned specifically on Finnish such as Poro-
34B (Luukkonen et al., 2024) and Ahma model series that are
Llama (Touvron et al., 2023) models fine-tuned on Finnish,
however, we omitted them from our analysis as they failed to
follow our task prompts in both English and Finnish templates.
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Figure 2: Morphological productivity and systematicity task results for Turkish. Detailed results for all shots
are in Appendix Table 8.
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Figure 3: Morphological productivity and systematicity task results for Finnish. Detailed results for all shots
are in Appendix Table 9.

correct, and a majority baseline, which selects the
most frequent label (in our case "No") for the sys-
tematicity task (not applicable for the productivity
task). All models are evaluated using few-shot (1,
3, and 5) in-context learning and greedy decoding
since our tasks are deterministic by nature6. Unless
otherwise specified, prompt instructions are in En-
glish, and number of shots is set to 5 for reported
results7. Further details on model evaluation can
be found in Appendix C.

Evaluation Metrics For the productivity task,
we use Exact Match accuracy against the correct
derivations. For the systematicity task, we report
an average of Macro-F1 scores for each sample
and a Coherence score that measures whether the
model correctly and consistently identifies the va-
lidity (or invalidity) of all derivations for a given
set of morphemes. Hence, coherence is defined as a
binary score where the model gets a score of 1 for a
given sample if and only if it correctly guesses the
validity of all derivations pertinent to that sample,
otherwise 0. We employ this stringent metric to
test the robustness of model performance similar

6We also experiment with other decoding strategies, how-
ever, find no significant difference in performance. Results for
different decoding strategies can be found in Appendix A.5

7We also experiment with paraphrased version of our
prompt instructions, but find no significant difference in per-
formance. Results for paraphrased prompt instruction can be
found in Appendix A.6

to (Storks and Chai, 2021).

Human Evaluation We evaluate human perfor-
mance on both tasks using two native speakers8 per
language, who annotate 70 and 60 samples from
the Turkish and Finnish test suites, respectively. To
ensure our evaluation sample is a representative
sample of the entire test suite, we randomly select
10 examples per morpheme length for each test
distribution. Human annotators follow the same
task instructions used for model prompts and were
shown five examples. We report almost perfect
or substantial inter-annotator agreement measured
by Cohen’s kappa score (Cohen, 1960) for both
tasks, languages, and test distributions (Appendix
Tables 3, 4). Finally, for each task metric, we report
the average score of annotators as the final human
score.

Results Figure 2 and 3 summarize all model re-
sults for both morphological productivity and sys-
tematicity tasks evaluated respectively on the Turk-
ish and Finnish data. We see that on the produc-
tivity task, all models except GPT-4 barely crack
the random performance. While GPT-4 performs
the best for both languages, it significantly lags
behind the human performance (−43% and −51%

8Annotators were recruited from a Turkish and Finnish
researcher community and were not compensated as they vol-
unteered
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in Turkish and −40.8% and −48.9% for Finnish
respectively for ID and OOD data). Moreover, the
GPT-4 performance gap between the ID and OOD
test suites for both languages is much larger than
the human gap (≈ 10% vs. 3% in Turkish and
1.7% in Finnish). These results indicate that hu-
mans are much more compositionally productive in
morphology and generalize more robustly to novel
unseen words.

From the systematicity task results, we see that
models perform much better than random and ma-
jority baselines with GPT-4 again in lead, however,
the performance gap compared to humans is still
significant, especially, on robustness as measured
by coherence score (−19.1% and −46.5% in Turk-
ish and −8.8% and −25.2% in Finnish respectively
for ID and OOD data). The ID and OOD perfor-
mance gap is also significant for all models, espe-
cially when measured by coherence score (ranging
from −9.5% to −23.3% in Macro-F1 and from
−13.5% to −37.2% in Coherence) while this gap
is very low (≈ 2%) for humans when measured by
both metrics. These results show that humans are
much more compositionally systematic and consis-
tent in discriminating between correct and incorrect
morphological forms made up of the same set of
morphemes.

5 Analysis

5.1 Effect of Morphological Complexity

Recent works have shown that morphological com-
plexity plays a crucial role in the morphological
generalization abilities of LLMs (Anh et al., 2024;
Czarnowska et al., 2019; Cotterell et al., 2018b).
Morphological complexity is typically categorized
into integrative (I-complexity) which refers to the
predictability of inflected form and enumerative (E-
complexity) complexity which refers to the number
of cases and inflectional paradigms in language
grammar (Ackerman and Malouf, 2013). While
both languages we study are morphologically com-
plex, our test suites include inflectional and deriva-
tional forms of varying length in the number of mor-
phemes (1-7 in Turkish and 1-6 in Finnish). This
allows us to study the effect of within-language
E-complexity on the performance of our models.
Figure 4 summarizes the GPT-4 performance for
both tasks stratified by the number of bound mor-
phemes on the Turkish data. On the productivity
task, we observe a sharp downward trend (plummet-
ing to nearly zero) in performance as the number

of morphemes increases for both ID and OOD test
suites with a relatively constant gap between ID
and OOD performance while humans exhibit no
such dependence on complexity (Appendix Tables
16, 25). This shows that humans learn their na-
tive language robustly and can easily produce and
identify long novel words while models are quite
sensitive to the morphological (E-) complexity.

On the systematicity task, Macro-F1 scores for
ID and OOD remain mostly unchanged as com-
plexity increases, but coherence scores show a neg-
ative correlation with the increasing morphological
complexity. We also observe a surprisingly low
performance on 1-morpheme OOD words which
we attribute to the varying number of negative op-
tions by morpheme length and potential shortcuts
in longer morpheme words, as discussed in Ap-
pendix A.3.

5.2 Effect of Context
While our core tasks are somewhat synthetic in
nature, we do also experiment with more realistic
versions where we provide the model a sentence as
an additional context. Specifically, we frame them
as sentence completion tasks where a sentence with
a blank is provided and the model is asked to fill
in the blank with the correct word derived from
the given word root and affixes (productivity task)
or determine if the given derivation is the correct
option for the blank (systematicity task).

Figure 5 summarizes the results for both pro-
ductivity and systematicity tasks evaluated on the
Turkish data where we provide a sentence with
a blank to the model as a context (i.e. sentence
completion task). This results in some improve-
ment on the productivity task, however, we observe
significant decrease in performance on the system-
aticity task especially for smaller models such as
Aya-23 and Qwen-2.5 series and in OOD setting.
This could be due to the additional complexity in-
troduced by the extra context, however, we should
note that worse performance on this task implies
even stronger generalization failure since this task
is more real-world and closer to the next word pre-
diction task compared to the original context-free
setup.

5.3 Effect of Tokenization
Past work has shown that suboptimal tokenizers, es-
pecially byte-pair encoding (Sennrich et al., 2016)
used in GPT-4 have generally a negative effect
on the morphological abilities of language mod-
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Figure 4: GPT-4 morphological productivity and systematicity task results for Turkish stratified by number of
bound morphemes. Detailed results are in Appendix Tables 16, 17, 18. Finnish results are in Appendix Figure 11.
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Figure 5: Morphological productivity and systematicity task results for Turkish showing the effect of additional
context. Detailed results are in Appendix Table 36. Results for Finnish are in Appendix Figure 13.

els (Meyer and Buys, 2023; Bostrom and Durrett,
2020; Hofmann et al., 2021). Whether the low
performance of the model on the productivity task
can be attributed to the suboptimal nature of the
tokenization is of interest in particular because our
tasks rely on the morphologically segmented mor-
phemes while the model utilizes byte-level tokens
that are mostly English. To measure the effect of
the tokenization, we ran a version of the produc-
tivity task where the morphemes provided to the
model are obtained by segmenting the final deriva-
tion based on the model’s own tokenizer instead
of the morphologically-aligned units. Figure 6
compares the performance of the tokenizer-aligned
morphemes with the morphologically-aligned mor-
phemes on the ID test set.9 We see that the perfor-
mance in both cases is very similar to each other
which points to a possibility that tokenization may
not be the underlying issue behind the low perfor-
mance. This finding is also consistent with some
past work on exploring morphological capabilities
of ChatGPT (Weissweiler et al., 2023)10

9Since we use the word root as a definition for the nonce
root and the tokenizer tends to break the words into meaning-
less chunks, we skip this experiment on the OOD test set.

10We note that we perform this analysis only with subword-
level tokenizers, but not character-level tokenizers for two rea-
sons: 1) To the best of our knowledge, at the time of writing
this paper, there were no instruction-tuned multilingual lan-
guage models for Turkish and Finnish that uses character-level
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Figure 6: GPT-4 productivity task results on the ID
test suite for Turkish stratified by number of bound
morphemes showing the effect of tokenization. De-
tailed results are in Appendix Table 42.

5.4 Effect of Morpheme Order

Since our goal is to study the ability of LLMs to
combine the morphological units in the correct or-
der, in all of our experiments we shuffle the or-
der of the units in the prompts. However, given
that models are sensitive to small prompt changes
(Pezeshkpour and Hruschka, 2023; Zhu et al., 2024;
Wang et al., 2023; Zhao et al., 2021), we also ana-
lyze the effect of changing the morpheme order on

tokenizers; 2) Past work has shown that character-level tok-
enizers do not offer any significant advantages over subword-
level tokenizers in morphological generalization (Libovický
et al., 2021; Toraman et al., 2022).
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Figure 7: Morphological productivity and systematicity task results for Turkish showing the effect of the
morpheme order. Detailed results are in Appendix Table 46. Results for Finnish are in Appendix Figure 14.

the performance of the model. To this end, we run
our main experiments with all the morphemes in
their correct order and report the results in Figure
7. We can see that this small change improves the
performance across both tasks and models and es-
pecially, in the productivity task, the improvement
can be up to 20%. This shows that models under-
stand the tasks and can provide a correct answer
by simply copying the morphemes when they are
given in the correct order, however, they struggle
to compose the correct order themselves. This fur-
ther indicates that LLMs lack the necessary robust
compositional generalization in morphology.

5.5 Effect of Negative Sample Selection

In our systematicity task, we generate negative sam-
ples (i.e. derived combinations that are not gram-
matically correct) by permuting the order of mor-
phemes attached to the root. While the number of
permutations is manageable for 2 or 3 morphemes
(e.g., 2!=2, 3!=6), it grows rapidly with more mor-
phemes (e.g., 6!=720). Evaluating all permutations
would be ideal for robust systematicity testing, but
this is infeasible due to high computational costs.
Instead, we can select a subset of reasonable size to
be a representative sample of all possible negative
options. However, the strategy for which samples
and how many to select can be somewhat arbitrary.
Therefore, we experiment with three different selec-
tion strategies, and set the number of selections to
four for simplicity: 1) random where we randomly
select four negative options; 2) language-agnostic
heuristic where we select the top four negative
options that are closest to the positive option mea-
sured by Levenshtein distance (our default strat-
egy); and 3) language-specific heuristic where we
employ linguistic features of the tested language
to filter out options that may be "too easy" for the
model. We found one such heuristic for Turkish test

suite based on the fact that Turkish phonology does
not allow two adjacent vowels in morpheme com-
binations which we describe in Appendix E. We
report the results of these different negative sam-
ple selection experiments in Figure 8. We see that
the random selection has the highest performance
on both ID and OOD test sets, followed by the
language-agnostic and language-specific strategies.
This implies that all our previous model results
might be an upper bound and the true performance
gap compared to humans is even larger than what
we observe.
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Figure 8: Morphological systematicity task results
for Turkish showing the effect of different negative
sample selection strategies. Detailed results are in
Appendix Table 52.

5.6 Error Analysis
In order to understand the limitations of language
models on our tasks, we manually analyze 30 Turk-
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ish word derivations for each morpheme combina-
tion length (1-7) and for both productivity ID and
OOD test sets resulting in a total of 178 and 185
derivations from GPT-4 that are incorrect. We an-
notate each generation on three criteria: 1) whether
the generation is an invalid word (i.e. grammati-
cally incorrect word) 2) whether the generation is
unfaithful (i.e. generation does not follow the pro-
ductivity task constraints) and 3) whether the gener-
ation includes any hallucinations (i.e. whether the
generation has extra morphemes not mentioned in
the task prompt). Our analysis shows that while on
the OOD test set, GPT-4 generates a grammatically
incorrect word most of the time (79%), this propor-
tion is significantly lower for the ID test set (31%).
However, on the ID test set, we observe a high un-
faithfulness and hallucination ratio (91% and 67%)
meaning that most of the valid generations do not
follow the task constraints. On the other hand,
we see lower unfaithfulness and hallucination ra-
tios on the OOD test (75% and 52% respectively)
which points to a real word bias also reported by
(Weissweiler et al., 2023) where the model is bi-
ased toward generating frequent words for word
roots existing in a given language irrespective of
the underlying task. In other words, OOD setting
forces the model to perform the true morphological
generalization task which it fails as indicated by
the higher percentage of invalid derivations. To
identify the root causes of some of these errors,
we analyze the GPT-4 chain-of-thought answers on
the Turkish data and reveal several failure modes
such as sequential dependency errors, semantic
misinterpretations, lack of grammatical knowl-
edge, and unfaithful reasoning, all of which we
detail with examples in Appendix A.4. Finally, we
also analyze the few errors human annotators made
and find that these errors are either trivial typos or
failure to notice an extra letter in a long word.

6 Conclusion

In this paper, we proposed a novel experimental
paradigm to test morphological generalization abili-
ties of large language models through composition-
ality. Our tasks target measuring morphological
productivity and systematicity in a given language.
We applied these tasks on the morphologically com-
plex languages of Turkish and Finnish and evalu-
ated morphological compositional generalization
abilities of several state-of-the-art large language
models. Our experimental results and analysis re-

veal a significant gap in the performance of LLMs
compared to humans with respect to generalization
in morphology of agglutinative languages.

Limitations

While our novel tasks are language, dataset, and
model-independent, our study only focused on two
agglutinative languages and a few large language
models. Therefore, the applicability of our findings
in other languages and models should be further
studied. We also mainly focused on the grammat-
ical validity of the words, whereas it would be
equally interesting to study the capacity of LLMs
to produce and understand novel semantically and
pragmatically valid derivations. While we have
also optimized our prompts to be as simple and
maximally instructive and tested in multiple lan-
guages and in chain-of-thought setting, whether a
different set of prompts would produce the same
results is not clear. Finally, we mainly evaluate
models using greedy decoding due to the deter-
ministic nature of our tasks and additionally only
experiment with temperature and top-p sampling,
however, the effect of different decoding strategies
needs to be explored.
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A Additional Analysis

A.1 Effect of Instruction Language

Since most LLMs are pre-trained on significantly
more instruction data in English than other lan-
guages, we base most of our results on experiments
where we use English as the prompt instruction
language. However, as our data is in a different
language, this results in a code-switched language
which has been shown to be a challenge for large
language models (Zhang et al., 2023). To measure
the effect of the instruction language on the mor-
phological generalization tasks, we run our experi-
ments with Turkish and Finnish as the instruction
language and report results for both tasks in Figure
9. We mostly observe a drop or no change in per-
formance when the instruction language is other
than English.

A.2 Effect of Chain-of-thought Reasoning

Chain-of-thought prompting has been shown to be
effective in eliciting strong reasoning capabilities
from LLMs (Wei et al., 2023). In order to measure
the effect of this reasoning technique on LLMs’
performance on our tasks, we evaluate GPT-4 (the
best performing model) on both productivity and
systematicity tasks in zero-shot and 5-shot chain-
of-thought settings. We report the results of these
experiments compared with the 5-shot standard
prompting in Figure 10. We observe that while
5-shot chain-of-thought performance is better than
the zero-shot chain-of-thought, it is slightly worse
than or similar to the 5-shot standard prompting.
To identify the causes of these errors, we manu-
ally analyze the several chain-of-thought answers
which we describe in Appendix A.4.

A.3 Further details on the effect of
morphological complexity

In Figure 4, we observe a surprisingly low perfor-
mance (≈ 40% drop from ID performance) on the
1-morpheme OOD words, but we attribute this be-
haviour to the varying number of negative options
available for each morpheme length and possible
presence of shortcuts in larger morpheme words.
We should note that we have different number of
total options to discriminate for a given sample
depending on the number of morphemes (for 1
and 2 morphemes, we have 2 options, for 3-7, we
have 5 options). Hence, a single mistake is pe-
nalized more in the former case than in the latter.
However, within the former category, we see a
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Figure 9: Morphological productivity and systematicity task results for Turkish showing the effect of the
instruction language. Detailed results are in Table 30. Results for Finnish can be found in Figure 12.
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Figure 10: GPT-4 morphological productivity and systematicity task results for Turkish showing the effect of
chain-of-thought reasoning. Detailed results are in Table 43.

much higher performance for 2-morpheme exam-
ples which might seem surprising, however, we
hypothesize that this could be due to the presence
of potential shortcuts for the model to exploit in
the 2-morpheme case. Indeed, if we analyze the
proportion of errors in both cases, we find that in
the 1-morpheme case, a significant portion of er-
rors (64%) is false negative i.e. the model identifies
a nonce root with a valid morpheme as grammat-
ically incorrect, while this is not the case in the
2-morpheme case. However, in the 2-morpheme
case, the model might be exploiting the correct or-
der of morphemes as sole evidence for the validity
of the derivation while in the 1-morpheme case,
there is no such shortcut and the model should un-
derstand the applicability of the given morpheme
to the given word root.

A.4 Chain-of-thought Error Analysis

We randomly sample 10 examples from the 5-shot
chain-of-thought experiments on the Turkish eval-
uation data (per morpheme length and test distri-
bution) where GPT-4 made an error and manually
analyze its answers across both tasks. Our analysis
reveals the following primary types of errors:

1. Sequential Dependency Errors

One common error we observe in the produc-
tivity task is due to the sequential processing

of the given affixes by GPT-4. It typically
starts applying the given affixes in the order
they are given, however, since the affixes are
typically given in shuffled order, this often re-
sults in an invalid word early on. The model,
however, does not seem to realize its mistake
and continues with the generation often confi-
dently assigning meaning to the intermediate
erroneous words. For example, given the word
root "hedef" and affixes "-in", "-diğ" and "-
le", it considers the affixes sequentially in this
order by first producing "hedefin" which is
valid, then "hedefindiğ" which is invalid, how-
ever, it interprets the generation as "which is
the target" and finally produces "hedefindiğle"
which it interprets as "with what is the target".

2. Semantic Misinterpretations

Another set of errors stems from GPT-4 misin-
terpreting the meaning of the individual mor-
phemes or the whole derivation. For instance,
in one example, where the given morphemes
are "bağır" ("to shout"), "-sa" and "-k" and
GPT-4 is asked to determine the validity of
the combination "bağırsak", it misinterprets
this derivation as meaning "intestine" (which
is also written as "bağırsak") and argues that
this derivation can not be made up of the given
affixes. While this reasoning is correct, the
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model misses the other plausible meaning of
this derivation ("as if we shout") that can be
derived from the given morphemes. In another
example, where the model is given the mor-
phemes "oyna" and "-sana" and asked to pro-
duce a valid word, it misinterprets the mean-
ing of the morpheme "-sana" as "to you" and
argues that it can not be applied to the root
"oyna" whereas "-sana" is a valid suffix added
to verbs.

3. Lack of Grammatical Knowledge

Another common pattern we see can be at-
tributed to the lack of proper grammatical
knowledge. In one example, the model is
given the morphemes "uyum", "-suz", "-luk"
and "-ta" and asked to determine the valid-
ity of the derivation "uyumluktasuz" which is
invalid, however, the model assesses the va-
lidity of each morpheme and concludes that
the combination should also be valid. In an-
other example, it tries to add a verb suffix to a
noun ("yargıyoruz"). Yet in other examples, it
argues that valid affixes do not exist in the lan-
guage or a valid morphological combination
is not possible.

4. Unfaithful Reasoning

Finally, we also observe a large set of rea-
soning errors due to inconsistent reasoning
chains, hallucinations or unfaithful instruc-
tion following. For instance, in one ex-
ample, GPT-4 concatenates the morphemes
"unut" and "-alı" and yet derives "unutuluyor".
In another example, it auto-corrects an in-
valid word ("kaldırınızdığda") to a valid word
"kaldırdığınızda" and argues that the original
derivation is correct.

A.5 Effect of Decoding Strategies
We mainly experiment with greedy decoding (e.g.
temperature is set to 0 and top_p is set to 1) in
all of our experiments as the nature of our tasks is
deterministic. However, to check the sensitivity of
our findings across diverse decoding settings, we
additionally run our study with GPT-4 (the best per-
forming model) on both tasks and languages with
varying temperature and top_p values and report
the results in Tables 53, 54, 55 and 56 respectively.
We find no significant or systematic differences
across different decoding strategies which strength-
ens the robustness of our findings.

A.6 Effect of Prompt Instructions

Due to the cost of LLM evaluation, we mainly
experiment with one set of prompt instructions that
we have found to be simple and effective through a
moderate level of prompt engineering. However, to
check the sensitivity of our findings across different
prompt instructions, we additionally run our study
with GPT-4 (the best performing model) on both
tasks and languages with a paraphrased version of
the original prompt instructions (found in Appendix
F) and report the results in Tables 57 and 58. We
find no significant or systematic differences across
different prompts which strengthens the robustness
of our findings.

B Nonce word generation

Turkish To automatically generate novel nonce
words in Turkish (out-of-distribution words that do
not exist) that are inflected the same as the origi-
nal word roots, we leverage the deterministic mor-
phophonological features of Turkish. In particular,
vowel harmony and consonant assimilation in Turk-
ish completely determines which surface forms of
the meta level morphemes would apply. Further-
more, these features depend only on the last vowel
and the consonant. Hence, for a given word root in
Turkish, we keep its last vowel and the consonant
and randomly modify the other vowels and con-
sonants with other vowels and consonants based
on the frequency of each letter in Turkish to make
sure we obtain words that would be plausible in
this language. For example, if the given word root
is "sanat", we keep the suffix "at" as is and mod-
ify the prefix "san" by randomly replacing each
vowel in it with another vowel and consonant with
another consonant. This makes sure that the words
inflect the same and they are of the same length.
However, if the word is too short (only two let-
ters), and there is no prefix, we generate a random
prefix of length three with vowels and consonants
alternating (Turkish typically doesn’t allow dense
consonant clusters)

Finnish The Finnish nonce word generation is
done similarly to the Turkish nonce word genera-
tion, where we alter only the word root. All con-
sonants are replaced with other consonants and
vowels with other vowels that conform to the rules
of Finnish vowel harmony.
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#words 3,775,470
#unique words 348,173
#unique roots 9,576
#unique meta affixes 103
#unique affixes 372
#unique meta affix compositions 21,930
#unique affix compositions 37,853

Table 1: Statistics of BTWD dataset in Turkish. Meta af-
fixes refer to the bound morphemes that are not surface-
realized.

#samples 1,049
#unique roots 477
#unique meta affixes 96
#unique affixes 243
#unique meta affix compositions 931
#unique affix compositions 981

Table 2: Statistics of our final test suite in Turkish.
Meta affixes refer to the bound morphemes that are
not surface-realized.

Task Test Distribution κ

Productivity ID 0.94
Productivity OOD 0.91
Systematicity ID 0.94
Systematicity OOD 0.99

Table 3: Human inter-annotator agreement on Turkish
test suite measured by Cohen’s κ score. We note that
since the productivity task is an open-ended generative
task, the chance agreement would be close to 0, hence
κ score is equal to the raw agreement.

Task Test Distribution κ

Productivity ID 0.77
Productivity OOD 0.78
Systematicity ID 0.75
Systematicity OOD 0.84

Table 4: Human inter-annotator agreement on Finnish
test suite measured by Cohen’s κ score. We note that
since the productivity task is an open-ended generative
task, the chance agreement would be close to 0, hence
κ score is equal to the raw agreement.

C Model Evaluation

We evaluate the following state-of-the-art multilin-
gual instruction-finetuned LLMs:

• Aya-23 (Aryabumi et al., 2024) a powerful
open-weights multilingual LLM serving 23
languages including Turkish. We evaluate
both 8B and 35B sizes of this model series,
but only on Turkish dataset as Aya-23 does
not officially support Finnish yet.

• Qwen-2.5 (Team, 2024) recent open-weights
multilingual LLM that has shown impressive
results across various benchmarks and sup-
ports over 29 languages. We evaluate both
7B and 32B sizes of this model series in both
languages.

• Gemini-1.5 (Gemini, 2024) a closed-source
multilingual LLM that supports over 40 lan-
guages including Turkish and Finnish. We
evaluate the gemini-1.5-flash version in
both languages.

• GPT-4 (OpenAI, 2024) a closed-source mul-
tilingual LLM that supports many languages
including Finnish and Turkish. We evaluate
the 2024-02-15-preview version in both lan-
guages.

Models are evaluated using in-context few-shot
learning where number of shots take values in
{1,3,5}. We make sure each shot has the same
number of morphemes as its corresponding task
example. By default, all our prompt templates are
in English since LLMs are quite proficient in fol-
lowing instructions in this language (Wendler et al.,
2024), however, we also experiment with instruc-
tion templates in Turkish and Finnish which gen-
erally show worse performance (Appendix A.1).
Similarly, while by default we use the standard
prompting for all experiments, we also experiment
with chain-of-thought prompting (Wei et al., 2023),
but find very little difference in performance (Ap-
pendix A.2). Prompts for all tasks and languages
can be found in Appendix F.

D Data

Turkish Since the morphological analyzer we
use to process the Turkish dataset (Ozturel et al.,
2019) is based on a finite state machine relying on
purely syntactic rules, it produces several alterna-
tive decompositions for some words (e.g. analyzer
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produces both decompositions “an+la+dığ+ımız”
and “anla+dığ+ımız” for the word “anladığımız” ).
Hence, we further apply some language-specific
heuristics to automatically filter out invalid decom-
positions. This preprocessing still leaves some
words with multiple decompositions that can only
be validated using semantics, hence, as a last step,
we (authors) manually verify and determine the
final segmentation of a word.

E Heuristic Negative Sample Selection
For Turkish

Turkish phonology does not allow two vowels to oc-
cur together and typically employs "buffer" letters
such as "y", "s" in between these vowels, however,
blindly permuting the order of Turkish morphemes
inevitably results in negative samples where two
vowels may occur next to each other. We hypoth-
esized that models might easily identify these op-
tions by exploiting the "no-two-vowel" shortcut
and without considering the semantic order of mor-
phemes. To check this hypothesis, we counted the
number of GPT-4 mistakes corresponding to op-
tions that both have and don’t have two vowels
occurring together and found that while the model
makes a mistake in around 8% (in-distribution) and
16% (out-of-distribution) of all the negative options
that do not have two vowels occurring together,
these ratios are only 1% and 4% when we look at
the negative options that have two adjacent vowels.
Motivated by this discrepancy, we designed our
third heuristic-based selection strategy for Turkish
such that after ranking the options by their distance
to the positive option, we select the top four nega-
tive options that do not have two adjacent vowels
in their morpheme composition wherever possible.

F Prompts

This section lists the instruction prompts for all
tasks and language templates. We present examples
in one-shot setting, templates for different shots are
the same with more examples. For the English
language template, we provide examples in Turk-
ish, the templates are the same for Finnish with
examples in Finnish.

F.1 Templates in English

Productivity task prompt [ID root]
You are given a word root and a list of affixes
(separated by comma) in Turkish and your task
is to generate a grammatically correct word
from this root using all the given affixes. You
are allowed to use only the given affixes and
each affix only once. Answer with only the
generated word.
Example 1:
Word root: bulaş
Affixes: ma, sa, tır, ydı, k
Answer: bulaştırmasaydık

Example 2:
Word root: bekle
Affixes: me, di, z, n, e
Answer:

Productivity task prompt [OOD root]
You are given a novel word root with its
definition and a list of affixes (separated by
comma) in Turkish and your task is to generate
a grammatically correct word from this root
using all the given affixes. You are allowed to
use only the given affixes and each affix only
once. Answer with only the generated word.
Example 1:
Word root: lıdış
Definition: lıdış means karış in Turkish.
Affixes: sa, ydı, k, ma
Answer: lıdışmasaydık

Example 2:
Word root: ihek
Definition: ihek means emek in Turkish.
Affixes: in, imiz, ler, çi
Answer:
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ID root (OOD root) Affixes ID Derivations

sohbet (şakşet) -ler or -yin
sohbetler ✓
sohbetyin

sıra (yova) -dan, -mış
sıradanmış ✓
sıramışdan

değer (diser) -len, -dir, -ip

değerlendirip ✓
değeriplendir
değerdirlenip
değeripdirlen
değerlenipdir

endişe (ödlede) -len, -dir, -me, -mek

endişelendirmemek ✓
endişelendirmekme
endişemelendirmek
endişelenmedirmek
endişemedirlenmek

kişi (meşi) -leş, -tir, -me, -si, -ne

kişileştirmesine ✓
kişileştirnesime
kişileştirmenesi
kişileşsitirmene
kişileşmetirsine

hayal (rokal) -ler, -im, -de, -ki, -ler, -i

hayallerimdekileri ✓
hayalleriimdekiler
hayalilerimdekiler
hayallerimdeikiler
hayallerimdekiiler

sınıf (datıf) -lan, -dır, -ıl, -ma, -lar, -ı, -nı

sınıflandırılmalarını ✓
sınıflandırıılmalarnı
sınıflardırılmalanını
sınıflandırılmalarnıı
sınıflandırılımalarnı

Table 5: Examples from our test suite in Turkish for each morpheme length from 1 to 7. OOD derivations can be
obtained by replacing the ID root with the corresponding OOD root. Correct derivations are marked with ✓.
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Figure 11: GPT-4 morphological productivity and systematicity task results for Finnish stratified by number of
bound morphemes. Detailed results are in Tables 25, 26, 27.
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Figure 12: Morphological productivity and systematicity task results for Finnish showing the effect of the instruction
language. Detailed results are in Tables 33.

#samples 480
#unique roots 406
#unique affixes 386
#unique affix compositions 365

Table 6: Statistics of our final test suite in Finnish.

Systematicity task prompt [ID root]
You are given a word root, a list of affixes
(separated by comma) and a word in Turkish
that is derived from the given word root using
the given affixes. Your task is to determine
whether the derived word is grammatically
correct. Answer only with Yes or No.
Example 1:
Word root: küçük
Affixes: ümüz, lüğ, den
Derived word: küçüklüğümüzden
Answer: Yes

Example 2:
Word root: evren
Affixes: sel, e, liğ
Derived word: evreneselliğ
Answer:

Systematicity task prompt [OOD root]
You are given a novel word root with its
definition, a list of affixes (separated by comma)
and a word in Turkish that is derived from the
given word root using the given affixes. Your
task is to determine whether the derived word is
grammatically correct. Answer only with Yes
or No.
Example 1:
Word root: eneşilvöte
Definition: eneşilvöte means üniversite in
Turkish.
Affixes: niz, yse, de
Derived word: eneşilvötedeyseniz
Answer: Yes

Example 2:
Word root: yivek
Definition: yivek means yürek in Turkish.
Affixes: den, ler, iniz
Derived word: yiveklerdeniniz
Answer:
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ID root (OOD root) Affixes ID Derivations

yöpaikka (äydainca) -nne or -ksi
yöpaikkanne ✓
yöpaikkaksi

sano (tato) -taan, -pas
sanotaanpas ✓
sanopastaan

petoks (seloks) -i, -ne, -en

petoksineen ✓
petoksneien
petoksneeni
petoksienne
petoksennei

olosuhte (olanajke) -kuvaus, -i, -lta, -an

kuvausolosuhteiltaan ✓
kuvausolosuhteltaian
kuvausolosuhteltaani
kuvausolosuhteianlta
kuvausolosuhteanilta

palvelu (sapsevu) -laina, -n, -välitys, -j, -a

lainanvälityspalveluja ✓
lainanvälityspalveluaj
nlainavälityspalveluja
lainavälitysnpalveluja
lainavälitysnpalveluaj

salaisuuks (noraekauks) -motivaatio, -n, -nostatus, -i, -a, -ni

motivaationnostatussalaisuuksiani ✓
motivaationnostatussalaisuuksinia
motivaationnostatussalaisuuksaini
motivaationnostatussalaisuuksniai
motivaationostatusnsalaisuuksiani

Table 7: Examples from our test suite in Finnish for each morpheme length from 1 to 6. OOD derivations can be
obtained by replacing the ID root with the corresponding OOD root. Correct derivations are marked with ✓.
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Figure 13: Morphological productivity and systematicity task results for Finnish showing the effect of additional
context. Detailed results are in Table 39.
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Figure 14: Morphological productivity and systematicity task results for Finnish showing the effect of the morpheme
order. Detailed results are in Table 49.

Productivity task prompt [ID root] (with
context)
You are given a word root, a list of affixes
(separated by comma) and a sentence with a
blank (___) in Turkish and your task is to fill in
the blank by generating a grammatically correct
word from this root using all the given affixes.
You are allowed to use only the given affixes
and each affix only once. Answer with only the
generated word.
Example 1:
Word root: kal
Affixes: an, lar
Sentence: giden geminin yokluğuna bir türlü
inandıramaz kendilerini limanda ___
Answer: kalanlar

Example 2:
Word root: kurtar
Affixes: ecek, abil
Sentence: göç ettikten sonra diğer hemşer-
ileri gibi mal, mülk peşinde olsa belki an-
nesini parasızlıktan ___ belki de kızı bir fab-
rika köşesinde çalışmak zorunda kalmayıp daha
uzun yaşayabilecekti
Answer:

Systematicity task prompt [ID root] (with
context) You are given a word root, a list
of affixes (separated by comma), a sentence
with a blank (___) and a word in Turkish that
is derived from the given word root using
the given affixes. Your task is to determine
whether the derived word is the correct option
to fill in the blank. Answer only with Yes or No.

Example 1:
Word root: küçük
Affixes: ümüz, den, lüğ
Sentence: ___ kalma bir oyuna dönüştürdük
hayatımızı
Derived word: küçüklüğümüzden
Answer: Yes

Example 2:
Word root: akıl
Affixes: lan, ız, acağ
Sentence: bir şeyler yaşadıktan sonra mı ___
hep
Derived word: akılacağızlan
Answer:
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Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

majority 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 41.2 / 41.2 / 41.2 41.2 / 41.2 / 41.2 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0
random 24.6 / 25.0 / 25.0 24.7 / 24.6 / 24.2 41.8 / 41.8 / 43.5 43.0 / 42.3 / 42.3 9.1 / 9.0 / 9.4 8.5 / 9.6 / 9.0

aya-23-8b 12.8 / 13.7 / 13.3 8.8 / 11.5 / 12.3 62.0 / 64.6 / 67.5 53.9 / 49.3 / 51.5 27.9 / 31.4 / 36.0 19.1 / 15.7 / 18.4
aya-23-35b 17.4 / 19.8 / 21.0 14.6 / 17.7 / 19.3 69.9 / 80.1 / 81.8 64.6 / 71.0 / 72.1 36.8 / 52.6 / 55.8 29.2 / 39.9 / 41.8
qwen-2.5-7b 15.0 / 14.9 / 15.8 13.2 / 12.9 / 12.9 71.1 / 73.6 / 74.6 65.7 / 66.8 / 66.0 40.5 / 44.3 / 45.1 33.5 / 33.9 / 33.1
qwen-2.5-32b 22.6 / 23.7 / 24.1 21.7 / 21.8 / 21.8 77.3 / 84.7 / 85.9 53.1 / 71.3 / 75.3 56.7 / 66.3 / 66.8 18.5 / 45.7 / 48.3
gemini-1.5-flash 28.8 / 30.5 / 30.7 24.9 / 25.7 / 25.1 60.8 / 80.8 / 85.4 41.4 / 52.8 / 62.1 32.2 / 63.6 / 70.7 0.4 / 19.3 / 33.3
gpt-4 49.0 / 52.1 / 54.2 36.7 / 40.5 / 43.9 85.5 / 90.2 / 91.6 61.9 / 77.7 / 78.8 71.4 / 76.8 / 76.6 33.5 / 55.9 / 51.4

human∗ 97.1 95.0 98.8 99.1 95.7 97.9

Table 8: 1-shot / 3-shot / 5-shot results for Turkish in English template for all examined models across tasks. ∗Due
to the cost of evaluation, our human study is only evaluated on 70 randomly sampled instances per task and test
distribution.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

majority 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0 40.7 / 40.7 / 40.7 40.7 / 40.7 / 40.7 0.0 / 0.0 / 0.0 0.0 / 0.0 / 0.0
random 29.4 / 32.3 / 29.8 32.7 / 30.2 / 30.2 42.4 / 43.3 / 42.4 42.4 / 43.7 / 42.5 10.2 / 11.7 / 10.8 10.8 / 10.8 / 9.6

qwen-2.5-7b 13.5 / 13.5 / 16.0 10.2 / 11.7 / 14.4 61.3 / 65.4 / 68.3 54.6 / 57.3 / 59.4 31.2 / 35.8 / 39.2 21.9 / 25.8 / 27.7
qwen-2.5-32b 22.5 / 21.9 / 22.3 19.2 / 19.8 / 21.3 52.0 / 65.9 / 69.0 43.6 / 54.7 / 62.2 19.0 / 39.8 / 42.5 5.2 / 22.1 / 33.1
gemini-1.5-flash 22.5 / 26.9 / 28.1 20.6 / 22.9 / 24.0 49.4 / 71.2 / 77.7 40.7 / 50.3 / 56.8 14.2 / 48.1 / 52.3 0.0 / 15.4 / 25.0
gpt-4 37.7 / 40.6 / 44.2 31.5 / 35.0 / 34.4 70.0 / 83.1 / 85.2 42.2 / 65.6 / 74.8 47.5 / 65.4 / 66.2 2.7 / 39.8 / 50.6

human∗ 85.0 83.3 89.4 91.7 75.0 75.8

Table 9: 1-shot / 3-shot / 5-shot results for Finnish in English template for all examined models across tasks. ∗Due
to the cost of evaluation, our human study is only evaluated on 60 randomly sampled instances per task and test
distribution.

Productivity task prompt [ID root] (CoT)
You are given a word root and a list of affixes
(separated by comma) in Turkish. Your task is
to construct a grammatically correct word by
appending the given affixes to the root. Use
each affix exactly once. After forming a word,
list each affix used in the construction of that
word to verify adherence to the rules. Check
the following: Ensure no affix is used more
than once, confirm that all provided affixes are
used, verify that no extra affixes outside the
provided list are included. Think step by step
and then provide your final answer within the
tags <Answer>correctword</Answer>.

Example 1:
Word root: kuru
Affixes: t, muş
Answer: First, let’s append the affixes to the
root "kuru" in a grammatically correct order:
...<explaining the correct order of mor-
phemes>...
Example 2:
Word root: mana
Affixes: sız, dır
Answer:

Productivity task prompt [OOD root] (CoT)
You are provided with a novel word root with
its definition, and a list of affixes (separated by
comma) in Turkish. Your task is to construct
a grammatically correct word by appending
the given affixes to the root. Use each affix
exactly once. After forming a word, list each
affix used in the construction of that word
to verify adherence to the rules. Check the
following: Ensure no affix is used more than
once, confirm that all provided affixes are
used, verify that no extra affixes outside the
provided list are included. Think step by step
and then provide your final answer within the
tags <Answer>correctword</Answer>.

Example 1:
Word root: doru
Definition: doru means kuru in Turkish.
Affixes: t, muş
Answer: ...<explanation>...
Example 2:
Word root: çokan
Definition: çokan means yalan in Turkish.
Affixes: la, lar
Answer:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 100.0 / 100.0 48.0 / 46.7 20.0 / 18.0 3.3 / 6.7 0.0 / 1.3 0.7 / 0.0 0.0 / 0.0

aya-23-8b 60.0 / 52.7 22.7 / 8.7 5.3 / 0.0 0.7 / 0.0 0.7 / 0.0 0.0 / 0.0 0.0 / 0.0
aya-23-35b 72.7 / 69.3 35.3 / 20.7 7.3 / 6.7 4.0 / 4.0 2.0 / 1.3 0.0 / 0.0 0.7 / 0.0
qwen-2.5-7b 63.3 / 64.0 26.7 / 22.0 13.3 / 6.0 0.0 / 0.7 0.0 / 0.0 0.7 / 0.0 0.7 / 0.0
qwen-2.5-32b 82.0 / 85.3 46.3 / 42.3 18.7 / 15.3 6.0 / 6.7 3.3 / 1.3 1.3 / 0.7 0.7 / 0.0
gemini-1.5-flash 86.7 / 80.0 52.7 / 44.7 36.0 / 30.7 12.0 / 10.7 7.3 / 7.3 4.7 / 0.7 2.0 / 0.0
gpt-4 95.3 / 96.7 80.7 / 65.3 62.7 / 43.3 43.8 / 31.3 27.3 / 17.6 19.3 / 0.7 13.8 / 2.1

Table 10: Morphological productivity 1-shot ID / OOD accuracy results for Turkish in English template for all
examined models.

Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 33.3 / 33.3 33.1 / 33.1 44.3 / 44.3 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4
random 44.9 / 42.4 37.6 / 39.3 40.2 / 41.4 43.5 / 44.5 42.6 / 46.4 41.9 / 42.4 42.3 / 44.8

aya-23-8b 72.9 / 54.7 68.0 / 48.7 66.1 / 50.0 58.8 / 54.8 59.0 / 56.5 54.3 / 55.3 55.1 / 57.5
aya-23-35b 70.4 / 60.2 82.7 / 70.2 83.1 / 73.0 65.0 / 58.9 63.5 / 65.5 61.5 / 61.9 63.2 / 62.6
qwen-2.5-7b 71.8 / 53.1 72.9 / 64.7 73.7 / 64.4 77.7 / 74.0 73.0 / 72.3 65.5 / 66.9 63.3 / 64.4
qwen-2.5-32b 65.6 / 34.2 57.0 / 35.1 75.6 / 57.6 87.4 / 61.5 86.8 / 62.1 84.2 / 57.3 84.7 / 63.9
gemini-1.5-flash 62.4 / 33.3 58.2 / 34.0 60.1 / 44.2 59.0 / 44.8 61.9 / 44.4 56.9 / 44.3 67.2 / 44.7
gpt-4 86.7 / 36.2 69.1 / 43.8 82.5 / 61.8 88.4 / 64.2 92.2 / 78.7 88.7 / 72.0 90.6 / 76.9

Table 11: Morphological systematicity 1-shot ID / OOD macro-F1 results for Turkish in English template for all
examined models.

Systematicity task prompt [ID root] (CoT)
You are given a word root, a list of affixes (sep-
arated by comma) and a word in Turkish that
is derived from the given word root using the
given affixes. Your task is to determine whether
the derived word is grammatically correct. First,
analyze how the affixes interact with the word
root. Then, assess the order in which the affixes
are applied and verify that this order adheres
to the language’s rules. Think step by step and
then provide your final answer within the tags
<Answer>Yes/No</Answer>.
Example 1:
Word root: kuru
Affixes: t, muş
Derived word: kurutmuş
Answer: To analyze the derived word "kurut-
muş," we need to look at the affixes and how
they interact with the word root "kuru."
...<explaining the correct order of mor-
phemes>...
Example 2:
Word root: etki
Affixes: yici, le
Derived word: etkileyici
Answer:

Systematicity task prompt [OOD root] (CoT)
You are given a novel word root with its defini-
tion, a list of affixes (separated by comma) and
a word in Turkish that is derived from the given
word root using the given affixes. Your task is to
determine whether the derived word is grammat-
ically correct. First, analyze how the affixes in-
teract with the word root. Then, assess the order
in which the affixes are applied and verify that
this order adheres to the language’s rules. Think
step by step and then provide your final answer
within the tags <Answer>Yes/No</Answer>.
Example 1:
Word root: doru
Definition: doru means kuru in Turkish.
Affixes: t, muş
Derived word: dorutmuş
Answer: ...<explain the correct order of mor-
phemes based on the definition>...
Example 2:
Word root: imli
Definition: imli means etki in Turkish.
Affixes: yici, le
Derived word: imlileyici
Answer:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 28.0 / 25.3 18.7 / 22.0 2.0 / 1.3 4.7 / 2.0 2.7 / 2.7 4.0 / 2.7 4.0 / 3.4

aya-23-8b 62.0 / 38.0 53.3 / 26.7 20.0 / 8.7 16.7 / 12.7 18.0 / 15.3 10.7 / 13.3 14.8 / 18.8
aya-23-35b 56.7 / 45.3 74.0 / 57.3 47.3 / 29.3 19.3 / 14.0 16.0 / 20.7 20.0 / 17.3 24.2 / 20.1
qwen-2.5-7b 60.7 / 36.0 60.7 / 49.3 39.3 / 29.3 42.0 / 34.7 36.7 / 34.7 21.3 / 24.0 22.8 / 26.2
qwen-2.5-32b 49.3 / 2.7 35.6 / 2.7 54.0 / 20.7 71.3 / 28.7 66.7 / 28.7 63.3 / 19.3 56.4 / 26.8
gemini-1.5-flash 44.0 / 0.0 38.7 / 1.3 26.7 / 0.0 24.7 / 0.7 30.7 / 0.0 22.7 / 0.0 38.3 / 0.7
gpt-4 80.0 / 4.7 54.0 / 16.0 66.7 / 30.0 76.0 / 34.7 82.7 / 58.7 68.7 / 41.3 71.8 / 49.0

Table 12: Morphological systematicity 1-shot ID / OOD coherence results for Turkish in English template for all
examined models.

Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 100.0 / 100.0 46.7 / 50.7 20.7 / 16.0 5.3 / 4.7 2.7 / 0.7 0.0 / 0.0 0.0 / 0.0

aya-23-8b 58.0 / 64.7 29.3 / 13.3 5.3 / 2.0 2.0 / 0.0 1.3 / 0.7 0.0 / 0.0 0.0 / 0.0
aya-23-35b 73.3 / 84.0 43.3 / 29.3 12.0 / 6.7 5.3 / 4.0 1.3 / 0.0 1.3 / 0.0 2.0 / 0.0
qwen-2.5-7b 68.7 / 61.3 24.7 / 22.7 6.7 / 5.3 2.0 / 0.7 1.3 / 0.0 0.7 / 0.0 0.0 / 0.0
qwen-2.5-32b 84.7 / 80.7 45.0 / 38.9 21.3 / 18.7 6.7 / 11.3 4.7 / 3.3 0.7 / 0.0 2.7 / 0.0
gemini-1.5-flash 84.7 / 80.0 57.3 / 50.0 37.3 / 29.3 16.7 / 9.3 10.7 / 7.3 4.0 / 2.7 2.7 / 1.3
gpt-4 94.7 / 94.7 81.3 / 68.7 64.0 / 45.2 49.3 / 34.2 30.7 / 17.6 25.3 / 11.6 19.3 / 11.7

Table 13: Morphological productivity 3-shot ID / OOD accuracy results for Turkish in English template for all
examined models.

Productivity task prompt [ID
root][paraphrased]
You are provided with a word root and a set of
affixes (comma-separated) in language. Your
task is to create a grammatically correct word
using this root and all the provided affixes. You
must use only the given affixes, and each affix
can be used only once. Respond with the final
word only.
Example 1:
Word root: bulaş
Affixes: ma, sa, tır, ydı, k
Answer: bulaştırmasaydık

Example 2:
Word root: bekle
Affixes: me, di, z, n, e
Answer:

Productivity task prompt [OOD
root][paraphrased]
You are given a new word root along with
its definition, and a set of affixes (comma-
separated) in language. Assuming that the new
word root is a valid language word, your task is
to form a grammatically correct word using this
root and all the provided affixes. You must use
only the given affixes, and each one can be used
just once. Provide only the generated word as
your answer.

Example 1:
Word root: lıdış
Definition: lıdış means karış in Turkish.
Affixes: sa, ydı, k, ma
Answer: lıdışmasaydık

Example 2:
Word root: ihek
Definition: ihek means emek in Turkish.
Affixes: in, imiz, ler, çi
Answer:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 33.3 / 33.3 33.1 / 33.1 44.3 / 44.3 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4
random 40.0 / 45.3 40.2 / 43.1 44.4 / 41.5 40.2 / 43.4 43.9 / 40.3 43.9 / 41.8 39.8 / 41.0

aya-23-8b 75.3 / 51.8 68.0 / 43.3 64.5 / 34.2 60.3 / 44.2 64.3 / 52.7 55.6 / 55.3 64.0 / 63.3
aya-23-35b 74.9 / 57.3 83.6 / 68.2 86.2 / 78.1 79.5 / 75.3 77.3 / 77.3 78.8 / 72.8 80.3 / 68.2
qwen-2.5-7b 60.7 / 56.9 75.3 / 62.9 76.9 / 72.2 78.4 / 67.9 74.1 / 72.3 74.9 / 67.3 74.9 / 68.4
qwen-2.5-32b 76.4 / 53.8 74.0 / 60.2 87.3 / 75.6 88.6 / 78.0 91.0 / 76.6 89.0 / 76.2 86.5 / 78.7
gemini-1.5-flash 86.0 / 45.3 81.6 / 50.4 79.1 / 55.0 71.2 / 53.9 81.2 / 55.7 79.1 / 55.1 87.6 / 54.1
gpt-4 89.6 / 59.1 81.8 / 62.9 92.5 / 84.9 94.9 / 85.7 92.2 / 84.7 88.0 / 81.8 92.4 / 84.7

Table 14: Morphological systematicity 3-shot ID / OOD macro-F1 results for Turkish in English template for all
examined models.

Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 25.3 / 29.3 23.3 / 24.7 2.7 / 2.7 0.7 / 2.7 3.3 / 2.0 6.0 / 1.3 2.0 / 4.7

aya-23-8b 64.7 / 34.0 52.7 / 19.3 22.0 / 2.0 22.7 / 6.7 24.0 / 12.0 13.3 / 12.7 20.1 / 23.5
aya-23-35b 64.0 / 39.3 75.3 / 54.7 56.7 / 43.3 41.3 / 34.7 39.3 / 41.3 43.3 / 36.0 48.3 / 30.2
qwen-2.5-7b 44.7 / 41.3 64.7 / 46.7 39.3 / 34.0 45.3 / 26.0 36.0 / 32.7 40.0 / 28.7 40.3 / 28.2
qwen-2.5-32b 65.3 / 32.7 61.1 / 40.9 71.3 / 49.3 65.3 / 52.0 72.0 / 51.3 66.7 / 46.0 62.4 / 47.7
gemini-1.5-flash 79.3 / 20.0 72.7 / 26.0 58.0 / 18.7 45.3 / 16.0 62.0 / 18.7 56.7 / 18.0 71.1 / 17.4
gpt-4 84.7 / 40.0 72.7 / 45.3 84.0 / 65.3 84.0 / 70.0 74.7 / 61.3 63.3 / 52.7 74.5 / 56.4

Table 15: Morphological systematicity 3-shot ID / OOD coherence results for Turkish in English template for all
examined models.

Systematicity task prompt [ID
root][paraphrased]
You are provided with a word root, a set
of affixes (comma-separated), and a word
in language that is derived from the given
root using the provided affixes. Your task is
to verify whether the derived word is gram-
matically correct. Respond with only Yes or No.

Example 1:
Word root: küçük
Affixes: ümüz, lüğ, den
Derived word: küçüklüğümüzden
Answer: Yes

Example 2:
Word root: evren
Affixes: sel, e, liğ
Derived word: evreneselliğ
Answer:

Systematicity task prompt [OOD
root][paraphrased]
You are provided with a new word root
along with its definition, a set of affixes
(comma-separated), and a word in language
that is derived from the given root using the
provided affixes. Assuming that the new word
root is a valid language word, your task is
to verify whether the derived word is gram-
matically correct. Respond with only Yes or No.

Example 1:
Word root: eneşilvöte
Definition: eneşilvöte means üniversite in
Turkish.
Affixes: niz, yse, de
Derived word: eneşilvötedeyseniz
Answer: Yes

Example 2:
Word root: yivek
Definition: yivek means yürek in Turkish.
Affixes: den, ler, iniz
Derived word: yiveklerdeniniz
Answer:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 100.0 / 100.0 44.0 / 48.7 22.7 / 15.3 7.3 / 4.7 0.7 / 0.7 0.0 / 0.0 0.0 / 0.0

aya-23-8b 60.0 / 64.0 26.7 / 19.3 3.3 / 2.7 0.7 / 0.0 1.3 / 0.0 0.7 / 0.0 0.7 / 0.0
aya-23-35b 76.0 / 87.3 46.0 / 34.7 14.7 / 10.0 5.3 / 3.3 1.3 / 0.0 2.0 / 0.0 1.3 / 0.0
qwen-2.5-7b 70.7 / 65.3 27.3 / 16.7 8.0 / 6.7 3.3 / 0.7 0.7 / 0.7 0.0 / 0.0 0.7 / 0.0
qwen-2.5-32b 83.3 / 86.7 48.3 / 39.6 20.7 / 14.7 12.0 / 10.0 2.7 / 2.0 0.0 / 0.0 2.0 / 0.0
gemini-1.5-flash 91.3 / 79.3 56.7 / 51.3 39.3 / 29.3 12.0 / 8.7 10.0 / 6.0 2.7 / 1.3 2.7 / 0.0
gpt-4 96.0 / 96.7 85.3 / 72.0 66.0 / 55.5 43.7 / 37.3 40.0 / 23.9 28.0 / 11.6 20.6 / 10.1

human 100.0 / 100.0 100.0 / 95.0 100.0 / 95.0 100.0 / 100.0 100.0 / 95.0 90.0 / 100.0 90.0 / 80.0

Table 16: Morphological productivity 5-shot ID / OOD accuracy results for Turkish in English template for all
examined models. 1-shot and 3-shot results can be found in Tables 10, 13 respectively.

Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 33.3 / 33.3 33.1 / 33.1 44.3 / 44.3 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4
random 42.9 / 46.4 43.8 / 37.6 43.6 / 42.2 40.4 / 40.4 44.5 / 43.9 43.1 / 44.0 46.0 / 41.4

aya-23-8b 74.0 / 49.6 71.3 / 49.8 67.7 / 44.3 65.6 / 52.8 69.7 / 56.7 61.3 / 48.0 63.3 / 59.4
aya-23-35b 77.3 / 63.6 87.1 / 68.2 85.7 / 79.4 82.2 / 75.2 82.1 / 76.7 80.5 / 70.5 77.8 / 71.2
qwen-2.5-7b 66.0 / 58.0 76.2 / 62.7 76.2 / 71.1 78.6 / 70.4 74.4 / 68.6 76.6 / 67.1 74.5 / 63.8
qwen-2.5-32b 80.4 / 58.4 78.1 / 68.9 89.5 / 79.1 90.3 / 80.8 89.7 / 80.8 88.1 / 81.0 85.5 / 77.9
gemini-1.5-flash 86.9 / 53.3 82.9 / 55.8 83.4 / 66.3 85.5 / 60.0 84.8 / 60.5 85.5 / 66.3 89.2 / 72.3
gpt-4 92.0 / 52.7 90.9 / 82.9 94.4 / 86.1 93.9 / 84.7 90.8 / 80.6 89.1 / 82.9 90.2 / 81.4

human 100.0 / 100.0 100.0 / 96.7 100.0 / 100.0 97.2 / 100.0 100.0 / 100.0 98.8 / 97.6 95.2 / 100.0

Table 17: Morphological systematicity 5-shot ID / OOD macro-F1 results for Turkish in English template for all
examined models. 1-shot and 3-shot results can be found in Tables 11, 14 respectively.

F.2 Templates in Turkish

Productivity task prompt [ID root]
Size Türkçe bir kök ve bir ek listesi (virgülle
ayrılmış) verilecek ve sizden bu kökten verilen
tüm ekleri kullanarak dilbilgisel olarak doğru
bir kelime üretmeniz istenecek. Sadece verilen
ekleri kullanabilirsiniz ve her bir ek sadece bir
kez kullanılabilir. Sadece üretilen kelimeyi
çıktı olarak verin.

Örnek 1:
Kök: küçük
Ekler: ümüz, lüğ, den
Cevap: küçüklüğümüzden

Örnek 2:
Kök: sevgi
Ekler: in, li, m
Cevap:

Productivity task prompt [OOD root]
Size Türkçe yeni bir kök, onun tanımlaması ve
bir ek listesi (virgülle ayrılmış) verilecek ve
sizden bu kökten verilen tüm ekleri kullanarak
dilbilgisel olarak doğru bir kelime üretmeniz is-
tenecek. Sadece verilen ekleri kullanabilirsiniz
ve her bir ek sadece bir kez kullanılabilir.
Sadece üretilen kelimeyi çıktı olarak verin.

Örnek 1:
Kök: nıtal
Tanım: nıtal Türkçe kal anlamına gelir.
Ekler: lar, an
Cevap: nıtalanlar

Örnek 2:
Kök: rarcu
Tanım: rarcu Türkçe vurgu anlamına gelir.
Ekler: la, mış
Cevap:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 24.7 / 30.0 26.0 / 20.0 2.0 / 1.3 4.7 / 1.3 2.0 / 4.7 4.0 / 4.0 2.7 / 2.0

aya-23-8b 62.7 / 32.0 58.7 / 30.7 24.7 / 7.3 30.0 / 14.7 34.0 / 15.3 18.0 / 8.0 24.2 / 20.8
aya-23-35b 68.0 / 50.7 80.7 / 53.3 56.0 / 49.3 47.3 / 36.0 49.3 / 38.7 46.0 / 30.0 43.0 / 34.9
qwen-2.5-7b 51.3 / 40.7 66.7 / 46.0 34.0 / 30.7 43.3 / 30.7 37.3 / 31.3 39.3 / 27.3 43.6 / 24.8
qwen-2.5-32b 71.3 / 40.7 67.1 / 54.4 72.0 / 48.0 72.0 / 50.0 67.3 / 53.3 62.0 / 49.3 55.7 / 42.3
gemini-1.5-flash 80.7 / 31.3 75.3 / 34.7 65.3 / 34.7 69.3 / 26.7 64.7 / 27.3 68.0 / 34.7 71.8 / 43.6
gpt-4 88.0 / 31.3 86.7 / 74.7 86.0 / 57.3 78.0 / 56.7 68.7 / 46.0 64.7 / 50.7 64.4 / 43.0

human 100.0 / 100.0 100.0 / 95.0 100.0 / 100.0 95.0 / 100.0 100.0 / 100.0 95.0 / 90.0 80.0 / 100.0

Table 18: Morphological systematicity 5-shot ID / OOD coherence results for Turkish in English template for all
examined models. 1-shot and 3-shot results can be found in Tables 12, 15 respectively.

Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 100.0 / 100.0 43.8 / 67.5 18.8 / 10.0 7.5 / 10.0 5.0 / 5.0 1.2 / 3.8

qwen-2.5-7b 55.0 / 45.0 22.5 / 15.0 2.5 / 1.2 1.2 / 0.0 0.0 / 0.0 0.0 / 0.0
qwen-2.5-32b 72.5 / 71.2 41.2 / 32.5 18.8 / 8.8 2.5 / 2.5 0.0 / 0.0 0.0 / 0.0
gemini-1.5-flash 75.0 / 73.8 38.8 / 36.2 12.5 / 8.8 6.2 / 1.2 2.5 / 3.8 0.0 / 0.0
gpt-4 81.2 / 86.2 76.2 / 58.8 26.2 / 21.2 15.0 / 6.2 18.8 / 8.8 8.8 / 7.5

Table 19: Morphological productivity 1-shot ID / OOD accuracy results for Finnish in English template for all
examined models.

Systematicity task prompt [ID root]
Size Türkçe bir kök, bir ek listesi (virgülle
ayrılmış) ve bu ekleri kullanarak türetilmiş
bir kelime verilecek. Sizden bu kelimenin
dilbilgisel olarak doğru olup olmadığını
belirlemeniz istenecek. Sadece Evet veya Hayır
ile cevap verin.

Örnek 1:
Kök: küçük
Ekler: ümüz, lüğ, den
Türetilmiş kelime: küçüklüğümüzden
Cevap: Evet

Örnek 2:
Kök: sahip
Ekler: iniz, diğ, len
Türetilmiş kelime: sahipdiğinizlen
Cevap:

Systematicity task prompt [OOD root]
Size Türkçe yeni bir kök, onun tanımlaması,
bir ek listesi (virgülle ayrılmış) ve bu ekleri
kullanarak türetilmiş bir kelime verilecek.
Sizden bu kelimenin dilbilgisel olarak doğru
olup olmadığını belirlemeniz istenecek. Sadece
Evet veya Hayır ile cevap verin.

Örnek 1:
Kök: yivük
Tanım: yivük Türkçe küçük anlamına gelir.
Ekler: den, lüğ, ümüz
Türetilmiş kelime: yivüklüğümüzden
Cevap: Evet

Örnek 2:
Kök: minlek
Tanım: minlek Türkçe gerçek anlamına gelir.
Ekler: leş, di, me
Türetilmiş kelime: minlekleşmedi
Cevap:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 33.3 / 33.3 33.3 / 33.3 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4
random 41.7 / 37.1 42.1 / 46.7 42.3 / 42.7 40.7 / 41.6 42.5 / 42.2 45.0 / 44.4

qwen-2.5-7b 65.8 / 57.1 77.5 / 71.2 61.5 / 57.2 53.3 / 47.7 53.5 / 47.2 56.0 / 47.2
qwen-2.5-32b 39.2 / 34.2 58.8 / 41.7 56.6 / 49.3 55.4 / 46.5 52.2 / 45.1 49.7 / 45.1
gemini-1.5-flash 50.8 / 33.3 45.0 / 33.3 54.7 / 44.4 49.7 / 44.4 46.5 / 44.4 49.7 / 44.4
gpt-4 79.2 / 34.2 73.3 / 36.7 73.9 / 47.9 64.4 / 45.8 71.2 / 44.4 58.2 / 44.4

Table 20: Morphological systematicity 1-shot ID / OOD macro-F1 results for Finnish in English template for all
examined models.

Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 23.8 / 21.2 25.0 / 30.0 3.8 / 1.2 0.0 / 5.0 6.2 / 0.0 2.5 / 7.5

qwen-2.5-7b 50.0 / 41.2 67.5 / 57.5 26.2 / 17.5 12.5 / 5.0 15.0 / 5.0 16.2 / 5.0
qwen-2.5-32b 11.2 / 3.8 38.8 / 12.5 22.5 / 8.8 18.8 / 3.8 13.8 / 1.2 8.8 / 1.2
gemini-1.5-flash 28.7 / 0.0 17.5 / 0.0 16.2 / 0.0 10.0 / 0.0 3.8 / 0.0 8.8 / 0.0
gpt-4 68.8 / 2.5 60.0 / 5.0 52.5 / 6.2 33.8 / 2.5 45.0 / 0.0 25.0 / 0.0

Table 21: Morphological systematicity 1-shot ID / OOD coherence results for Finnish in English template for all
examined models.

Productivity task prompt [ID root] (with
context)
Size Türkçe bir kök, bir ek listesi (virgülle
ayrılmış) ve boşluklu (___) bir cümle verilecek
ve sizden boşluğu doldurmak için bu kökten
verilen tüm ekleri kullanarak dilbilgisel olarak
doğru bir kelime üretmeniz istenecek. Sadece
verilen ekleri kullanabilirsiniz ve her bir ek
sadece bir kez kullanılabilir. Sadece üretilen
kelimeyi çıktı olarak verin.

Örnek 1:
Kök: küçük
Ekler: den, ümüz, lüğ
Cümle: ___ kalma bir oyuna dönüştürdük
hayatımızı
Cevap: küçüklüğümüzden

Örnek 2:
Kök: ilkokul
Ekler: da, m, ydı
Cümle: Ilk kez onun bir şiirini okuyabilme fır-
satı bulduğumda, henüz daha ___ ve bu kadar
farklı bir tarzla karşılaşmak beni oldukça heye-
canlandırmıştı
Cevap:

Systematicity task prompt [ID root] (with
context)
Size Türkçe bir kök, bir ek listesi (virgülle
ayrılmış), boşluklu (___) bir cümle ve bu
ekleri kullanarak türetilmiş bir kelime verilecek.
Sizden boşluğu doldurmak için bu kelimenin
dilbilgisel olarak doğru olup olmadığını
belirlemeniz istenecek. Sadece Evet veya Hayır
ile cevap verin.

Örnek 1:
Kök: karış
Ekler: ma, sa, k, ydı
Cümle: gerçek şu ki anlayamadığımız şeylere
mucize deyip ___, bugünlere belki de hiç
ulaşamayacaktık
Türetilmiş kelime: karışmasaydık
Cevap: Evet

Örnek 2:
Kök: sanat
Ekler: ı, çı, lar, ndan
Cümle: tüm bu deneyimlerime ev sahipliği
yapan ülke ise dünyanın en ünlü ve en çok
beğenilen ___ biri olan van gogh’un doğup
büyüdüğü hollanda’dan başka bir yer değil
Türetilmiş kelime: sanatçılarndanı
Cevap:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 100.0 / 100.0 56.2 / 46.2 12.5 / 17.5 7.5 / 12.5 13.8 / 3.8 3.8 / 1.2

qwen-2.5-7b 58.8 / 55.0 15.0 / 11.2 5.0 / 2.5 1.2 / 0.0 1.2 / 1.2 0.0 / 0.0
qwen-2.5-32b 70.0 / 67.5 41.2 / 36.2 12.5 / 10.0 3.8 / 2.5 1.2 / 2.5 2.5 / 0.0
gemini-1.5-flash 80.0 / 76.2 51.2 / 42.5 13.8 / 7.5 5.0 / 1.2 6.2 / 6.2 5.0 / 3.8
gpt-4 81.2 / 90.0 73.8 / 62.5 32.5 / 20.0 20.0 / 13.8 26.2 / 11.2 10.0 / 12.5

Table 22: Morphological productivity 3-shot ID / OOD accuracy results for Finnish in English template for all
examined models.

Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 33.3 / 33.3 33.3 / 33.3 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4
random 40.0 / 43.8 43.8 / 37.9 45.9 / 48.5 46.1 / 42.9 44.7 / 45.3 39.3 / 44.0

qwen-2.5-7b 62.9 / 56.7 81.2 / 77.1 67.2 / 55.4 62.8 / 52.5 57.7 / 52.0 60.4 / 50.4
qwen-2.5-32b 52.9 / 37.5 70.0 / 57.5 71.6 / 59.4 66.3 / 54.7 65.7 / 56.1 68.7 / 62.8
gemini-1.5-flash 84.2 / 50.8 70.4 / 52.1 72.1 / 55.1 64.9 / 48.8 66.8 / 46.4 69.0 / 48.6
gpt-4 81.7 / 52.5 87.9 / 65.8 84.4 / 67.7 83.0 / 68.9 78.4 / 69.7 83.1 / 69.2

Table 23: Morphological systematicity 3-shot ID / OOD macro-F1 results for Finnish in English template for all
examined models.

F.3 Templates in Finnish

Productivity task prompt [ID root]
Sinulle annetaan sanan sananvartalo ja luettelo
pilkulla erotettuja päätteitä kielellä suomi.
Tehtäväsi on luoda tästä juuresta kieliopillisesti
oikea sana käyttämällä kaikkia annettuja
päätteitä. Voit käyttää vain annettuja päätteitä
ja kutakin päätettä vain kerran. Vastaa vain
luodulla sanalla.

Esimerkki 1:
Sananvartalo: markiise
Päätteet: j, a
Vastaus: markiiseja

Esimerkki 2:
Sananvartalo: kasvattamis
Päätteet: si, ta
Vastaus:

Productivity task prompt [OOD root]
Sinulle annetaan uusi sananvartalo, sen
määritelmä sekä pilkulla eroteltu luettelo
päätteitä kielellä suomi. Tehtäväsi on luoda
juuresta kieliopillisesti oikea sana käyttämällä
kaikkia annettuja päätteitä. Käyttä vain
annettuja päätteitä ja kutakin päätettä vain
kerran. Vastaa vain luodulla sanalla.

Esimerkki 1:
Sananvartalo: seloks
Määritelmä: seloks tarkoittaa petoks kielellä
suomi.
Päätteet: ne, en, i
Vastaus: seloksineen

Esimerkki 2:
Sananvartalo: osivma
Määritelmä: osivma tarkoittaa ohitta kielellä
suomi.
Päätteet: han, ko, a
Vastaus:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 26.2 / 26.2 27.5 / 18.8 5.0 / 8.8 5.0 / 2.5 3.8 / 6.2 2.5 / 2.5

qwen-2.5-7b 45.0 / 41.2 72.5 / 66.2 30.0 / 15.0 27.5 / 11.2 22.5 / 12.5 17.5 / 8.8
qwen-2.5-32b 31.2 / 8.8 56.2 / 36.2 45.0 / 25.0 35.0 / 16.2 31.2 / 17.5 40.0 / 28.7
gemini-1.5-flash 76.2 / 28.7 56.2 / 28.7 43.8 / 16.2 36.2 / 7.5 37.5 / 3.8 38.8 / 7.5
gpt-4 72.5 / 32.5 82.5 / 48.8 63.7 / 38.8 61.3 / 38.8 53.8 / 41.2 58.8 / 38.8

Table 24: Morphological systematicity 3-shot ID / OOD coherence results for Finnish in English template for all
examined models.

Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 100.0 / 100.0 50.0 / 46.2 13.8 / 17.5 7.5 / 11.2 6.2 / 2.5 1.2 / 3.8

qwen-2.5-7b 62.5 / 60.0 26.2 / 17.5 3.8 / 6.2 1.2 / 1.2 1.2 / 1.2 1.2 / 0.0
qwen-2.5-32b 72.5 / 77.5 43.8 / 33.8 10.0 / 11.2 3.8 / 2.5 1.2 / 1.2 2.5 / 1.2
gemini-1.5-flash 81.2 / 73.8 51.2 / 45.0 17.5 / 10.0 5.0 / 3.8 8.8 / 7.5 5.0 / 3.8
gpt-4 83.8 / 90.0 73.8 / 66.2 40.0 / 23.8 22.5 / 5.0 30.0 / 12.5 15.0 / 8.8

human 90.0 / 95.0 90.0 / 90.0 100.0 / 95.0 80.0 / 80.0 60.0 / 80.0 90.0 / 60.0

Table 25: Morphological productivity 5-shot ID / OOD accuracy results for Finnish in English template for all
examined models. 1-shot and 3-shot results can be found in Tables 19, 22 respectively.

Systematicity task prompt [ID root]
Sinulle annetaan sananvartalo, pilkulla eroteltu
luettelo päätteistä sekä annettuja päätteitä
käyttämällä vartalosta johdettu sana kielellä
suomi. Tehtäväsi on selvittää, onko johdettu
sana kieliopillisesti oikein. Vastaa vain Kyllä
tai Ei.

Esimerkki 1:
Sananvartalo: palauttaminen
Päätteet: n, mi, elee
Johdettu sana: mieleenpalauttaminen
Vastaus: Kyllä

Esimerkki 2:
Sananvartalo: näkyv
Päätteet: imp, in, i
Johdettu sana: näkyvimpiin
Vastaus:

Systematicity task prompt [OOD root]
Sinulle annetaan uusi sananvartalo, sen
määritelmä sekä pilkulla eroteltu luettelo
päätteistä sekä uusi sana kielellä suomi, joka on
johdettu annetusta sananvartalosta annettujen
päätteiden avulla. Tehtäväsi on selvittää, onko
johdettu sana kieliopillisesti oikein. Vastaa vain
Kyllä tai Ei.

Esimerkki 1:
Sananvartalo: sätletjimsä
Määritelmä: sätletjimsä tarkoittaa järjestelmä
kielellä suomi.
Päätteet: laadu, hallinta, n, n
Johdettu sana: laadunhallintasätletjimsän
Vastaus: Kyllä

Esimerkki 2:
Sananvartalo: olanajke
Määritelmä: olanajke tarkoittaa olosuhte
kielellä suomi.
Päätteet: i, kuvaus, an, lta
Johdettu sana: kuvausolanajkeanilta
Vastaus:
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Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 33.3 / 33.3 33.3 / 33.3 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4 44.4 / 44.4
random 43.8 / 42.5 40.4 / 42.9 43.7 / 39.8 41.6 / 47.3 39.4 / 42.4 45.7 / 40.0

qwen-2.5-7b 65.8 / 55.4 86.7 / 75.4 65.0 / 58.1 66.2 / 54.2 62.5 / 57.7 63.5 / 55.9
qwen-2.5-32b 57.1 / 40.0 72.9 / 66.7 71.7 / 69.8 72.8 / 63.6 70.7 / 71.1 68.6 / 62.3
gemini-1.5-flash 84.2 / 49.6 80.8 / 65.4 79.6 / 62.0 75.4 / 52.8 74.9 / 53.5 71.4 / 57.7
gpt-4 84.2 / 61.3 89.2 / 78.8 84.2 / 83.8 88.0 / 76.7 83.0 / 76.5 82.7 / 71.6

human 73.3 / 86.7 93.3 / 100.0 93.2 / 97.6 95.5 / 90.9 91.2 / 90.5 89.7 / 84.4

Table 26: Morphological systematicity 5-shot ID / OOD macro-F1 results for Finnish in English template for all
examined models. 1-shot and 3-shot results can be found in Tables 20, 23 respectively.

Models Number of morphemes (excl. root)
1 2 3 4 5 6

majority 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
random 26.2 / 26.2 25.0 / 23.8 3.8 / 0.0 1.2 / 5.0 2.5 / 1.2 6.2 / 1.2

qwen-2.5-7b 48.8 / 36.2 81.2 / 65.0 28.7 / 16.2 31.2 / 15.0 22.5 / 18.8 22.5 / 15.0
qwen-2.5-32b 37.5 / 13.8 61.3 / 51.2 41.2 / 38.8 46.2 / 28.7 33.8 / 41.2 35.0 / 25.0
gemini-1.5-flash 76.2 / 28.7 71.2 / 48.8 47.5 / 26.2 43.8 / 12.5 42.5 / 12.5 32.5 / 21.2
gpt-4 76.2 / 45.0 83.8 / 68.8 56.2 / 61.3 68.8 / 48.8 57.5 / 40.0 55.0 / 40.0

human 60.0 / 80.0 90.0 / 100.0 75.0 / 90.0 85.0 / 75.0 70.0 / 60.0 70.0 / 50.0

Table 27: Morphological systematicity 5-shot ID / OOD coherence results for Finnish in English template for all
examined models. 1-shot and 3-shot results can be found in Tables 21, 24 respectively.

Productivity task prompt [ID root] (with
context)
Allaolevassa lauseessa (kirjoitettu kielellä
suomi) on tyhjä kohta (___) joka tulee täyttää
kieliopillisesti oikealla sanalla. Alla on myös
sananvartalo sekä pilkulla eroteltu luettelo
päätteistä. Tehtäväsi on käyttää vartaloa sekä
päätteitä ja johtaa niistä kieliopillisesti oikein
taivutetu sana joka sopii tyhjään kohtaan
lausessaa asiayhteys/konteksti huomioonottaen.
Käytä jokaista päätettä vain kerran. Vastaa vain
generoidulla sanalla, älä sano mitään muuta.

Esimerkki 1:
Sananvartalo: markiise
Päätteet: a, j
Lause: ___ saatavana yksivärisinä, raidallisina
ja voit myös valita haluatko markiisisi veivi-
vai sähkökäyttöisenä.
Vastaus: markiiseja

Esimerkki 2:
Sananvartalo: suhteutet
Päätteet: na, tu
Lause: ___ väkilukuun, suomessa on enemmän
metsää kuin missään muussa euroopan maassa.
Vastaus:

Systematicity task prompt [ID root] (with
context)
Allaolevassa lauseessa on tyhjä kohta (___)
joka tulee täyttää kieliopillisesti oikealla
sanalla. Alla on myös sananvartalo, pilkulla
eroteltu luettelo päätteistä sekä niitä käyttäen
annetusta vartalosta johdettu sana kielellä
suomi. Tehtäväsi on päätellä, onko johdettu
sana kieliopillisesti oikein, jos sen asettaa
lauseen tyhjään kohtaan eli onko sana kieliopil-
lisesti oikein taivutetu asiayhteys/konteksti
huomioonottaen. Vastaa joko Kyllä tai Ei.

Esimerkki 1:
Sananvartalo: petoks
Päätteet: ne, en, i
Lause: hän paljasti koko korruptoituneen jär-
jestelmän ___.
Johdettu sana: petoksineen
Vastaus: Kyllä
Esimerkki 2:
Sananvartalo: kannatta
Päätteet: isi, han, ko
Lause: ___ minun opiskella suomea?
Johdettu sana: kannattakoisihan
Vastaus:
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Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 12.8 / 8.4 8.8 / 5.3 62.0 / 62.4 53.9 / 44.3 27.9 / 31.9 19.1 / 4.5
aya-23-35b 17.4 / 14.6 14.6 / 11.7 69.9 / 79.6 64.6 / 48.9 36.8 / 59.2 29.2 / 12.2
qwen-2.5-7b 15.0 / 9.3 13.2 / 10.0 71.1 / 69.9 65.7 / 59.1 40.5 / 38.1 33.5 / 23.6
qwen-2.5-32b 22.6 / 22.9 21.7 / 20.4 77.3 / 78.5 53.1 / 44.5 56.7 / 60.0 18.5 / 5.7
gemini-1.5-flash 28.8 / 21.8 24.9 / 19.3 60.8 / 45.1 41.4 / 41.2 32.2 / 5.9 0.4 / 0.0
gpt-4 49.0 / 48.5 36.7 / 38.1 85.5 / 76.3 61.9 / 50.4 71.4 / 58.6 33.5 / 15.7

Table 28: 1-shot English / Turkish template results for Turkish for all examined models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 13.7 / 7.0 11.5 / 9.6 64.6 / 69.0 49.3 / 46.4 31.4 / 38.7 15.7 / 8.0
aya-23-35b 19.8 / 17.1 17.7 / 16.9 80.1 / 81.6 71.0 / 57.1 52.6 / 59.6 39.9 / 24.7
qwen-2.5-7b 14.9 / 11.2 12.9 / 11.4 73.6 / 73.7 66.8 / 61.4 44.3 / 44.8 33.9 / 28.2
qwen-2.5-32b 23.7 / 20.7 21.8 / 19.9 84.7 / 86.1 71.3 / 65.2 66.3 / 70.5 45.7 / 36.8
gemini-1.5-flash 30.5 / 23.0 25.7 / 20.7 80.8 / 56.9 52.8 / 41.2 63.6 / 25.3 19.3 / 0.0
gpt-4 52.1 / 51.5 40.5 / 40.6 90.2 / 88.6 77.7 / 66.3 76.8 / 76.3 55.9 / 39.9

Table 29: 3-shot English / Turkish template results for Turkish for all examined models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 13.3 / 8.6 12.3 / 8.1 67.5 / 62.0 51.5 / 47.9 36.0 / 30.6 18.4 / 15.8
aya-23-35b 21.0 / 17.1 19.3 / 18.0 81.8 / 81.7 72.1 / 64.3 55.8 / 57.7 41.8 / 30.4
qwen-2.5-7b 15.8 / 13.0 12.9 / 12.3 74.6 / 73.5 66.0 / 65.2 45.1 / 42.4 33.1 / 32.3
qwen-2.5-32b 24.1 / 23.3 21.8 / 21.9 85.9 / 86.9 75.3 / 70.7 66.8 / 70.5 48.3 / 44.2
gemini-1.5-flash 30.7 / 25.8 25.1 / 22.1 85.4 / 61.6 62.1 / 41.6 70.7 / 32.9 33.3 / 0.7
gpt-4 54.2 / 53.1 43.9 / 40.7 91.6 / 92.7 78.8 / 76.3 76.6 / 82.1 51.4 / 51.9

Table 30: 5-shot English / Turkish template results for Turkish for all examined models across tasks. Results for
1-shot and 3-shot can be found in Tables 28 and 29.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 13.5 / 7.9 10.2 / 10.8 61.3 / 56.8 54.6 / 41.2 31.2 / 23.8 21.9 / 2.1
qwen-2.5-32b 22.5 / 16.9 19.2 / 11.9 52.0 / 54.5 43.6 / 44.4 19.0 / 21.9 5.2 / 5.8
gemini-1.5-flash 22.5 / 25.2 20.6 / 21.2 49.4 / 50.2 40.7 / 40.9 14.2 / 15.6 0.0 / 0.2
gpt-4 37.7 / 37.3 31.5 / 27.7 70.0 / 59.6 42.2 / 41.6 47.5 / 30.4 2.7 / 1.2

Table 31: 1-shot English / Finnish template results for Finnish for all examined models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 13.5 / 10.4 11.7 / 10.2 65.4 / 65.0 57.3 / 55.7 35.8 / 32.5 25.8 / 22.5
qwen-2.5-32b 21.9 / 21.0 19.8 / 17.3 65.9 / 60.9 54.7 / 56.4 39.8 / 31.7 22.1 / 24.8
gemini-1.5-flash 26.9 / 24.6 22.9 / 19.2 71.2 / 74.7 50.3 / 48.0 48.1 / 51.7 15.4 / 11.9
gpt-4 40.6 / 40.8 35.0 / 32.7 83.1 / 72.0 65.6 / 45.9 65.4 / 51.0 39.8 / 8.5

Table 32: 3-shot English / Finnish template results for Finnish for all examined models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 16.0 / 13.1 14.4 / 13.3 68.3 / 66.6 59.4 / 60.1 39.2 / 35.2 27.7 / 28.1
qwen-2.5-32b 22.3 / 20.6 21.3 / 20.6 69.0 / 66.5 62.2 / 59.1 42.5 / 39.4 33.1 / 29.0
gemini-1.5-flash 28.1 / 28.1 24.0 / 21.7 77.7 / 76.2 56.8 / 59.2 52.3 / 51.9 25.0 / 28.1
gpt-4 44.2 / 42.9 34.4 / 34.4 85.2 / 81.1 74.8 / 57.2 66.2 / 65.0 50.6 / 26.2

Table 33: 5-shot English / Finnish template results for Finnish for all examined models across tasks. 1-shot and
3-shot results can be found in Tables 31 and 32.
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Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 12.8 / 13.1 8.8 / 6.3 62.0 / 49.8 53.9 / 40.3 27.9 / 16.8 19.1 / 7.5
aya-23-35b 17.4 / 21.0 14.6 / 13.1 69.9 / 66.3 64.6 / 55.8 36.8 / 37.3 29.2 / 22.0
qwen-2.5-7b 15.0 / 13.0 13.2 / 9.8 71.1 / 61.9 65.7 / 53.6 40.5 / 29.8 33.5 / 19.7
qwen-2.5-32b 22.6 / 23.7 21.7 / 19.3 77.3 / 44.0 53.1 / 41.4 56.7 / 4.7 18.5 / 0.3
gemini-1.5-flash 28.8 / 36.1 24.9 / 24.1 60.8 / 57.4 41.4 / 43.5 32.2 / 26.2 0.4 / 3.8
gpt-4 49.0 / 59.6 36.7 / 39.9 85.5 / 71.0 61.9 / 54.5 71.4 / 49.6 33.5 / 21.4

Table 34: 1-shot No context / With context results for Turkish in English template for all examined models across
tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 13.7 / 13.6 11.5 / 9.6 64.6 / 50.3 49.3 / 42.5 31.4 / 16.8 15.7 / 9.6
aya-23-35b 19.8 / 24.3 17.7 / 17.8 80.1 / 66.3 71.0 / 51.0 52.6 / 34.9 39.9 / 16.1
qwen-2.5-7b 14.9 / 13.5 12.9 / 9.8 73.6 / 63.4 66.8 / 59.3 44.3 / 30.3 33.9 / 25.2
qwen-2.5-32b 23.7 / 24.2 21.8 / 19.3 84.7 / 61.0 71.3 / 47.3 66.3 / 33.2 45.7 / 10.2
gemini-1.5-flash 30.5 / 38.4 25.7 / 26.5 80.8 / 75.6 52.8 / 60.1 63.6 / 49.7 19.3 / 27.2
gpt-4 52.1 / 59.8 40.5 / 45.6 90.2 / 85.2 77.7 / 67.1 76.8 / 71.9 55.9 / 41.5

Table 35: 3-shot No context / With context results for Turkish in English template for all examined models across
tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 13.3 / 14.8 12.3 / 9.9 67.5 / 51.4 51.5 / 42.9 36.0 / 19.3 18.4 / 10.6
aya-23-35b 21.0 / 26.5 19.3 / 18.7 81.8 / 66.2 72.1 / 47.6 55.8 / 35.4 41.8 / 14.3
qwen-2.5-7b 15.8 / 15.0 12.9 / 11.4 74.6 / 63.9 66.0 / 58.8 45.1 / 30.3 33.1 / 23.1
qwen-2.5-32b 24.1 / 26.2 21.8 / 21.4 85.9 / 68.4 75.3 / 52.0 66.8 / 44.8 48.3 / 18.1
gemini-1.5-flash 30.7 / 41.7 25.1 / 28.7 85.4 / 77.6 62.1 / 65.3 70.7 / 51.6 33.3 / 32.2
gpt-4 54.2 / 60.0 43.9 / 46.3 91.6 / 88.4 78.8 / 72.1 76.6 / 77.2 51.4 / 48.4

Table 36: 5-shot No context / With context results for Turkish in English template for all examined models across
tasks. 1-shot and 3-shot results can be found in Tables 34 and 35.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 13.5 / 10.6 10.2 / 9.6 61.3 / 61.5 54.6 / 53.2 31.2 / 30.4 21.9 / 19.0
qwen-2.5-32b 22.5 / 22.3 19.2 / 17.3 52.0 / 43.6 43.6 / 40.7 19.0 / 4.8 5.2 / 0.0
gemini-1.5-flash 22.5 / 26.7 20.6 / 21.9 49.4 / 54.7 40.7 / 41.1 14.2 / 22.1 0.0 / 0.6
gpt-4 37.7 / 46.7 31.5 / 31.7 70.0 / 74.6 42.2 / 49.6 47.5 / 53.1 2.7 / 14.4

Table 37: 1-shot No context / With context results for Finnish in English template for all examined models across
tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 13.5 / 11.0 11.7 / 10.8 65.4 / 63.5 57.3 / 55.3 35.8 / 34.0 25.8 / 21.5
qwen-2.5-32b 21.9 / 22.5 19.8 / 16.0 65.9 / 62.0 54.7 / 47.3 39.8 / 33.8 22.1 / 10.6
gemini-1.5-flash 26.9 / 32.3 22.9 / 23.3 71.2 / 72.3 50.3 / 57.3 48.1 / 43.3 15.4 / 23.3
gpt-4 40.6 / 52.3 35.0 / 33.5 83.1 / 83.8 65.6 / 65.2 65.4 / 67.9 39.8 / 39.2

Table 38: 3-shot No context / With context results for Finnish in English template for all examined models across
tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 16.0 / 13.5 14.4 / 12.7 68.3 / 63.0 59.4 / 54.5 39.2 / 32.3 27.7 / 21.9
qwen-2.5-32b 22.3 / 23.8 21.3 / 20.0 69.0 / 65.5 62.2 / 54.5 42.5 / 37.9 33.1 / 20.6
gemini-1.5-flash 28.1 / 32.7 24.0 / 24.4 77.7 / 72.4 56.8 / 53.8 52.3 / 42.7 25.0 / 19.8
gpt-4 44.2 / 53.1 34.4 / 32.3 85.2 / 85.8 74.8 / 68.5 66.2 / 68.1 50.6 / 41.5

Table 39: 5-shot No context / With context results for Finnish in English template for all examined models across
tasks. 1-shot and 3-shot results can be found in Tables 37 and 38.
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Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

gpt-4 95.3 / 84.0 80.7 / 67.8 62.7 / 52.7 43.8 / 42.1 27.3 / 32.0 19.3 / 26.5 13.8 / 13.9

Table 40: GPT-4 morphological productivity 1-shot morphologically aligned / tokenizer aligned accuracy results
on the ID test set for Turkish in English template.

Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

gpt-4 94.7 / 84.7 81.3 / 72.5 64.0 / 58.0 49.3 / 48.2 30.7 / 39.5 25.3 / 36.8 19.3 / 23.8

Table 41: GPT-4 morphological productivity 3-shot morphologically aligned / tokenizer aligned accuracy results
on the ID test set for Turkish in English template.

Models Number of morphemes (excl. root)
1 2 3 4 5 6 7

gpt-4 96.0 / 88.0 85.3 / 69.8 66.0 / 64.0 43.7 / 44.8 40.0 / 42.2 28.0 / 32.4 20.6 / 25.7

Table 42: GPT-4 morphological productivity 5-shot morphologically aligned / tokenizer aligned accuracy results
on the ID test set for Turkish in English template. 1-shot and 3-shot results can be found in Tables 40 and 41.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 54.2 / 36.4 / 46.8 43.9 / 31.2 / 45.8 91.6 / 85.1 / 88.8 78.8 / 70.3 / 83.0 76.6 / 63.8 / 72.5 51.4 / 38.1 / 61.1

Table 43: GPT-4 5-shot / 0-shot-cot / 5-shot-cot results for Turkish in English template across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 12.8 / 14.2 8.8 / 9.4 62.0 / 62.0 53.9 / 53.5 27.9 / 28.0 19.1 / 19.4
aya-23-35b 17.4 / 22.3 14.6 / 17.9 69.9 / 69.4 64.6 / 64.3 36.8 / 36.2 29.2 / 28.2
qwen-2.5-7b 15.0 / 16.7 13.2 / 14.9 71.1 / 73.1 65.7 / 67.8 40.5 / 42.7 33.5 / 36.5
qwen-2.5-32b 22.6 / 30.0 21.7 / 29.2 77.3 / 80.4 53.1 / 58.1 56.7 / 61.0 18.5 / 25.9
gemini-1.5-flash 28.8 / 37.2 24.9 / 32.1 60.8 / 65.4 41.4 / 41.5 32.2 / 39.6 0.4 / 0.7
gpt-4 49.0 / 63.0 36.7 / 54.5 85.5 / 88.6 61.9 / 68.3 71.4 / 77.5 33.5 / 43.7

Table 44: 1-shot Shuffled / Correct morpheme order results for Turkish in English template for all examined
models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 13.7 / 14.9 11.5 / 12.5 64.6 / 63.8 49.3 / 49.1 31.4 / 30.7 15.7 / 16.4
aya-23-35b 19.8 / 25.7 17.7 / 23.7 80.1 / 80.2 71.0 / 73.0 52.6 / 52.2 39.9 / 41.9
qwen-2.5-7b 14.9 / 17.8 12.9 / 15.5 73.6 / 76.1 66.8 / 69.4 44.3 / 47.9 33.9 / 38.0
qwen-2.5-32b 23.7 / 30.7 21.8 / 32.1 84.7 / 86.9 71.3 / 75.7 66.3 / 70.3 45.7 / 53.0
gemini-1.5-flash 30.5 / 39.6 25.7 / 33.4 80.8 / 85.4 52.8 / 58.0 63.6 / 71.6 19.3 / 27.4
gpt-4 52.1 / 70.3 40.5 / 63.5 90.2 / 92.9 77.7 / 81.0 76.8 / 82.0 55.9 / 59.6

Table 45: 3-shot Shuffled / Correct morpheme order results for Turkish in English template for all examined
models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

aya-23-8b 13.3 / 15.0 12.3 / 13.0 67.5 / 66.4 51.5 / 51.8 36.0 / 34.7 18.4 / 18.1
aya-23-35b 21.0 / 28.5 19.3 / 25.8 81.8 / 81.3 72.1 / 72.3 55.8 / 55.2 41.8 / 42.3
qwen-2.5-7b 15.8 / 19.2 12.9 / 16.9 74.6 / 76.4 66.0 / 68.5 45.1 / 47.0 33.1 / 35.7
qwen-2.5-32b 24.1 / 32.3 21.8 / 36.4 85.9 / 87.5 75.3 / 78.2 66.8 / 69.6 48.3 / 52.2
gemini-1.5-flash 30.7 / 43.3 25.1 / 35.1 85.4 / 88.6 62.1 / 66.1 70.7 / 74.5 33.3 / 39.5
gpt-4 54.2 / 73.0 43.9 / 66.7 91.6 / 93.7 78.8 / 82.6 76.6 / 82.2 51.4 / 58.3

Table 46: 5-shot Shuffled / Correct morpheme order results for Turkish in English template for all examined
models across tasks. 1-shot and 3-shot results can be found in Tables 44 and 45.
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Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 13.5 / 15.6 10.2 / 12.3 61.3 / 62.9 54.6 / 55.2 31.2 / 34.2 21.9 / 22.5
qwen-2.5-32b 22.5 / 24.8 19.2 / 23.1 52.0 / 53.1 43.6 / 44.0 19.0 / 20.4 5.2 / 5.8
gemini-1.5-flash 22.5 / 26.7 20.6 / 25.6 49.4 / 51.2 40.7 / 40.9 14.2 / 17.5 0.0 / 0.2
gpt-4 37.7 / 46.0 31.5 / 39.6 70.0 / 70.7 42.2 / 43.7 47.5 / 48.3 2.7 / 5.0

Table 47: 1-shot Shuffled / Correct morpheme order results for Finnish in English template for all examined
models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 13.5 / 16.5 11.7 / 15.2 65.4 / 67.5 57.3 / 59.6 35.8 / 39.8 25.8 / 29.0
qwen-2.5-32b 21.9 / 25.2 19.8 / 25.0 65.9 / 66.6 54.7 / 55.4 39.8 / 41.5 22.1 / 23.1
gemini-1.5-flash 26.9 / 35.0 22.9 / 28.7 71.2 / 73.2 50.3 / 51.1 48.1 / 50.6 15.4 / 16.5
gpt-4 40.6 / 56.0 35.0 / 50.4 83.1 / 83.2 65.6 / 67.4 65.4 / 67.3 39.8 / 42.7

Table 48: 3-shot Shuffled / Correct morpheme order results for Finnish in English template for all examined
models across tasks.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

qwen-2.5-7b 16.0 / 18.8 14.4 / 17.1 68.3 / 68.7 59.4 / 61.6 39.2 / 40.2 27.7 / 29.4
qwen-2.5-32b 22.3 / 27.9 21.3 / 31.7 69.0 / 71.3 62.2 / 64.7 42.5 / 46.7 33.1 / 37.3
gemini-1.5-flash 28.1 / 35.0 24.0 / 30.6 77.7 / 79.9 56.8 / 57.7 52.3 / 58.5 25.0 / 26.9
gpt-4 44.2 / 59.6 34.4 / 52.1 85.2 / 86.9 74.8 / 78.4 66.2 / 70.0 50.6 / 57.1

Table 49: 5-shot Shuffled / Correct morpheme order results for Finnish in English template for all examined
models across tasks. 1-shot and 3-shot results can be found in Tables 47 and 48.

Models Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD

aya-23-8b 74.8 / 62.0 / 60.2 59.7 / 53.9 / 51.1 46.4 / 27.9 / 25.4 26.9 / 19.1 / 16.1
aya-23-35b 83.5 / 69.9 / 67.9 74.2 / 64.6 / 61.6 59.5 / 36.8 / 33.3 43.3 / 29.2 / 26.0
qwen-2.5-7b 81.7 / 71.1 / 68.6 75.1 / 65.7 / 63.7 64.1 / 40.5 / 36.3 54.1 / 33.5 / 29.4
qwen-2.5-32b 79.7 / 77.3 / 76.6 54.0 / 53.1 / 52.8 65.5 / 56.7 / 53.8 22.0 / 18.5 / 17.7
gemini-1.5-flash 62.3 / 60.8 / 60.6 41.5 / 41.4 / 41.3 35.0 / 32.2 / 31.6 0.6 / 0.4 / 0.4
gpt-4 85.8 / 85.5 / 83.2 63.3 / 61.9 / 60.9 75.7 / 71.4 / 66.9 38.5 / 33.5 / 30.4

Table 50: 1-shot Random / Language-agnostic / Language-specific negative sample selection results for Turkish
in English template for all examined models across tasks.

Models Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD

aya-23-8b 74.4 / 64.6 / 61.9 53.0 / 49.3 / 47.1 45.6 / 31.4 / 28.1 21.5 / 15.7 / 13.4
aya-23-35b 88.2 / 80.1 / 78.8 80.4 / 71.0 / 71.0 72.9 / 52.6 / 48.9 60.5 / 39.9 / 38.1
qwen-2.5-7b 81.2 / 73.6 / 71.6 75.3 / 66.8 / 65.6 63.8 / 44.3 / 38.8 53.5 / 33.9 / 32.2
qwen-2.5-32b 88.3 / 84.7 / 83.4 74.5 / 71.3 / 69.8 78.3 / 66.3 / 63.6 55.4 / 45.7 / 42.4
gemini-1.5-flash 80.2 / 80.8 / 79.9 51.7 / 52.8 / 51.5 65.3 / 63.6 / 60.8 17.8 / 19.3 / 17.3
gpt-4 93.7 / 90.2 / 89.1 82.4 / 77.7 / 74.1 88.1 / 76.8 / 72.7 66.8 / 55.9 / 45.8

Table 51: 3-shot Random / Language-agnostic / Language-specific negative sample selection results for Turkish
in English template for all examined models across tasks.

Models Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD

aya-23-8b 77.4 / 67.5 / 66.6 58.1 / 51.5 / 50.6 51.0 / 36.0 / 33.5 25.5 / 18.4 / 17.3
aya-23-35b 89.6 / 81.8 / 80.5 80.7 / 72.1 / 70.9 75.8 / 55.8 / 51.8 60.5 / 41.8 / 38.8
qwen-2.5-7b 83.1 / 74.6 / 72.1 76.0 / 66.0 / 65.0 64.3 / 45.1 / 39.7 52.9 / 33.1 / 30.3
qwen-2.5-32b 90.1 / 85.9 / 83.9 81.3 / 75.3 / 73.6 80.3 / 66.8 / 61.8 64.7 / 48.3 / 45.8
gemini-1.5-flash 87.8 / 85.4 / 85.3 61.6 / 62.1 / 59.4 78.3 / 70.7 / 68.6 34.5 / 33.3 / 29.1
gpt-4 95.4 / 91.6 / 89.4 83.7 / 78.8 / 72.1 89.2 / 76.6 / 70.8 64.7 / 51.4 / 38.7

Table 52: 5-shot Random / Language-agnostic / Language-specific negative sample selection results for Turkish
in English template for all examined models across tasks.
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Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 (temp=0)∗ 54.0 44.0 92.0 79.0 77.0 51.0
gpt-4 (temp=0.3) 53.0 43.0 92.0 79.0 80.0 53.0
gpt-4 (temp=0.5) 55.0 43.0 92.0 80.0 80.0 53.0
gpt-4 (temp=0.7) 53.0 43.0 92.0 80.0 80.0 53.0
gpt-4 (temp=0.9) 53.0 42.0 92.0 79.0 80.0 51.0

Table 53: 5-shot results for Turkish in English template for GPT-4 across tasks and different temperature values.
∗Corresponds to default decoding setting for main results.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 (top_p=1)∗ 54.0 44.0 92.0 79.0 77.0 51.0
gpt-4 (top_p=0.95) 53.0 43.0 92.0 78.0 79.0 51.0
gpt-4 (top_p=0.9) 54.0 42.0 92.0 78.0 80.0 52.0

Table 54: 5-shot results for Turkish in English template for GPT-4 across tasks and different top_p values.
∗Corresponds to default decoding setting for main results.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 (temp=0)∗ 44.0 34.0 85.0 75.0 66.0 51.0
gpt-4 (temp=0.3) 45.0 36.0 85.0 74.0 64.0 48.0
gpt-4 (temp=0.5) 45.0 34.0 85.0 73.0 64.0 45.0
gpt-4 (temp=0.7) 44.0 36.0 86.0 73.0 65.0 46.0
gpt-4 (temp=0.9) 44.0 33.0 84.0 71.0 63.0 42.0

Table 55: 5-shot results for Finnish in English template for GPT-4 across tasks and different temperature values.
∗Corresponds to default decoding setting for main results.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 (top_p=1)∗ 44.0 34.0 85.0 75.0 66.0 51.0
gpt-4 (top_p=0.95) 43.0 34.0 86.0 73.0 65.0 46.0
gpt-4 (top_p=0.9) 43.0 34.0 85.0 79.0 64.0 44.0

Table 56: 5-shot results for Finnish in English template for GPT-4 across tasks and different top_p values.
∗Corresponds to default decoding setting for main results.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 (original)∗ 54.0 44.0 92.0 79.0 77.0 51.0
gpt-4 (paraphrased) 56.0 46.0 93.0 80.0 81.0 54.0

Table 57: 5-shot results for Turkish in English template for GPT-4 across tasks and different prompt instructions.
∗Corresponds to default prompt instructions for main results.

Models Morph. Productivity (accuracy) Morph. Systematicity (macro-F1) Morph. Systematicity (coherence)
ID OOD ID OOD ID OOD

gpt-4 (original)∗ 44.0 34.0 85.0 75.0 66.0 51.0
gpt-4 (paraphrased) 46.0 37.0 84.0 73.0 62.0 45.0

Table 58: 5-shot results for Finnish in English template for GPT-4 across tasks and different prompt instructions.
∗Corresponds to default prompt instructions for main results.
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