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Abstract

Multimodal systems have great potential to as-
sist humans in procedural activities, where peo-
ple follow instructions to achieve their goals.
Despite diverse application scenarios, systems
are typically evaluated on traditional classifica-
tion tasks, e.g., action recognition or temporal
action segmentation. In this paper, we present a
novel evaluation dataset, ProMQA, to measure
system advancements in application-oriented
scenarios. ProMQA consists of 401 multi-
modal procedural QA pairs on user recording
of procedural activities, i.e., cooking, coupled
with their corresponding instructions/recipes.
For QA annotation, we take a cost-effective
human-LLM collaborative approach, where the
existing annotation is augmented with LLM-
generated QA pairs that are later verified by hu-
mans. We then provide the benchmark results
to set the baseline performance on ProMQA.
Our experiment reveals a significant gap be-
tween human performance and that of current
systems, including competitive proprietary mul-
timodal models. We hope our dataset sheds
light on new aspects of models’ multimodal
understanding capabilities.1

1 Introduction

Procedures are human knowledge of experience
that enables one to obtain an expected outcome
without much trial and error. Yet, following pro-
cedures (i.e., a set of instructions), itself requires
skills such as, in cooking (Peddi et al., 2023), as-
sembly (Sener et al., 2022), or surgery (Beyer-
Berjot et al., 2016), among others. In supporting
such user activities, current evolving multimodal
foundation models like GPT-4o (OpenAI, 2024)
and Claude 3.5 Sonnet (Anthropic, 2024) have
great potential by monitoring the situation through
the perception of a user’s wearable device. De-
spite such diverse application scenarios, existing

1Code and data are available at https://github.com/
kimihiroh/promqa.

studies typically provide traditional, but less practi-
cal evaluation testbeds. To support an application-
oriented evaluation, we present a novel multimodal
question-answering (QA) dataset for understanding
procedural activity, produced by our cost-effective
human-LLM collaborative approach.

When supporting procedural activities, an assis-
tant should comprehend information from multiple
sources: 1) Actual process from their perception;
2) Each step and the overall flow from instructions.
For instance, in cooking, answering “What is the
next step now?” requires an assistant to recog-
nize which steps have been completed until “now”
from its video recording and identify what else/next
should be done from its recipe. Assuming recipes
are typically written in text, assistants receive mul-
timodal information of how one did it as video
and how one should do it as text. Prior work has
explored the task in a text-only, unimodal setting,
where a user verbalizes all of their actions (Le et al.,
2023). However, it is not ideal in practice as a be-
ginning cook might give misleading explanations
that cannot be corrected by a system without raw
information (video) about the actual process.

Figure 1 illustrates how one receives cooking
support from a system in a reactive manner. Tai-
loring toward such a practical scenario, we formu-
late our task as QA so that multimodal capabilities
can be evaluated directly on the downstream task
(§2.1). In contrast, prior work traditionally tackles
visual action understanding as action recognition
and temporal action segmentation (Kuehne et al.,
2014; Tang et al., 2019; Ding et al., 2022). We
argue that these tasks are suboptimal to evaluate
procedural activity assistants as they are subtasks
of such procedural activity support.

In this work, we present a novel dataset,
ProMQA (Procedural Multimodal Question
Answering), to evaluate models’ capabilities of un-
derstanding procedural activities in multimodal set-
tings (§2). Our work is motivated by the fact that a
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Recipe 1) Fill a mug with milk

2) Microwave 2 mins

3) Add 2 pieces of
chocolate

4) Add 1/5 tsp. cinnamon

5) Mix the contents

6) Heat the mug

Did I heat it 
for the correct 
amount of time?

You microwaved 
it for 2 mins,
instead of just

1 min.

What should I 
do next?

Your next 
step is to 

add cinnamon.

Did I miss any 
step?

Yes, you 
missed adding 

sugar.

[Missing Step]
Missed a recipe step (3-1):

Step performed before 
adding 1 tsp. Sugar.

[Timing Error] 
At a recipe step (2):

2 mins, instead of 1 min

Start

(1) Fill a 
mug with milk

(2) Microwave 1 min

(3-1) Add 
1/5 tsp. 
Cinnamon

(4) Mix the contents

(5) Heat the mug

End

(3-2) Add 
1 tsp. 
Sugar

(3-3) Add 2 
pieces of 
chocolate

Performing Steps

and/or
You can add 
sugar now.

“Spiced Hot Chocolate”

Figure 1: Illustration of a system supporting a user in a procedural activity. The left graph is the recipe and the
columns of images are screenshots of the user’s actions in chronological order. During the activity, the user makes
two mistakes. One is a timing error, where the user sets a longer time than required for microwaving (red). The
other is a missing step, where the user skips adding sugar (yellow borders for steps after the missing step). Steps
with green borders do not have any errors. QAs are occurring at each divider’s position.

well-adapted testbed is indispensable and can stim-
ulate system development. In the dataset construc-
tion, we repurposed videos and recipes from the ex-
isting CaptainCook4D (Peddi et al., 2023) dataset.
Then, for QA annotation, we employ a human-
LLM collaborative approach, where LLMs first
generate QA pairs and humans verify them to en-
sure the quality, inspired by the recent advances in
synthetic data generation (Mangalam et al., 2023)
(§3). While LLMs cost-effectively generate can-
didate QA pairs, the manual verification process
ensures the quality of the resulting dataset. Specifi-
cally, among 500 generated QA pairs, around 80%
were retained with additional human-written an-
swers through the verification. Finally, to estab-
lish the baseline performance, we benchmark the
following approaches: unimodal models, Socratic
models (Zeng et al., 2022), and both open and pro-
prietary multimodal models. Our benchmark exper-
iments reveal that, while humans can reasonably
perform the task, the dataset is challenging even for
proprietary multimodal models that show strong
performance on other vision-language tasks (§4).

Our contributions are three-fold. First, we de-
fine a novel multimodal QA task and present the
dataset, ProMQA, for procedural activity under-
standing under a permissive license.2 Second, we
propose a human-LLM collaborative approach for
cost-efficient QA annotation. Third, we provide
benchmark results to encourage further research on
this task.

2Apache 2.0

2 ProMQA

Our goal is to facilitate the development of
procedural-activity support systems. ProMQA con-
sists of 401 multimodal procedural QA pairs that
require both recipes and video recordings to answer.
It is constructed with our human-LLM collabora-
tive approach on top of existing cooking record-
ing and annotation (§3). In Table 1, we compare
our dataset with similar multimodal datasets. Our
dataset uniquely supports the assessment of mul-
timodal procedural activity understanding as the
QA task, which can serve as a testbed to advance
the model’s multimodal procedural activity under-
standing.

2.1 Task Formulation

We chose QA as our formulation to better reflect
how users seek information and advice in practi-
cal situations. A model takes as input a cooking
instruction recipe, a recording of a user’s activity
video, and a question q, and then, outputs an an-
swer a as natural language. A recipe is represented
as a directed acyclic graph of recipe steps, whereas
a video contains a pile of frames. In this work,
we treat each QA pair independently, instead of
formulating it as dialogue, to focus on reasoning
capability, and leave it for future work on how to ex-
tend to further practical dialogue settings. We also
note that “instruction” and “recipe”, and “record-
ing” and “video”, are used interchangeably.
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Dataset
Name Multimodal Video Procedural Explicit

Instruction QA Open
Vocab

LLM
Scoring

Assembly101 (Sener et al., 2022) ✓ ✓ ✓ ✗ ✗ ✗ ✗
IndustReal (Schoonbeek et al., 2024) ✓ ✓ ✓ ✗ ✗ ✗ ✗

YouCook2 (Zhou et al., 2018) ✓ ✓ ✓ ✓ ✗ ✗ ✗
CaptainCook4d (Peddi et al., 2023) ✓ ✓ ✓ ✓ ✗ ✗ ✗

How2QA (Li et al., 2020) ✓ ✓ ✓ ✗ ✓ ✗ ✗
MMBench (Liu et al., 2024b) ✓ ✗ ✗ ✗ ✓ ✓ ✓

EgoSchema (Mangalam et al., 2023) ✓ ✓ ✗ ✗ ✓ ✗ ✗
GazeVQA (Ilaslan et al., 2023) ✓ ✓ ✓ ✗ ✓ ✗ ✗

OpenEQA (Majumdar et al., 2024) ✓ ✓ ✗ ✗ ✓ ✓ ✓

ProMQA (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Our dataset vs. similar multimodal benchmarks

Criteria & Example Explanation

Multimodal
✓ What is the next step now? This is multimodal because it requires matching the completed steps from the recording to

the instructions in order to identify the possible next steps.
✗ What am I supposed to do after X? This is not multimodal because it can be answered by simply checking the instructions.
✗ What did I do after X? This is not multimodal because it can be answered by simply checking the recording.

Procedural
✓ Did I measure X correctly? This is procedural because it asks specifically about a step.
✗ What is the color of the tablespoon? This is not procedural because it asks for the static characteristic of a tool.

No External Knowledge
✓ Did I use the correct tool to measure X? Suppose the instructions provide sufficient details about the measurement tool, it can be

answered using the instructions and the recording, without requiring external knowledge.
✗ Can I replace zucchini with cucumber? Suppose the recipe does not mention possible replacements, it is unanswerable from the

given information. External knowledge would be required to find an answer.

Table 2: Criteria of our target multimodal procedural questions with cooking-context examples. Our target questions
require both instructions and recordings to answer (multimodal), which are about either the process or each step
(procedural) and are answerable from given information (no external knowledge).

Question type Target Example question

Process-level
Missing Missing recipe steps Did I miss any steps so far?

Next Next recipe steps What is the next step now?
Order Errors w.r.t. recipe step ordering Should I have done any steps in a different order?

Step-specific
Measurement Errors in measurement (e.g., 2 cups instead of 1 cup) Did I measure water correctly?

Preparation Other errors in preparation (e.g., cilantro instead of oregano) Did I add the correct spice?
Technique Errors in cooking technique (e.g., chop instead of slice) Did I prepare onion correctly?

Temperature Errors in temperature (e.g., high instead of low) Was the heat level correct?
Timing Errors in duration (e.g., 2 min instead of 5 min) Did I microwave it for long enough?

Table 3: Question categories and types with their corresponding target phenomenon and example questions.

2.2 Multimodal Procedural QA

In ProMQA, we specifically target multimodal
questions about procedural activities. Multimodal
questions require both instructions and recordings
to derive answers, while procedural questions per-
tain to either individual steps or multiple-step se-
quences. In addition, we only retain answerable
questions without requiring external or inherent
knowledge to emphasize multimodal reasoning ca-
pabilities over the provided information. Table 2
provides examples that distinguish our target from
relevant but out-of-scope questions.

Among valid multimodal procedural questions,
we categorize them into two groups, where each
is further divided into specific question types, fol-
lowing CaptainCook4D. Process-level questions
focus on multiple steps: missing, next, and order.
Step-specific questions are questions about indi-
vidual steps: measurement, preparation, technique,
temperature, and timing. Examples of each type
and their descriptions can be found in Table 3.

Answers are categorized into three groups. Sup-
pose a user asked a question, e.g., “What should
I do next?”. Direct answers directly address
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#example
(#question)

#distinct
recipe

avg. #steps/
recipe

#distinct
recording

avg. length
of recording

avg. #steps/
recording

avg. #answers/
question

avg. #words/
question

avg. #words/
answer

401 24 14.3 231 6m47s 6.4 1.9 8.9 11.8

Table 4: Statistics of ProMQA
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Figure 2: Question approval counts (left) and the answer
counts by source (right) for each question type.

Ours Human (est.)

Cost / Hour 5 USD / 0.5 Hour 800 USD / 40 Hour

Table 5: Cost comparison between our human-LLM
collaborative approach and a full-human approach for
generating 500 QA pairs. For the latter, we asked one
annotator to create 50 QAs from scratch, which took 4
hours at an assumed hourly rate of 20 USD.

the questions, e.g., “The next step is to heat the
mug”. Suggestions offer additional information
and suggest extra actions to rectify previous errors,
e.g., “You can heat the mug after adding sugar and
mix it again,” where the user forgot to add sugar.
Interventions inform a user of irreparable situa-
tions and recommend starting over from an earlier
point, e.g., “You should start over with filing the
mug with milk instead of water,” where the user
mistakenly filled the mug with water.

2.3 Statistics

We show the general statistics of our dataset in Ta-
ble 4. Among the 401 examples, 225 examples
have no errors in previous steps (clean) and 176
examples have at least one error in previous steps.
Figure 2 illustrates the high approval rate for ques-
tions, while approximately 50% of answers were
added by humans through the verification process.
In addition to showing the total count of each an-
swer characteristic, we also count the number of
examples with each combination of answer sources
and types, as shown in Figure 3 and 4. For these

machine (214) human (77) both (110)

Figure 3: Answer source: The number of examples with
only machine-generated answers, only human-written
answers, or both types of answers (count).

direct (331)
direct & suggestion (39)
direct & intervention (22)

suggestion (8)
all (1)

Figure 4: Answer type: The number of examples with
only direct answers, direct answers and suggestions,
direct answers and interventions, only suggestions, or all
types of answers (count). Note that other combinations,
i.e., only interventions or suggestions and interventions,
are not found in our dataset.

analyses, while we used the answer source infor-
mation retained through the annotation process, we
obtained the answer type information by asking
one annotator to categorize each answer into one
of three types. We further compare the cost of our
human-LLM collaborative approach and the esti-
mate of the full-human annotation in Table 5. QA
annotation for evaluation/test data typically con-
sists of two steps: initial QA creation, followed by
verification to assure the quality. We only compare
the cost of the QA creation/generation part as our
annotation framework replaces humans with LLMs
in the initial QA creation (§3). According to the
table, our approach substantially reduces the cost
of the QA creation part.

3 Annotation: Generate-then-Verify

In this work, we take a human-LLM collaborative
approach to annotate QA pairs: LLMs generate
QA pairs with lower cost, then humans verify them
to ensure quality. We hypothesize that LLMs can
substantially generate valid questions when given
sufficient information, inspired by synthetic data
generation (Mangalam et al., 2023; Wu et al., 2024).
Specifically, we leverage existing annotations of
action and error labels to form textual prompts. We
note that, as our annotation framework is LLM ag-
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nostic, it can plug and play LLMs, and importantly,
it can benefit from ongoing LLMs’ improvement.

3.1 Source & Preprocess
We chose CaptainCook4D (Peddi et al., 2023) as
our data source because it includes explicit instruc-
tions and user recordings with human-annotated
actions and error labels.

First, we extract video segments of various
lengths using annotated action temporal segmen-
tations. Given an original recording videooriginal
with n actions, we create n+1 video clips video0:k
such that each clip contains the first k recording
steps Svideo

0:k = {svideo0 , ..., svideok } (k = 0, 1, ..., n
and svideo0 = ∅). Each video clip with its cor-
responding recipe constitutes one data example
dinit: dinit = ⟨recipe, video0:k⟩. From each dinit,
we augment 2~8 examples by adding each ques-
tion type based on existing error labels: dtype =
⟨recipe, video0:k, type⟩. Specifically, we create
dtype for each, next and missing. For other six
types, we create dtype only when the last recording
step svideok in video0:k has a corresponding error
annotation. This is based on our preliminary exper-
iment, revealing that LLMs struggled to generate
those six types of questions when no corresponding
errors were annotated.

After obtaining approximately 11,000 examples
from this process, we sampled 500 examples by
taking the following points into account to increase
diversity: (1) Sample one example for each ques-
tion type from each recording; (2) Evenly sample
examples with errors (noisy) and without errors
(clean) in previous steps for all types; (3) Evenly
sample examples that do and do not have target
recipe steps for next and missing types.3 Note that
the activities in CaptainCook4D do not always re-
sult in the expected outcomes, i.e., failed proce-
dures are included. Hence, our noisy examples
allow us to generate QAs on top of unaddressed
and/or irreparable errors from previous steps.

3.2 QA Generation
Given dtype, we prompt an LLM to generate a
QA pair. Figure 5 shows a shortened example
of our prompt, and an actual example is avail-
able in Appx. B.2. Each prompt consists of three
pieces of information: (1) the textual description
of Svideo

0:k , (2) an excerpt from recipe to embed
what is next, missing, or incorrect, and (3) type,

3Example question without target recipe steps: “Did I miss
any step?” “No.”

The user has performed:
* Fill a mug with milk
* Microwave 1 min
* Add 2 pieces of chocolate

Next steps are:
* Add 1/5 tsp. cinnamon
* Add 1 tsp. sugar

What would the user ask about 
next steps?

…

------
------
------

Step 
Descriptions
(Recording)

Target Excerpt
(Recipe)

Question Type

Format

Figure 5: Example prompt with recording steps to em-
bed recording information, an on-target excerpt from a
recipe, and a question type for QA generation.

Recording
Recipe

DOT image excerpt

frames 0.43 0.53 0.65
step 0.54 0.60 0.71

Table 6: Approval rate comparison for QA generation
prompts with a fixed LLM, GPT-4o.

Template
QA Generator

GPT-4o Gemini 1.5 pro Claude 3.5 Sonnet

excerpt & step 0.71 0.69 0.68

Table 7: Approval rate comparison for QA generators.

the question type to guide generation. We feed
the prompts to an LLM to generate l QA pairs,
from which we randomly pick one (l = 3). This
is based on our preliminary experiment, where
single pair generation often leads to monotonic
question expression, e.g., “What is the next step?”
across multiple next examples. With GPT-4o as
our QA generator, we obtain 500 examples with
a pair of a machine-generated question qm and its
machine-generated answers Am = {am1 , am2 , ...}:
dgen = ⟨recipe, video0:k, qm, Am, ⟩.

In fact, it is not trivial how to represent informa-
tion in prompts and which LLMs to use to obtain
better QA pairs. We conduct ablation studies to
determine the prompt template and LLM.

Prompt Exploration In this ablation study, we
compare the methods to embed recipe and video
information, using small samples of dtype and a
fixed QA generator. In a typical full-human annota-
tion scenario, recipe and video0:k are represented
as a whole recipe and a video segment, respectively.
Inspired by this, we consider the following settings:
For a recipe, we compare three methods: a whole
recipe as a DOT language graph (Koutsofios et al.,
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1991) (“DOT”), a whole recipe graph as an image
(“image”), and only the on-target excerpt from a
recipe (“excerpt”). We use DOT to accurately rep-
resent the partial graph information in a recipe. For
a video segment, we feed a video segment as sam-
pled frames (“frame”) and a list of step descriptions
(“step”). Actual example prompts are available in
Appx B.2. We generate 80 questions for each com-
bination using GPT-4o and ask one annotator to
check if they are multimodal procedural questions.
Table 6 shows the approval rate for each combi-
nation, i.e., how many generated questions passed
the check. We found that feeding the combination
of the excerpt from a recipe and step descriptions
resulted in the most approved QA pairs.

QA Generator Selection In the second ablation
study, we compare QA generators by fixing the
prompt template (excerpt & step). The following
LLMs are our candidates: GPT-4o, Claude 3.5 Son-
net, and Gemini 1.5 Pro (Google, 2024).4 Similar
to the prompt exploration, we use the approval
rate as our metric based on the annotator’s judg-
ments. As shown in Table 7, the performance is not
very different, yet, we found that GPT-4o generates
slightly more valid questions.

3.3 Verification

LLM-generated questions and answers are not guar-
anteed to be valid. Thus, we resort to human anno-
tators to ensure the quality of our evaluation data.

Criteria For questions, annotators check if each
is a valid multimodal procedural question, as de-
scribed in §2.2, and assess for naturalness, clarity,
and grammatical correctness. For answers, annota-
tors verify the correctness of each answer.

Process Our verification process involves two
stages: In the first stage, two annotators indepen-
dently verify each question and its answers in dgen.
When a question is marked as valid, its answers are
shown to annotators to verify. Otherwise, annota-
tors move on to the next example. During answer
verification, annotators can add human-written an-
swers Ah = {ah1 , ah2 , ...}, including suggestions
and interventions, when any generated answers are
incorrect or additional correct answers are miss-
ing. When two annotations for one dgen conflicts
or at least single ah exists, an additional annotator

4These model versions were used throughout the pa-
per: gpt-4o-2024-08-06, claude-3-5-sonnet-20240620,
gemini-1.5-pro-001.

(i.e., adjudicator) further verifies examples to make
the final judgment or to have an additional check.
More details are available in Appx B.3.

We first created an annotation guideline and
hired 6 people with graduate degrees in NLP-
related fields for our annotation. Among the par-
ticipants, five people served as first-stage anno-
tators, while the other, who was also involved
in the guideline development, took the adjudica-
tor’s role. This adjudicator performed the answer
categorization, verification, and human judgment
in §2.3, §3.2, and §4.2 as well. To help familiar-
ize the annotators with the task, we conducted a
training phase in which each annotator verified 20
examples and received personalized feedback. Fol-
lowing the training session, we initiated the main
phase. On average, judgment agreements were
0.87 for both questions and answers. After the
verification, we obtained 401 verified examples
dver = ⟨recipe, video0:k, qmver, Am

ver, A
h
ver⟩.

4 Benchmarking

On our ProMQA, we provide the baseline results
of existing models to facilitate the development
of a user-support system for procedural activities.
Considering that our task contains natural language
answers, we employ an LLM-based metric to eval-
uate the performance of the baselines.

4.1 Target Models
We consider the following approaches:

Unimodal Model One baseline consists of a text-
only unimodal model, which shows how many ex-
amples in ProMQA can be solved/guessed solely
from textual information (i.e., instructions and
questions). Vision-only unimodal models are not
considered, as inputs without questions would not
guide the model to generate on-target answers. We
employ Llama 3.1 Instruct (Dubey et al., 2024).

Socratic Model Another baseline is a two-model
pipeline: one generates captions from visual inputs,
and the other generates answers based on those cap-
tions and text information. This approach demon-
strates how many questions can be answered with
restricted cross-modal/frame reasoning. We use
LLaVA 1.5 (Liu et al., 2024a) for image captioning
and Llama 3.1 Instruct for text-based reasoning.

Multimodal Model As one of our main targets,
we assess open multimodal models, especially the
ones tailored towards video understanding. Based
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The user has performed:
* Fill a mug with milk
* Microwave 1 min
* Add 2 pieces of chocolate

[Question] 
What is the next step?
[Gold answers]
* Add 1/5 tsp. cinnamon
* Add 1 tsp. sugar

[Prediction]
Add 1 tsp. sugar.

Give your judgment:
* 0: not match
* 1: partial match
* 2: match

Step 
Descriptions
(Recording)

Question & 
Gold Answers

Model 
Prediction

Format 
(incl. 

Judgment 
choices)

Figure 6: Example prompt for LLM Scoring with
recordings as context information, a question with its
gold answer(s), and a model prediction.

#choice
Context information

default DOT step

binary 0.67/0.86 0.57/0.80 0.71/0.89
ternary 0.67/0.69 0.58/0.64 0.76/0.75

Table 8: LLM-based scoring prompt comparison (Pear-
son/Acc.)

Template
Evaluator

GPT-4o Claude 3.5 Sonnet Gemini 1.5 Pro

ternary & step 0.83/0.82 0.79/0.77 0.66/0.68

Table 9: Evaluator comparison (Pearson/Acc.)

on the strong performance on the existing multi-
modal benchmarks, e.g., MMMU (Yue et al., 2024)
and Video-MME (Fu et al., 2024), we evaluate
VideoLLaMA2 (Cheng et al., 2024) and Qwen2-
VL (Wang et al., 2024). Finally, we test proprietary
multimodal models (i.e., GPT-4o, Claude 3.5 Son-
net, and Gemini 1.5 Pro) considering their strong
performance in various benchmarks.

4.2 LLM-as-a-Judge

Evaluating natural language itself is a challeng-
ing task due to multiple correct answers and their
possible variations for the same question. In
place of string-based metrics, e.g., BLEU (Papineni
et al., 2002), which often struggle with such an an-
swer diversity, LLM-based metrics, i.e., LLM-as-
a-judge (Zheng et al., 2023) are getting increasing
attention. Considering possible correct answers,
we also employ LLM-as-a-judge in the experiment.
Figure 6 shows our shortened prompt for our LLM-
based scoring. As a calibration process, we con-
duct ablation studies to choose which information

to feed in prompts and an LLM as our evaluator.

Prompt Exploration and Evaluator Selection
We aim to identify a prompt template and an LLM
that yields a high correlation with human judges.
We consider two key aspects in templates: 1) the
number of choices in the Likert scale and 2) the
context information. For choices, we consider “bi-
nary” (match and unmatch) and “ternary” (match,
partial-match, and unmatch). For context, we ex-
amine three settings: With a question, gold an-
swers, and a predicted answer as the fundamental
elements (“default”), we then incorporate either in-
struction (“DOT”) or step descriptions from record-
ings (“step”). Candidate evaluators include GPT-
4o, Claude 3.5 Sonnet, and Gemini 1.5 Pro. In the
experiment, we feed inputs based on the verified
examples in §3.2 to LLM-evaluators to obtain pre-
dictions. Then, we obtain judgments from these
LLMs with all combinations. As a comparison,
we obtain human judgments, where one person
judges the predictions with both binary or ternary
options. We consider Pearson correlation coeffi-
cient (Pearson, 1895) and match accuracy as our
metrics. Table 8 shows the average scores across
three evaluator models. We found that the combi-
nation of “ternary” and “step” produces the highest
correlation. With the best combination, we com-
pare the evaluators. Table 9 shows that GPT-4o
has the best correlation with the human judgments.
In the benchmark experiment, we scaled judgment
scores from 0-2 to 0-100 by multiplying 50.

4.3 Results

In this experiment, we also obtained human per-
formance as a comparison. We asked five first-
stage annotators (§3.3) to solve 20 samples, out
of 401 total examples, which they had not previ-
ously checked during the verification process. The
sampling was done due to our budget. Perform-
ers were provided only recipes and video segments
with questions. In Table 10, we provide the average
performance, as well as the breakdown based on
previous step types and question types. It shows
that all the models we benchmark lag behind hu-
man performance, even the competitive proprietary
models. Among the models, Claude 3.5 Sonnet
performs relatively better than others, although the
differences are somewhat marginal. In general,
clean examples are easier for models than noisy
examples, although the gap varies depending on
each model. Proprietary models are, on average,
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Model Avg. Error Question Type

clean noisy missing next order measurement preparation technique temperature timing

Llama 3.1 70B Instruct 31.5 33.2 30.2 35.5 38.3 12.5 2.9 14.3 5.6 30.0 20.0

LLaVA 1.5 13B (50f, 288p)
& Llama 3.1 70B Instruct 37.5 38.9 36.4 41.9 45.3 12.5 11.8 14.3 11.1 50.0 18.0

VideoLLaMA2 72B (8f, 336p) 39.8 49.4 32.2 46.3 49.7 20.0 0.0 21.4 11.1 25.0 8.0
Qwen2-VL 72B (100f, 336p) 31.2 32.1 30.4 34.1 37.0 45.0 0.0 10.7 0.0 20.0 14.0

GPT-4o (50f, 765p) 40.4 39.5 41.1 39.9 45.9 45.0 29.4 17.9 27.8 55.0 24.0
Gemini 1.5 Pro (50f, 765p) 25.2 27.0 23.8 27.4 29.7 15.0 17.6 7.1 16.7 20.0 12.0
Claude 3.5 Sonnet (10f, 765p) 44.1 48.9 40.4 44.6 58.2 27.5 8.8 14.3 5.6 25.0 28.0

Human* (74.5) (83.5) (65.8) — — — — — — — —

Table 10: Benchmark result: The average of all the examples, the averages of examples with (noisy) and without
errors (clean) in previous steps, and the averages for the same question-type examples. f and p denote the number of
frames and image resolution used for each model. Note that each category contains a different number of examples.
*: Human performance is based on the sampled 20 examples.

Model Avg.
Answer Source Answer Type

machine human both direct direct & suggestion direct & intervention suggestion all

Llama 3.1 70B Instruct 31.5 33.4 28.0 30.5 31.7 30.8 34.1 25.0 0.0

LLaVA 1.5 13B (50f, 288p)
& Llama 3.1 70B Instruct 37.5 40.7 32.9 34.8 38.8 34.6 34.1 12.5 0.0

VideoLLaMA2 72B (8f, 336p) 39.8 45.1 32.9 34.3 41.7 34.6 31.8 12.5 0.0
Qwen2-VL 72B (100f, 336p) 31.2 35.0 22.0 30.5 30.8 33.3 27.3 37.5 100.0

GPT-4o (50f, 765p) 40.4 41.4 29.3 47.1 40.2 39.7 52.3 18.7 50.0
Gemini 1.5 Pro (50f, 765p) 25.2 27.1 18.3 26.7 24.8 25.6 34.1 12.5 50.0
Claude 3.5 Sonnet (10f, 765p) 44.1 48.1 35.4 42.9 45.0 42.3 43.2 25.0 0.0

Table 11: Answer-focused benchmark result breakdown: The average of all the examples, the averages of examples
with only machine-generated answer(s), human-written answer(s), and both; The averages of examples with only
direct answer(s), direct and suggestion(s), direct and intervention(s), only suggestion(s), and all answer-types. f
and p denote the number of frames and image resolution used for each model. Note that each category contains a
different number of examples.

better on step-specific questions. Additionally, we
show the breakdown based on answer sources and
types in Table 11. From the table, we can see that
models generally perform better on examples with
only machine-generated answers, although each
model exhibits different preferences. Furthermore,
we investigate the effect of answer counts of ex-
amples on performance. There is a weak common
trend that models perform well on examples with
a single answer and with 4 answers. Considering
our results do not always align with those in the
public benchmarks like Video-MME, we believe
our ProMQA can be complementary in evaluating
models’ multimodal capabilities.

5 Self-Preference Bias Analysis

Prior studies report that LLMs may introduce self-
preference bias: “an LLM favors its own outputs
over texts from other LLMs and humans.” (Pan-
ickssery et al., 2024) This can be a critical issue
when LLMs play multiple roles, as in our exper-
iment, i.e., use LLM-generated QAs to evaluate
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Llama 3.1
LLaVA 1.5 
& Llama 3.1
VideoLLaMA2 

Qwen2-VL
GPT-4o

Gemini 1.5 Pro
Claude 3.5 Sonnet

Figure 7: Model performance with different numbers of
answers. Note that each category contains a different
number of examples and examples with more than 5
answers are excluded due to their small counts.

LLMs with LLM-as-a-judge. To justify the fairness
of ProMQA as a benchmark dataset, we investi-
gate: (1) generator-predictor self-preference bias,
where the generator’s outputs harbor styles or char-
acteristics that make it easier for the model to an-
swer, and (2) predictor-evaluator self-preference
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Predictor Generator Evaluator
GPT-4o Gemini GPT-4o Gemini

GPT-4o 22.8 36.4 27.5 31.4
Gemini 14.0 12.7 21.6 24.5

Table 12: Result of generator-predictor and predictor-
evaluator self-preference bias checks. Each number
represents the score by a human evaluator. Gemini
denotes Gemini 1.5 Pro.

bias, where the evaluator favors their own outputs,
rather than objectively assessing the accuracy or
quality of the predictions. Our experiments show
no noticeable sign of biases.

5.1 Bias: Generator-Predictor

We investigate if questions generated by an LLM is
easier for the same LLM to derive answers. To con-
duct a control experiment, we change generators
and predictors, while fixing other variables, i.e.,
the verification person and evaluator (manual). Ac-
cording to Table 12, we did not find an indication
that a model scores higher on its generated ques-
tions. One reason could be the modality difference
between generation (text-only) and prediction (text
& visual inputs), but we leave it for future work.

5.2 Bias: Predictor-Evaluator

We then examine the original self-preference bias,
i.e., if an LLM favors their own predictions over
others. We fix generators (i.e., verified QAs from
three LLMs), and change predictors and evaluators
with the same set of LLMs for each. Contrary to the
previous work, Table 12 shows no sign of the bias.
We believe that QA evaluation is more objective
than the summarization used by Panickssery et al.
(2024), resulting in less room for model-based bias.
We again put deeper analysis as future work.

6 Related Work

Procedural Activity Understanding The re-
search community constructed various datasets to
improve the machine’s understanding of procedu-
ral activities in videos: Breakfast (Kuehne et al.,
2014), YouCook2 (Zhou et al., 2018), COIN (Tang
et al., 2019), Assembly101 (Sener et al., 2022), and
CaptainCook4D (Peddi et al., 2023), to name a few.
With those datasets, models are typically evaluated
on tasks like action recognition and temporal action
localization, framed as classification tasks. In this
work, we propose QA as the formulation, which
aligns better with real-world scenarios.

Video QA Dataset QA as a task formulation is
increasingly adopted for video QA datasets, e.g.,
NExT-QA (Xiao et al., 2021), EgoSchema (Man-
galam et al., 2023), OpenEQA (Majumdar et al.,
2024), Video-MME (Fu et al., 2024), inter alia.
While they are multimodal, i.e., a model takes
video frames and a textual question as inputs, we
argue that they are still rather video-oriented as
only a short question consists of the textual part,
compared to a pile of images from a video. While
GazeVQA (Ilaslan et al., 2023) uniquely focuses
on procedural tasks as QA, instructions are yet ex-
plicitly provided to systems, hence, only a short
question with multiple choices and a video are the
inputs. For enhanced cross-modal comprehension,
we present ProMQA where textual instructions are
necessary to derive a correct answer in addition to
a video and question (§2.1).

Synthetic Evaluation Data Along with the ad-
vancement of LLMs, synthetic data generation
is widely explored in various phases of model
development, including pretraining (Gunasekar
et al., 2023; Maini et al., 2024) and instruction
tuning (Wang et al., 2023; Adler et al., 2024). Com-
pared to those phases, it is underexplored in gener-
ating evaluation data with LLMs (Wu et al., 2024),
possibly because of the following two reasons: 1)
The quality assurance is lacking, which can be
mitigated by introducing multi-step machine and
manual curation steps as EgoSchema. 2) Potential
biases may be introduced (Zheng et al., 2024; Pan-
ickssery et al., 2024). Addressing these challenges,
we develop our ProMQA with additional human
checks (§3.3), justified by the fairness-check exper-
iments (§5).

7 Conclusion

In this paper, we propose a human-LLM collabora-
tive approach, Generate-then-Verify, and develop
a novel evaluation dataset, ProMQA, for multi-
modal procedural activity understanding. ProMQA
consists of 401 QA pairs that require understand-
ing both instructions and videos to derive answers,
queried by questions. We also provide the base-
line performance of existing models, showing that
there is still a large gap in performance between
humans and machines, even the competitive propri-
etary multimodal models. We believe that ProMQA
can shed light on the new aspect of multimodal ca-
pabilities to facilitate model development.
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8 Limitation

We note a couple of limitations remain in this work.
First, the size of the dataset is relatively small. This
may affect the confidence of performance compar-
isons when two models receive similar scores. We
plan to increase the number of examples so that the
research community can present their incremen-
tal progress, i.e., a few point improvements, with
higher confidence (Card et al., 2020). However, de-
spite its limited size., ProMQA is carefully curated
with a representative selection of questions and an-
swers through our data annotation design. This
enables it to serve as an effective testbed for mul-
timodal foundation models for providing insights
into model performance.

Second, the domain is restricted to a single activ-
ity, cooking. Remember our annotation framework
assumes the action and error labels, explicit instruc-
tions, and procedural videos. While our source
dataset, CaptainCook4D, uniquely satisfies all the
prerequisites, it does not apply to other existing
datasets. We leave it to future work how to extend
our work to integrate other activities by making use
of other datasets.

Third, the dataset is oriented toward English
and Western countries, especially, the U.S. Cap-
tainCook4D contains recipes that originate from
non-English speaking regions, e.g., “Ramen” or
“Bruschetta,” but recipes and cooking environments
are designed for people in the U.S. We believe that
our dataset can support the advancement of frontier
multimodal models, which can also benefit diverse
and/or general models. However, considering the
ubiquitous potential of our target user-support sys-
tems, we hope to contribute to the development of
systems for people in non-English, non-Western
countries.

Finally, we release our dataset as evaluation data,
not for training data, which complies with the terms
of use by OpenAI.5

9 Ethical Consideration

In the dataset construction, we used LLMs that are
pretrained on a massive web-scraped corpus, which
may contain some toxic or biased information. We
do not aim to include any prejudiced, offensive, or
biased content in the dataset, and we did not find
any in our verification process. CaptainCook4D
received IRB approval and participants provided

5https://openai.com/policies/
row-terms-of-use/

written consent in their data collection, and no pri-
vate information included.6
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A ProMQA

Figure 8 illustrates the task formulation.7

MODEL

Instruction Recording Question Answer

--------
--------
-------- ?

Figure 8: Task formulation of our dataset. Given recipe
information, recording information, and a question, a
model is to predict an answer. In our benchmark ex-
periment, recipes and questions are fed as text, while
recordings are passed as frames sampled from videos.
Then, a model generates answers in text.

A.1 External Knowldge
In §2.2, we define that our target multimodal proce-
dural questions can be solvable from the combina-
tion of instruction and recording information. Our
task assumes the common sense that humans would
have gained through their cooking experiences, in
varying degrees. We note that this may introduce
some ambiguity/subjectivity, regarding the bound-
ary between common sense and external knowl-
edge, as external knowledge is, to some extent, in
the same spectrum as common sense. For instance,
for well-experienced people, it can be too obvious
(common sense) that replacing cilantro with parsley
changes the flavor of a recipe, while others would
think that is specialized/external knowledge. To
mitigate this subjectivity, we assign two annotators
for each example in verification to account for this
variance.

A.2 Other Verification Criteria
Additionally, we ask annotators to check the natu-
ralness and clarity of questions. Naturalness is to
check if a question is natural/makes sense to ask.
For instance, when a question like “Did I forget
to do something before <stepX>?” is asked, peo-
ple usually assume that <stepX> has already been
passed (with or without errors). So, if the ques-
tion is asked when <stepX> is yet to be performed,
this question will be unnatural/nonsensical. This
criterion filters out this type of nonsensical ques-
tion. Clarity filters out vague/too general questions,
especially questions asking about non-procedural
aspects. For instance, a question like “What did I
do wrong?” can target non-procedural errors, e.g.,
“Too many dishes are left in the sink.” or “The
countertop is too messy.” which we encountered in

7Icons in Figure 1, 5, 6, and 8 are from https://www.
flaticon.com.

Figure 9: Count of 5 starting words in questions.

Figure 10: Count of 5 starting words in answers.

our preliminary QA generation and benchmarking
experiments. To focus on the procedural questions,
we added this criterion.

A.3 Human-written QAs
We obtain 50 next questions by asking one of the
annotators before conducting any verification pro-
cess. This provides the situation where one creates
QA pairs without any prior knowledge about this
work. They receive raw recipes and videos and
create 50 next-type QAs from scratch, which took
around 4 hours, as shown in Table 5.

A.4 Additional Statistics
In Figure 9 and 10, we show the counts of five
starting words in questions and answers, sorted by
question types.

In Table 5, we compare the cost between
our approach and the full-human annotation ap-
proach. In addition, we compare machine-
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generated and human-written QAs in terms of
question diversity using the type-token ratio, TTY
(num_unique_words/total_vocab), and cosine
similarity with E5 Small (Wang et al., 2022). For
human-written questions, we use the whole 50
questions to compute both numbers. For machine-
generated questions, we sample 50 next questions
and compute the metrics. To reduce sampling vari-
ance, we sample 10 times and take the average of
them. TTY and cosine similarity are 0.07 and 0.80
for human-written questions and 0.09 and 0.80 for
machine-generated questions. This suggests that
both approaches produce similarly diverse ques-
tions at the surface and semantic level.

A.5 Statistical Power Analysis

Following Card et al. (2020), we conduct their sta-
tistical power analysis to estimate the performance
difference required to detect statistical significance
between systems with confidence. We first estimate
the baseline accuracy based on the performance of
GPT-4o, 0.4 and the agreement rate based on GPT-
40 and Claude 3.5 Sonnet, 0.65. Given these num-
bers, the simulation-based analysis8 shows that at
least 8.5 accuracy point difference would be needed
to detect significance with 80% confidence.

B Annotation: Generate-then-Verify

B.1 Preprocess

Before the start of our automated preprocessing
step, first, we corrected existing annotations in Cap-
tainCook4D, especially about the orders, e.g., by
checking the consistency between the order and
the timestamps. In the preprocessing stage, we did
not create dtype of measurement, preparation, tech-
nique, temperature, timing, and order from dinit
when the last recording step did not have the cor-
responding error annotations. This is due to our
preliminary experiments, where such cases tend to
generate invalid multimodal procedural questions,
i.e., the approval rate was much lower than others.
This may be because not all actions can be asso-
ciated with each type of question. For instance, it
is harder to create a sensical temperature question
from a step, “Peel an onion.” In addition, we skip
creating dtype in the following cases: video0:k is
too short, i.e., less than five seconds, which occa-
sionally happens in the case of video0; missing

8https://github.com/dallascard/
NLP-power-analysis

questions for video0; The durations of Svideo
0:k over-

laps with svideok+1 , as it introduce extra step informa-
tion in video0:k. Also, as for Svideo

0:k , we use the
“modified description” available in CaptainCook4D,
which combines an original step description and its
error description of how a user deviates from the
corresponding recipe step.

In the sampling, we sample around 200 next,
200 missing, and 20 other-type examples, approxi-
mately reflecting the total number of each type.

All the videos used in ProMQA are from Cap-
tainCook4D, which are released under Apache li-
cense 2.0.

B.2 QA Generation
Figure 12 shows a full prompt example, and Fig-
ure 13 shows an example DOT representation of a
recipe.

In the prompt exploration, the following are our
findings: 1) Feeding the recipe as a whole hurts
the approval rate compared to the target excerpt.
This can be because the LLM needs to do extra
reasoning to identify where to focus on a recipe. 2)
Feeding the video as frames worsens the approval
rate. Videos contain more information to contextu-
alize the generation. However, the result suggests
that even for the strong proprietary multimodal
models, feeding information as text, if available,
leads to better performance. In addition, feeding as
frames costs is much more expensive than feeding
as text, as models require more tokens to process
images.

In the QA generator selection, we noticed that
Gemini 1.5 Pro sometimes deviated from the speci-
fied format, e.g., additional quotations or tags like
“[question]” or “[answer]”.

B.3 Verification
Figure 11 shows the interface for verification. It
consists of four parts: 1) A recipe graph with step
status (passed as green, current step as orange, and
not passed as dotted) with the triangle on the upper
left corner of each step indicates that it contains
errors. 2) A recording. 3) A list of step and error
descriptions. And, 4) QA annotation checkbox,
including a comment box for human-written an-
swers. When a question is judged as valid, its
answer checkboxes and comment box appear.

We distributed 500 examples to 5 annotators so
that each example receives two annotators’ judg-
ments (500×2 = 1000 judgments) and each pair of
annotators (5C2 = 10) shares 50 examples. Based
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0:00 / 3:53

Figure 11: Verification interface.

Missing Next Order Measurement Preparation Technique Temperature Timing Avg.

0.82 0.88 0.77 0.81 0.58 0.43 0.62 0.76 0.80
(148/180) (158/179) (20/26) (17/21) (14/24) (9/21) (10/16) (25/33) (401/500)

Table 13: Approval rate (#example after/before verification) for each question type.

Annotator 1
⟨qm, amq , am2 , ah1⟩

Annotator 2
⟨qm, amq , am2 , ah2⟩

Adjudicator
⟨qm, amq , am2 , ah1 , a

h
2 , a

h
3⟩

Explanation

⟨ ✓, ✓, ✗, ∅ ⟩ ⟨ ✓, ✓, ✗, ∅ ⟩ ⟨ –, –, –, –, –, – ⟩ Majority vote & No Adjudication

⟨ ✗, –, –, – ⟩ ⟨ ✗, -, -, - ⟩ ⟨ –, –, –, –, –, – ⟩ Majority vote & No Adjudication

⟨ ✓, ✓, ✓, ∅ ⟩ ⟨ ✓, ✓, ✗, ∅ ⟩ ⟨ –, –, ✓/✗, –, –, – ⟩ Majority vote

⟨ ✓, ✓, ✗, ∃ ⟩ ⟨ ✓, ✗, ✗, ∃ ⟩ ⟨ –, ✓/✗, –, ✓/✗, ✓/✗, – ⟩ Majority vote for qm, Am

Adjudicator’s call for Ah

⟨ ✓, ✓, ✗, ∅ ⟩ ⟨ ✗, –, –, – ⟩ ⟨ ✓, ✓/✗, ✓/✗, –, –, ∃ ⟩
⟨ ✗, –,–,–,–,–⟩

Majority vote for qm

Adjudicator’s call for Am

Adjudicator can add Ah

Table 14: Case study of adjudicator’s role. Suppose a QA generator generates a question qm and two answers
am1 , am2 , and then, annotators optionally write human-written answers, ah1 by one annotator, ah2 by the other annotator,
and ah3 by the adjudicator. The adjudicator’s role changes based on two annotators’ judges. (✓: valid, ✗: invalid, ∅:
no human-written answer, ∃: human-written answers exist, –: no judge added)

on the shared examples, we calculate the average
of per-pair judgment agreements for both ques-
tions and answers, 0.87, as discussed in subsec-
tion 3.3. Table 13 shows the breakdown approval
rate for each question type. In general, GPT-4o
generates more valid process-level questions than

step-specific questions. Based on our manual in-
spection, one reason is that some error types are not
suitable for multimodal questions. As shown in the
table, preparation and technique produce less valid
questions than others. For instance, a step with an
error description like “The user peeled the onion
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Model Avg. w/ Error Question Type

clean noisy missing next order measurement preparation technique temperature timing

Llama 3.1 8B Instruct 25.7 25.9 25.6 35.1 22.6 25.0 5.9 0.0 20.0 16.0 14.3
Llama 3.1 70B Instruct 31.5 33.2 30.2 35.5 38.3 12.5 2.9 14.3 5.6 30.0 20.0

LLaVA 1.5 7B (50f, 288p)
& Llama 3.1 8B Instruct 32.9 36.6 30.0 43.0 39.2 10.0 2.9 0.0 15.0 4.0 7.1
LLaVA 1.5 13B (50f, 288p)
& Llama 3.1 70B Instruct 37.5 38.9 36.4 41.9 45.3 12.5 11.8 14.3 11.1 50.0 18.0

VideoLLaMA2 7B (8f, 336p) 39.3 45.7 34.2 47.5 47.3 22.5 0.0 0.0 40.0 8.0 14.3
VideoLLaMA2 7B (16f, 336p) 38.3 44.3 33.6 48.1 44.9 30.0 0.0 0.0 30.0 2.0 10.7
VideoLLaMA2 72B (8f, 336p) 39.8 49.4 32.2 46.3 49.7 20.0 0.0 21.4 11.1 25.0 8.0
Qwen2 VL 7B (100f, 336p) 33.8 38.6 30.0 43.4 36.8 30.0 0.0 0.0 30.0 6.0 14.3
Qwen2-VL 72B (100f, 336p) 31.2 32.1 30.4 34.1 37.0 45.0 0.0 10.7 0.0 20.0 14.0

GPT-4o (50f, 765p) 40.4 39.5 41.1 39.9 45.9 45.0 29.4 17.9 27.8 55.0 24.0
GPT-4o (100f, 288p) 38.9 39.2 38.7 37.2 44.0 37.5 32.4 21.4 22.2 50.0 34.0
GPT-4o (250f, 288p) 36.5 38.1 35.3 43.7 34.8 40.0 20.6 22.2 45.0 26.0 10.7
Gemini 1.5 Pro (50f, 765p) 25.2 27.0 23.8 27.4 29.7 15.0 17.6 7.1 16.7 20.0 12.0
Gemini 1.5 Pro (100f, 288p) 27.9 28.1 27.8 32.4 32.0 30.0 2.9 17.9 16.7 15.0 6.0
Gemini 1.5 Pro (250f, 288p) 27.7 30.4 25.6 30.1 31.8 32.5 8.8 22.2 10.0 8.0 25.0
Claude 3.5 Sonnet (10f, 765p) 44.1 48.9 40.4 44.6 58.2 27.5 8.8 14.3 5.6 25.0 28.0
Claude 3.5 Sonnet (100f, 288p) 36.8 43.8 31.3 48.4 37.5 22.5 14.7 16.7 25.0 12.0 10.7

Human 74.5 83.5 65.8 — — — — — — — —

Table 15: Additional benchmark result: The average of all the examples, the averages of examples with (noisy) and
without errors (clean) in previous steps, and the averages for the same question-type examples. f and p denote the
number of frames and image resolution used for each model.

Model Avg.
Answer Source Answer Type

machine human both direct direct & suggestion direct & intervention suggestion all

Llama 3.1 8B Instruct 25.7 23.4 22.0 33.3 26.4 30.8 9.1 6.2 100.0
Llama 3.1 70B Instruct 31.5 33.4 28.0 30.5 31.7 30.8 34.1 25.0 0.0

LLaVA 1.5 7B (50f, 288p)
& Llama 3.1 8B Instruct 32.9 34.1 29.9 32.9 33.2 37.2 27.3 6.2 100.0
LLaVA 1.5 13B (50f, 288p)
& Llama 3.1 70B Instruct 37.5 40.7 32.9 34.8 38.8 34.6 34.1 12.5 0.0

VideoLLaMA2 7B (8f, 336p) 39.3 43.7 31.7 36.2 40.9 39.7 25.0 12.5 0.0
VideoLLaMA2 7B (16f, 336p) 38.3 41.8 32.3 35.7 39.4 41.0 27.3 12.5 0.0
VideoLLaMA2 72B (8f, 336p) 39.8 45.1 32.9 34.3 41.7 34.6 31.8 12.5 0.0
Qwen2 VL 7B (100f, 336p) 33.8 36.7 28.0 32.4 35.3 28.2 29.5 12.5 0.0
Qwen2-VL 72B (100f, 336p) 31.2 35.0 22.0 30.5 30.8 33.3 27.3 37.5 100.0

GPT-4o (50f, 765p) 40.4 41.4 29.3 47.1 40.2 39.7 52.3 18.7 50.0
GPT-4o (100f, 288p) 38.9 38.8 27.4 48.1 38.1 38.5 56.8 31.2 0.0
GPT-4o (250f, 288p) 36.5 36.7 26.8 43.8 36.0 39.7 45.5 25.0 0.0
Gemini 1.5 Pro (50f, 765p) 25.2 27.1 18.3 26.7 24.8 25.6 34.1 12.5 50.0
Gemini 1.5 Pro (100f, 288p) 27.9 28.3 20.7 32.9 27.6 34.6 22.7 25.0 0.0
Gemini 1.5 Pro (250f, 288p) 27.7 26.6 28.0 29.5 27.9 29.5 20.5 31.2 0.0
Claude 3.5 Sonnet (10f, 765p) 44.1 48.1 35.4 42.9 45.0 42.3 43.2 25.0 0.0
Claude 3.5 Sonnet (100f, 288p) 36.8 38.8 30.5 37.6 36.6 42.3 38.6 18.7 0.0

Table 16: Additional answer-focused benchmark result breakdown: The average of all the examples, the averages of
examples with only machine-generated answer(s), human-written answer(s), and both; The averages of examples
with only direct answer(s), direct and suggestion(s), direct and intervention(s), only suggestion(s), and all answer-
types. f and p denote the number of frames and image resolution used for each model.

improperly” is unlikely to receive a multimodal
question, as it is unlikely that recipes specify the
detailed instructions. Another potential reason is
the quality of error descriptions in CaptainCook4D.
Most of them are sensical, yet, they are not always
grammatically correct, e.g., dropping subjects, or
detailed enough. Although we corrected the de-
scriptions during our preliminary experiments, they
were not exhaustive.

Also, we note that, in the training session for the
verification, we received consent from the annota-

tors about the potential release of their annotations.

Adjudication scenarios We set two base prin-
ciples in designing the adjudicator’s role: 1) The
adjudicator makes the final judgment for question-
s/answers when the judgments of two annotators
conflict. 2) Every example receives two chances
to receive human-written answers. Table 14 shows
the role of the adjudicator in different cases. In the
first three cases, all judgments are determined by a
majority vote. For the fourth one, while a machine-

11613



generated question and answers are judged based
on a majority vote, human-written answers are
judged and determined by the adjudicator’s call.
These human-written answers are the reasons why
we have the two-stage verification process, i.e., to
have extra checks even for human-written answers.
Also, as two annotators can independently add
human-written answers, there may exist duplicate
answers, and we did not remove duplicates in the
adjudication process. Finally, only in the fifth case,
the adjudicator can add human-written answers to
comply with our second policy of two chances to
receive human-written answers. We note that, as
you can see from the case studies, not all examples
have both machine-generated and human-written
answers. In the adjudication, we shuffle the order
of answers in each example to make their sources
(machine or human) unclear as a source could give
extra bias to the adjudicator.

C Benchmarking

C.1 LLM-as-a-Judge

Figure 14 shows one full prompt example for our
LLM-based scoring.

C.2 Experimental Details

We use vllm for the inference of Llama 3.1 and
LLaVA 1.5. For VideoLLaMA29 and Qwen2-
VL.10, we follow their instructions to run their re-
spective inference code. All the weights are down-
loaded from HuggingFace11 using transformers.
We use 1~4 GPUs of A6000 (48GB), depending
on the size of the models. Each inference took at
most a few hours. For all proprietary models, we
use their libraries to make API calls. Each predic-
tion on all of our 401 examples in ProMQA costs
30~60 USD, depending on the model, the number
of frames, and the resolution of each frame. All the
results are based on a single run.

C.3 Additional Results

Table 15 and 16 show the additional benchmarking
results by changing model size for open models
and changing the number of frames and resolutions
for proprietary models. The unimodal and Socratic
models improve their performance as the sizes of
their models increase. However, open multimodal
models did not change the overall performance or

9https://github.com/DAMO-NLP-SG/VideoLLaMA2
10https://github.com/QwenLM/Qwen2-VL
11https://huggingface.co

even lowered their performance by a few points.
As for proprietary models, under the fixed maxi-
mum input length, the number of frames trades off
the resolutions. In our experiment, we found that
higher resolution leads to better performance. How-
ever, the combinations we tried are rather limited,
and there may exist a better combination, which we
leave the exploration for future work. We also note
here that we faced issues with limited maximum
lengths with image-included prompts, compared to
the ones listed on each API documentation or the
ones when we tried text-only prompts. Presumably,
this is due to the large file size of each image and
the total data size of one input for each API request.
We also leave it for future work on the workaround
of how to feed many relatively high-resolution im-
ages in input prompts.
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# Instruction
A person is cooking Spiced Hot Chocolate with their friend, who is a skilled cook.
The person completed these steps:
- Fill a microwave-safe mug with whole milk but spill
- Microwave the contents of the mug for 2 minutes
- Add-Add 4 pieces of chocolate to the mug
- Add-Add 1 teaspoon of white sugar to the mug
And, the person has just performed this step:
- Mix-Mix the contents of the mug
The friend knows the following step(s) can be done next:
- Heat-Heat the contents of the mug for 1 minute and serve
The person may or may not be noticing this.
What questions would the person ask the friend about next step(s)?

Assuming the friend is watching over you throughout the cooking activity and
understand the situation, return three pairs of a question and its answers as a
list:
* <questions>

* <answer1-1>
* <answer1-2>
* ...

* <question2>
* ...

# Note
- Each question/answer should consists of one consice sentence/phrase.
- If there exist multiple correct answers, provide all correct answers for each

question as a list so that each answer targets at one step.
- Each answer targets at one step. - Imagine a variety of a person: beginner/

experienced, careless/careful, etc...
- It is preferable to have as diverse pairs (question/answer type, tone, wording,

etc) as possible.
- There is a case where no missing step is performed, i.e., an answer is just no.

# Example
* What is the next step?

* You have completed all the steps.
* What should I do next?

* <stepY>
* <stepZ>

# Response

Figure 12: Prompt example for QA generation: next question
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digraph G {
START; "Heat-Heat the contents of the mug for 1 minute and serve";
"Add-Add 1/5 teaspoon cinnamon to the mug";
"Mix-Mix the contents of the mug";
"Add-Add 1 teaspoon of white sugar to the mug";
"Fill-Fill a microwave-safe mug with skimmed milk";
"Microwave-Microwave the contents of the mug for 1 minute";
"Add-Add 2 pieces of chocolate to the mug";
END;

"Mix-Mix the contents of the mug" -> "Heat-Heat the contents of the mug for 1
minute and serve";

"Add-Add 2 pieces of chocolate to the mug" -> "Mix-Mix the contents of the mug
";

"Add-Add 1 teaspoon of white sugar to the mug" -> "Mix-Mix the contents of the
mug";

"Add-Add 1/5 teaspoon cinnamon to the mug" -> "Mix-Mix the contents of the mug
";

"Microwave-Microwave the contents of the mug for 1 minute" -> "Add-Add 1
teaspoon of white sugar to the mug";

START -> "Fill-Fill a microwave-safe mug with skimmed milk";
"Heat-Heat the contents of the mug for 1 minute and serve" -> END;
"Microwave-Microwave the contents of the mug for 1 minute" -> "Add-Add 2 pieces

of chocolate to the mug";
"Microwave-Microwave the contents of the mug for 1 minute" -> "Add-Add 1/5

teaspoon cinnamon to the mug";
"Fill-Fill a microwave-safe mug with skimmed milk" -> "Microwave-Microwave the

contents of the mug for 1 minute";
}

Figure 13: Prompt example of a recipe in DOT format: “Spiced Hot Chocolate”
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# Instruction
This is an evaluation task.
You will be given a question, gold answer(s), and predicted answer.
Your task is to evaluate if the predicted answer matches against the gold answer(s)

.

Give your ternary judge 0, 1, or 2:
* 0 means the predicted answer is wrong (unmatch)
* 1 means the predicted answer is partially correct/wrong (partial match)
* 2 means the predicted answer is correct (match)
When multiple gold answers are available (provided as a list), the predicted answer

is correct/partially correct if it matches/partially matches with at least one
of the gold answers.

Provide your feedback as follows:
# Feedback
[Rationale] (your rationale for the judge, as a text)
[Judge] (your judge, as a number, 0, 1, or 2)

# Note
The question is being asked by a user who is cooking Cucumber Raita.
Well-trained annotators constructed gold answer(s), while the predicted answer was

by a machine, which answered based on the corresponding recipe and the frames
of the cooking recording.

Here are the steps being performed already:
- Add-Add 1 teaspoon of cumin powder to the bowl
- add-add 1 tablespoon of chopped scallions to the bowl instead of cilantro
- Rinse-Rinse 1 medium sized zucchini
- Add-1/4 teaspoon of red chilli powder to the bowl
- whisk-In a mixing bowl, whisk 1 cup of chilled curd until smooth. Use fresh

homemade or packaged curd
- chop or grate-chop or grate only 1/2 of zucchini instead of one medium cucumber

# Task
Now, here are the question, gold answer(s), and predicted answer:
[Question]
- Did I forget any other ingredients?
[Gold Answer(s)]
- No, you did not forget any ingredients at the moment.
[Predicted Answer]
- Based on the images, it seems you forgot to add 1/2 teaspoon of chaat masala

powder.

# Feedback
[Rationale]

Figure 14: Prompt example for evaluation.
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